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Abstract

Manipulative actions involving unstable interactions with the environment require controlling

mechanical impedance through muscle co-contraction. While much research has focused on

how the central nervous system (CNS) selects the muscle patterns underlying a desired

movement or end-point force, the coordination strategies used to achieve a desired end-

point impedance have received considerably less attention. We recorded isometric forces at

the hand and electromyographic (EMG) signals in subjects performing a reaching task with

an external disturbance. In a virtual environment, subjects displaced a cursor by applying iso-

metric forces and were instructed to reach targets in 20 spatial locations. The motion of the

cursor was then perturbed by disturbances whose effects could be attenuated by increasing

co-contraction. All subjects could voluntarily modulate co-contraction when disturbances of

different magnitudes were applied. For most muscles, activation was modulated by target

direction according to a cosine tuning function with an offset and an amplitude increasing with

disturbance magnitude. Co-contraction was characterized by projecting the muscle activation

vector onto the null space of the EMG-to-force mapping. Even in the baseline the magnitude

of the null space projection was larger than the minimum magnitude required for non-nega-

tive muscle activations. Moreover, the increase in co-contraction was not obtained by scaling

the baseline null space projection, scaling the difference between the null space projections

in any block and the projection of the non-negative minimum-norm muscle vector, or scaling

the difference between the null space projections in the perturbed blocks and the baseline

null space projection. However, the null space projections in the perturbed blocks were

obtained by linear combination of the baseline null space projection and the muscle activation

used to increase co-contraction without generating any force. The failure of scaling rules in

explaining voluntary modulation of arm co-contraction suggests that muscle pattern genera-

tion may be constrained by muscle synergies.
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Introduction

During daily life, we often perform manipulative actions that involve unstable interactions

between the hand and the environment or the rejection of external disturbances, such as when

working with tools. Successful performance of these actions requires controlling the endpoint

impedance through muscle co-contraction [1,2,3,4]. Increasing endpoint impedance reduces

the perturbing effect of an external force [2,3,5,6,7] and improves movement accuracy

[8,9,10,11]. Impedance is modulated through muscle co-contraction to facilitate ball catching

[12] while an overall decrease is associated with practice when learning a new motor task

[13,14,15].

Arm impedance can be characterized by inertia, damping, and stiffness. Many studies have

characterized these components both during static tasks [16,17,18,19,20,21,22,23] and dynamic

tasks [3,6,7,8,11,24,25,26]. Because inertia cannot be controlled for a given arm posture, damp-

ing co-varies with stiffness, and mechanical interactions with the environment occur usually at

the hand, past studies mostly focused on end-point stiffness for the characterization of the mus-

cular control of impedance.

The musculoskeletal system can perform the same action with different end-point trajecto-

ries or force profiles, the same end-point trajectory or force profiles can be achieved with dif-

ferent joint trajectories or torque profiles, and the same joint trajectories or torque profiles can

be generated by different muscle activation patterns [27]. Thus, infinitely many different mus-

cle activation patterns generate the same action. While much research in motor control has

focused on investigating how the CNS selects the muscle patterns underlying a desired move-

ment or end-point force, the strategies used to coordinate many muscles to achieve a desired

end-point impedance have received considerably less attention. Indeed, there is a redundancy

resolution (and exploitation) problem also for the control of impedance. For an antagonist
pair of muscles with opposite actions on a single joint, joint torque is the sum of the torques

generated by each muscle, which have opposite signs. Thus, as each muscle torque is a function

of muscle activation, net joint torque depends on the difference between the muscle activations

appropriately weighted to account for the moment arms and forces of each muscle. In contrast,

impedance depends on the sum of weighted muscle activations. One can then define the co-
contraction as any activation of two muscles that generates no net torque (i.e. zero weighted

activation difference) and the level of co-contraction as the specific value of the weighted sum

of the two activations. However, for a multi-muscle multi-joint system such as the arm, there

are infinite muscle co-contraction patterns that the CNS can select to achieve not only a

desired end-point force but also a desired end-point impedance. How the CNS selects one of

these infinite muscles patterns is still an open question.

Muscle activations underlying stiffness modulation have been studied during both pointing

and force exertion tasks [28,29]. However, previous studies recorded only a few agonist-antago-

nist muscles pairs. A small number of muscles may not be adequate to characterize the coordi-

nation strategies that the CNS employs to exploit the flexibility deriving from the redundancy of

the musculoskeletal system. Moreover, the identification of an agonist-antagonist muscle pair

may be valid only for specific tasks and experimental constraints [30] and the notion of agonist-

antagonist muscle pairs is not well defined for a multi-muscle multi-joint system. Thus, our

goal was to characterize the muscle coordination strategies that the CNS uses to control imped-

ance by recording from many arm muscles rather than a few agonist-antagonist pairs.

In a multi-muscle, multi-joint system, co-contraction requires a multivariate characteriza-

tion. If we consider the vector space of all muscle activation patterns, co-contraction patterns

constitute the null space of the mapping of muscle patterns onto end-point forces. If the map-

ping is linear, the null space is a vector subspace that can be directly characterized from the
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muscle-to-force matrix. Thus, if such matrix is known, it is possible to decompose muscle pat-

terns into a force-generating component and a null space component. The CNS must change

the null space component of the muscle activation vector to modulate impedance while main-

taining a given end-point force. Thus, we designed an experimental protocol to investigate

how the CNS changes muscle patterns and their null space projections during voluntary mod-

ulation of arm muscles co-contraction.

We used a multidirectional isometric force generation task with a simulated perturbation to

investigate the components of the muscle activation vector in the null space. We asked partici-

pants to displace a cursor in a virtual reality environment by generating submaximal isometric

forces to reach multiple targets in different spatial directions. We could then approximate the

mapping of muscle activations (EMG) to end-point forces with a linear relation [29,31,32], esti-

mate the EMG-to-force matrix by linear regression of the recorded forces and EMG, and com-

pute the associated null space matrix. We then induced subjects to voluntary modulate co-

contraction by simulating a disturbing force. We perturbed the cursor and we instructed sub-

jects to reduce its oscillation by increasing the co-contraction of their arm muscles [33]. We

used the projection of the instantaneous muscle activation vector in the null space to adjust the

stiffness of the coupling between the hand and the cursor, thus allowing the subject to attenuate

the effect of the perturbation by increasing co-contraction.

We first tested if subjects could succeed in this novel task by voluntarily increasing co-con-

traction to overcome the virtual disturbance. As all subjects could increase co-contraction by

modulating the projection of the muscle activations in the null space, we then investigated

how the CNS coordinates a redundant set of muscles to increase co-contraction. We character-

ized the modulation of the muscle activations both at the level of individual muscles and in

terms of null space projections. We assessed how co-contraction affects the directional tuning

of individual muscles by fitting cosine functions [32]. We then investigated how the null space

projections of the muscle activation vectors change with different levels of co-contraction. We

first tested if the CNS increases co-contraction by scaling of the null space vector observed dur-

ing isometric force generation without any simulated instability (baseline condition). How-

ever, the null space projections of the muscle patterns in the baseline condition may derive

from the skeletal geometry and the physiological non-negativity constraint for the muscle acti-

vations. In fact, even if the CNS selects muscle patterns by minimizing muscular effort, a non-

zero null space component is required to achieve the minimum norm solution because of the

non-negativity constraint. We then examined whether different co-contraction levels are

obtained by affine scaling of the null space component that is added to the non-negative mini-

mum norm muscle activation vector in the baseline condition. We also examined whether dif-

ferent co-contraction levels, recorded during perturbation conditions, are obtained by affine

scaling of the null space component that is added to the muscle activation vector observed dur-

ing the baseline condition in the perturbed conditions. Finally, we assessed whether the null

space components of the perturbed conditions, in which both force and co-contraction are

required, are obtained as a linear combination of the null space vector observed during the

force only condition and the muscle activation vector observed during pure co-contraction

condition.

Materials and methods

Subjects were asked to apply isometric forces at the hand for displacing a cursor in a virtual

reality environment, and to co-contract their arm muscles for attenuating the effect of a sinu-

soidal disturbance on the position of the cursor. The cursor’s movement was simulated as two

connected mass-spring-damper systems. The position of the first mass was controlled by the
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isometric force applied by the subject. The position of the second mass, which was not affected

by the position of the first mass, corresponded to the position of the cursor and was perturbed

by a virtual sinusoidal force. The stiffness of the virtual spring connecting the two masses was

adjusted in real-time by the projection of the muscle activation vector in the null space thus

allowing the subject to attenuate the effect of the perturbation by increasing co-contraction.

Therefore, the stiffness of the virtual spring during isometric force generation simulated the

stiffness of the hand during a disturbance rejection task.

Participants

Nine right handed subjects (age 23.8 ± 3.5, mean ± SD, 6 females) participated in the experi-

ment after giving written informed consent. All procedures were conducted in conformity

with the Declaration of Helsinki and were approved by the Ethical Review Board of the Santa

Lucia Foundation (Prot. CE/AG4-PROG.222-34).

Experimental apparatus and data acquisition

Subjects sat in front of a desktop on a racing car chair. Trunk and shoulders were immobilized

by four-point safety belts and the right forearm was inserted into a splint that fully supported

the hand and the forearm and immobilized the wrist joint. A steel rod connected the splint

with a 6-axis force transducer (Delta F/T Sensor, ATI Industrial Automation, Apex, NC, USA)

fixed below the desktop (Fig 1A). The position in the medio-lateral direction of the center of

the palm in the splint was aligned with the body midline. The height of the desktop was

adjusted such that the palm was at the height of the sternum. The distance between the desktop

and the chair was adjusted to achieve an elbow flexion angle of 90˚. This position was comfort-

able for the subjects and allowed them to remain still during the entire duration of the experi-

ment. A mirror (29.7 x 21 cm), positioned parallel to the desktop approximately half-way

between the hand and the eyes, occluded the hand. It reflected the image of a virtual scene

Fig 1. Experimental apparatus and cursor motion modeling. (A) Subjects sat in front of a desktop and inserted their right forearm into a splint

connected to a 6 axis force transducer. The view of the hand was occluded by a mirror that reflected a virtual scene projected by a LCD monitor. The

monitor displayed stereoscopically a desktop matching the real desktop and a blue spherical cursor whose position, when the subject was relaxed, was

approximately at the center of the palm. The cursor position in space was simulated using two mass-spring-damper system and depended on the force

applied by the subject. Adapted from [32]. (B) The position of the cursor was computed as the position of one mass (xm, mass m) connected through a

spring (stiffness Km) and a damper (damping coefficient Dm) to the position of a second mass (xM, mass M) connected to the center of the palm through

another spring (stiffness KM) and damper (damping coefficient DM). The force applied isometrically by the hand to the splint (Fa) was used to compute

xM. Mass m oscillated around mass M while the position of mass M was not influenced by the position of mass m. The instantaneous muscle activation,

projected onto the null space of the EMG-to-force matrix, was used to calculate the stiffness Km and determined the amplitude of the oscillation of the

cursor around its mean position (xM).

https://doi.org/10.1371/journal.pone.0205911.g001
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displayed by a 21-inch LCD monitor (Syncmaster 2233, Samsung Electronics Italia S.p.A., Cer-

nusco sul Naviglio, MI, Italy), parallel to the desktop and positioned approximately at the

height of the eyes. During the experiment subjects wore 3D shutter glasses (3D Vision P854,

NVIDIA Corporation, Santa Clara, CA, USA) and viewed stereoscopically a virtual scene

reproducing the real desktop and a spherical blue cursor. The cursor appeared, at rest, approxi-

mately at the position of the center of the occluded palm. The virtual scene was rendered by a

3D graphic card (Quadro Fx 3800, NVIDIA) on a PC workstation, using custom software. The

scene was updated at 60 Hz with the cursor position processed by a second dedicated data-

acquisition PC workstation running a real-time operating system. The cursor position was

transmitted to the first workstation through an Ethernet link using the UDP protocol.

Surface EMG activity was recorded from 17 muscles acting on the elbow and the shoulder:

teres major (TeresMaj), infraspinatus (InfraSp), latissimus dorsi (LatDorsi), inferior trapezius

(TrapInf), middle trapezius (TrapMid), superior trapezius (TrapSup), brachioradialis (BracRad),

biceps brachii, long head (BicLong), biceps brachii, short head (BicShort), triceps brachii, lateral

head (TriLat), triceps brachii, long head (TriLong), triceps brachii, medial head (TriMed), ante-

rior deltoid (DeltA), middle deltoid (DeltM), posterior deltoid (DeltP), pectoralis major clavicu-

lar portion (PectClav), pectoralis major sternal portion (PectStern). The correct electrodes

placement was verified by observing the activation of each muscle during specific maneuvers.

EMG activity was recorded with active bipolar electrodes (DE 2.1, Delsys Inc., Boston, MA),

after band pass filtering (20–450 Hz) and amplification (gain 1000, Bagnoli-16, Delsys Inc.).

Both force and EMG data were digitalized at 1 kHz using an analog-to-digital PCI board (PCI-

6229; National Instruments, Austin, TX, USA). Only force components were used to compute

cursor motion (torque components were recorded but not used) and they were defined as: Fx as

the component along the medio-lateral axis, positive to the right; Fy along the antero-posterior

axis, positive away from the chest; Fz along the vertical axis, positive up.

The cursor position was computed in real-time using two mass-spring-damper systems

(Fig 1B). At rest and without any perturbing force, the cursor was displayed at a position corre-

sponding to the center of the palm. An isometric force (Fa) applied by the subject to the splint

displaced a first mass (M) connected through a spring and a damper to the position of the cen-

ter of the palm (origin). The spring constant (KM) was set such that a constant force with a

magnitude corresponding to 20% of the mean maximum voluntary force (MVF) across force

directions (see below), would have maintained the cursor at 5 cm from the origin. The mass

(M) was adjusted adaptively in the range 15–140 g as in [34] to reduce the end-point force fluc-

tuation due to the muscle signal dependent noise. The damping constant (DM) was set to make

the system critically damped. This mass-spring-damper system behaved like a low-pass filter

for the mean motion of the cursor because it reduced the physiological high frequency fluctua-

tions of the exerted forces, increasing during the co-contraction, and made the control of the

cursor easier. The position of the cursor (x) corresponded to the position (xm) of a second

mass (m) relative to the position of the first mass (xM). The two masses were connected by a

spring and a damper whose stiffness (Km) and damping constant (Dm) were adjusted in real-

time according to level of muscle co-contraction expressed by the norm of the instantaneous

projection of the muscle activation vector onto the null space of the EMG-to-force matrix (see

below and Appendix).

EMG-to-force matrix and its null space

The relation between the vector of recorded EMG signals (m) and the recorded isometric end-

point force Fa was approximated as linear, Fa ¼ H �m, where the EMG-to-force matrix (H)

was estimated in using multiple linear regression. The dimensions of H were nd � nm ðnd ¼ 3
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number of space dimensions, nm ¼ 17 number of recorded muscles). The EMG signals from

all muscles, after rectification, baseline subtraction, filtering, re-sampling at 100 Hz, normali-

zation by the maximum voluntary contraction (MVC) level, were regressed on each force com-

ponent (2nd order Butterworth low-pass filtered, 5 Hz cutoff) recorded during the hold phase

in all baseline trials. Despite the relationship between muscle activation and end-point isomet-

ric force is generally non-linear, a linear relationship provides an adequate approximation for

low muscle activation levels, as the one required to reach the 20% MVF targets in our experi-

ment. The quality of the reconstruction of the forces, recorded during the static phase in the

baseline condition (see below) was used to assess the validity of the linear approximation in

each participant. The R2 value of the reconstruction was higher than 0.76 in all participants

except one, who presented a R2 equal to 0.61, and was thus excluded from the analysis. The

mean R2 value of the remaining participants (labeled as Subject 1 to 8) was 0.83 ± 0.05 (std,

n = 8).

The set of muscle activation vectors that did not generate any end-point force, forming a

subspace of the muscle activation vector space, was estimated computing the null space matrix

N of the EMG-to-force matrix H with the Matlab function null. The dimensions of N were

nm � ðnm � ndÞ. The instantaneous projection of the muscle activation vector in the null space

vector n, used to set the stiffness Km and the damping Dm (see Appendix), was calculated at

each time sample i as the product of the transposed null space matrix by the EMG activation

vector: ni ¼ NTmi.

Experimental protocol

The experiment was subdivided in 6 blocks (Fig 2D), each consisting in a sequence of trials. In

the first block (B1, MVF block) subjects had to generate maximum voluntary force in 20 differ-

ent target directions twice (40 trials). The target directions were defined as the directions of

the vertices of a dodecahedron with respect to its center in the origin (Fig 2A). In each trial the

subjects saw an arrow starting from the origin and with a length and direction corresponding

to the magnitude and direction of the applied force. The target force direction was displayed as

a transparent gray cylinder. Subjects were instructed to apply a maximal force in the target

direction and to maintain it for 1 s. A new trial started in a different direction 8 s after the end

of the previous trial. Data collected from this block were used to establish the mean MVF

across all directions of the maximum force applied. Forces were filtered by a second order But-

terworth filter with a 5 Hz low-pass cutoff. During the second block (B2, baseline block), sub-

jects had to displace the cursor to reach one of 20 targets. Targets were positioned at the

vertices of a dodecahedron inscribed in a sphere centered at the origin and whose radius was

20% MVF (Fig 2A and 2B). Each target was presented 3 times, for a total of 60 trials. At the

beginning of each trial, subjects were instructed to remain relaxed (rest phase) and maintain

for 1 s the cursor inside a sphere centered at the origin and whose radius was 2% MVF larger

than the radius of the cursor (Fig 2C). During the rest phase EMG signals collected from each

muscle (rectified, filtered, re-sampled, baseline subtracted, MVC normalized) were averaged

and their means, identified as baseline noise, were subtracted from the EMG signals collected

during the rest of the trial. At the end of the rest phase a transparent gray sphere, whose radius

was 3% MVF larger than the radius of the cursor, was displayed in one of the 20 possible target

locations, randomly selected in each repetition. Subjects were instructed to apply a force to dis-

place the cursor from the origin to the target, and to maintain it within the target sphere for 1 s

(hold phase) for successfully completing the trial. The target color switched from gray to yel-

low when the cursor was inside it. Subjects were required to complete the trial within 15 s. The

baseline block was used to calculate both the EMG-to-force matrix and the mean norm of the
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muscle activation projected onto the null space, which would be used to normalize the norm

of the null space projection in the following blocks (see Appendix).

The third block (B3, pure co-contraction block) was introduced to familiarize subjects with

the co-contraction task; it was composed of 15 trials in which the target sphere was positioned

at the origin. At the end of the baseline block, subjects were informed that an oscillation would

perturb the cursor in the following trials and that they could reduce it by stiffening their arm.

The action of the perturbation on the cursor started after the end of the rest phase and finished

with the end of the hold phase. Subjects were required to maintain the cursor, which was per-

turbed with a noise force of magnitude level 2 (see Appendix), within the target (3% MVF tol-

erance) during the 1s hold phase. A time-out of 15 s was used to avoid fatigue if subjects were

not able to maintain the cursor in the target for the requested time. In the last three blocks (B4,

B5, and B6, perturbed blocks) subjects had to reach one of 20 targets positioned at the vertices

of a dodecahedron inscribed in a sphere of 20% MVF radius and centered at the origin. Each

target was presented three times for a total of 60 trials in each block. The cursor was perturbed

by a disturbing force (see Appendix) with a magnitude of level 1 in B4, level 2 in B5, and level

3 in B6. A trial was successful if the cursor remained inside the target for 1 s and a 15 s time-

out was used to avoid fatigue. Two breaks were scheduled. The first break was necessary, after

the baseline block, to allow for the automatic processing of the data for the calculation of the H
and N matrixes, and to explain the co-contraction task to the subject. The second break was

scheduled after the fifth block to allow subjects to rest. In addition to the scheduled breaks,

subjects could pause at any time.

Fig 2. Experimental protocol. (A, B) Targets were equally distributed on the vertices of a dodecahedron inscribed in a sphere whose radius was 20% MVF. (C)

Subjects were instructed to perform a reaching task. At the beginning of the trial subjects had to maintain the cursor in the central location for 1 s. When a

transparent gray sphere appeared in one of the target positions, subjects had to apply a force to move the cursor inside the sphere. The color of the sphere

switched from gray to yellow when the cursor was fully inside the larger target sphere. Subjects had to match the force target with a tolerance of 3% MVC to

maintain the cursor inside the sphere for 1 s (hold phase). Finally, subjects had to relax all muscles to make the cursor return to the initial position. (D) Each

subject performed a single experimental session consisting of 40 trials of maximum voluntary force generation along the 20 directions (B1), 60 trials of reaching

to targets along the 20 directions (B2), 15 trials of pure co-contraction (B3), and 3 blocks of 60 reaching to targets trials along the 20 directions with three

different levels of perturbation magnitude (B4, B5, B6).

https://doi.org/10.1371/journal.pone.0205911.g002
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Data analysis

EMG directional tuning curves, their fits with a spatial cosine function, and the projection of

the muscle activation in the null space were calculated and compared among blocks. Since the

muscle activations for all muscles in each trial can be described as a vector in muscle space, the

angle between muscle activation vectors recorded during different blocks were calculated. A

few trials (19.1 ± 12.6, mean ± SD across all subjects, over 195 trials performed by each subject)

were excluded from the analysis after visual inspection because of: 1) high level of noise contam-

inating the EMG signal likely due to suboptimal contact of the electrodes with the skin; 2) arte-

facts in the EMG signal likely due to accidental contact of the subjects with metallic elements of

the apparatus; 3) transients in the force likely due to accidental impact of the subject’s left arm

with the force transducer; 4) muscle activity during the rest phase. A trial-specific baseline noise

level was estimated as the mean activation of each muscle recorded at the beginning of each trial

(rest phase). Data recorded during the last 0.4 s of rest phase of each trial, in which movements

anticipation may occur, were excluded in the evaluation of the trial-specific noise level. The

trial-specific baseline noise was subtracted from the rest of the data of each trial.

Task performance. A trial was successful if the cursor remained inside the target sphere

(3% MVF tolerance) during the 1 s hold phase. In successful trials, we defined time-to-criterion
as the interval from target appearance to the beginning of the hold phase. In unsuccessful trials,

for which no hold phase could be defined, the time-to-criterion was defined as the interval

from target appearance to the last time in the trial in which the cursor entered the target. The

time interval between the first moment the subject reached the target and the end of the hold

phase, in successful trials, or the end of the trial in unsuccessful trials, was defined as attempt-
ing time. The attempting time represents the time the subject tried, successfully or not, to

maintain the cursor inside the target. The norm of the difference between the applied force,

normalized to MVF, averaged during the attempting time, and the force target was defined

force error. The norm of the difference between the cursor position displayed to the subject,

and the position of the target was calculated and converted to force units through the stiffness

of the first mass-spring-damper system. This difference, normalized to MVF, averaged during

the attempting time, was defined as cursor error.
Directional tuning of muscle activations. EMG waveforms were rectified, digitally low-

pass filtered (zero-phase, second order Butterworth, 5Hz cutoff), and re-sampled at 100 Hz to

reduce data size. The rectified and filtered EMG signals for each muscle were normalized to

the maximum voluntary contraction across directions (MVC) recorded during the MVF

block. The waveforms of each muscle were averaged during the hold phase and the mean val-

ues recorded during the trials of the same block and with the same target direction, were aver-

aged to construct the directional tuning curves.

The directional tuning of each muscle, calculated separately from each block, was fitted by a

spatial cosine function, defined by four parameters: azimuth WPD, elevation φPD, amplitude fPD,

and offset moffset. These parameters were estimated with a multiple linear regression (Matlab

function regress). The equation that defined the spatial cosine function for each muscle was

[32]:

mðf ; fPD;moffsetÞ ¼ f T � f PD þmoffset ¼ fPD
�
cosφ � cosφPD þ sinφ � sinφPD � cosðW � WPDÞ

�
þmoffset

where f is the unit vector pointing in the force direction, defined by azimuth and elevation

angles W and φ; f PD is the preferred direction vector. We considered a muscle to be cosine

tuned if the regression was significant (p< 0.05) and the quality of the fit acceptable (R2>

0.5). Only muscles whose directional tuning was cosine tuned in the baseline and in at least

one perturbed block were compared.
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Null space components. The muscle space is defined as the space whose coordinates are

the activations of each muscle, so its dimensionality is the number of EMG signals recorded.

In this space, the activation of all muscles recorded at a specific time sample is represented by a

vector. Each vector (i.e. each muscle activation pattern) can be decomposed into two vectors

obtained by projection onto two orthogonal subspaces [35,36]: the null space of H, whose ele-

ments are mapped by the H matrix onto zero end-point force, and the row space of H or force
space, whose elements are mapped by the H matrix onto non-zero end-point force. Any mus-

cle activation vector can be thus uniquely decomposed into two orthogonal vectors by projec-

tion onto these two subspaces (Fig 3). The null space projection was computed with the

Matlab function null and the force space projection was computed as the Moore-Penrose

pseudo-inverse of the H matrix (H+) with the Matlab function pinv. However, the pseudo-

inverse does not necessarily provide a physiological muscle vector m that generates a desired

force F. In fact, mmin = H+ f is the solution to the underdetermined system of equations f = H
m with minimum norm but mmin may have negative components. To solve the f = Hm equa-

tion with the physiological constraint of non-negative muscle activations, i.e. mi� 0 for all

i = 1. . .nm, in general it is necessary to add to mmin an appropriate null space vector n.

Since muscle activations generating the same end-point force have the same projection in

the force space, two muscle activation vectors with different levels of co-contraction only differ

for their projection in the null space. Thus, the CNS modulates co-contraction when generating

a given endpoint force by varying the projection of the muscle activation in the null space. For a

given force target, different levels of co-contractions can be achieved by many different choices

of the null space component. A vector scaling strategy consists in changing the amplitude of the

null space component without changing its direction (hypothesis 1, Fig 4A). Indeed, with a scal-

ing strategy the level of co-contraction, and thus the magnitude of end-point impedance, may

Fig 3. Illustration of the decomposition of a muscle vector onto the null space and the row space of the EMG-to-

force matrix. (A) Toy model of a 2 DOF arm with three muscles (m1, m2: elbow extensors; m3: elbow flexor)

generating force along the x-axis according to the specified EMG-to-force matrix (H). (B) A muscle pattern m (in the

[2 2 1]T direction) is illustrated as a vector (red arrow) in a three-dimensional space (coordinate axes: black lines)
together with its projection n (blue arrow) onto the null space of the H matrix (gray plane) and its projection H+f
(green arrow) onto the row (or force) space of the H matrix (magenta line, in the [1 1 –1]T direction). Because the force

space has a negative m3 component, the minimum norm solution of the F = Hm equation (H+f) cannot be achieved

with non-negative muscle activations and the non-negative muscle vector m is generated adding a null space vector

component (n).

https://doi.org/10.1371/journal.pone.0205911.g003
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be controlled by a single parameter, a scaling coefficient. Such scaling strategy can be detected

by checking the cosine of the angle between the null space projections of muscle activations

with different levels of co-contraction. This cosine should remain close to 1, despite the physio-

logical EMG variability whose effect we estimated (see Statistical analysis below) by computing

the angles between the null space projections of muscle activations recorded during different

repetitions of the same baseline target.

The baseline null space projection of the muscle activation vector may not be generated

according to an explicit impedance control strategy but rather be a consequence of the fact

that physiological muscle activations are non-negative. Moreover, subject might minimize

effort while achieving the primary goal of generating a desired force. Thus, we also computed,

Fig 4. Null space modulation with co-contraction. Four hypotheses on the changes of the null space vector with an increase of co-contraction are illustrated

in a three-dimensional muscle space with a two-dimensional null space (gray plane) and a one-dimensional row or force space (black line) orthogonal to the

null space. (A) According to the first hypothesis, the null space vector (n2, blue arrow) associated with the baseline block muscle vector (m2, blue arrow) is

scaled in amplitude to increase co-contraction (n4, n5, n6, red arrows) to generate the muscle vectors in the perturbed blocks (m4, m5, m6, red arrows, all

generating the same force vector f). Thus, n4, n5, and n6 are collinear with n2. (B) According to the second hypothesis, the null space vector (n2, blue arrow)

associated with the baseline block muscle vector (m2, blue arrow) is generated adding a null space vector (n2 –n0) to the minimum-norm non-negative

muscle vector (m0) generating the target force (f) and such vector is scaled in amplitude to increase co-contraction. Thus, the difference between the null

space vectors in the perturbed blocks (n4, n5, n6) and n0 are collinear with (n2 –n0). (C) According to the third hypothesis, the null space vector of the

perturbed blocks (n4, n5, n6, red arrows) associated with the perturbed blocks muscle vector (m4, m5, m6, red arrows) is generated adding a null space vector

(ni−n2 with i = 4, 5, 6) to the muscle vector recorded during the baseline (m2) generating the target force (f). Such vector is scaled in amplitude to increase co-

contraction. Thus, the difference between the null space vectors in the perturbed blocks (n4, n5, n6) and n2 are collinear with each other but are not collinear

with n2 or (n2 –n0). (D) According to the fourth hypothesis, the null space vectors of the perturbed blocks (n4, n5, n6, red arrows) associated with the

perturbed blocks muscle vector (m4, m5, m6, red arrows) are generated as a linear combination of the null space vector of the baseline block (n2, blue arrow)

associated with the baseline block muscle vector (m2, blue arrow) and the pure co-contraction block muscle vector (m2, green arrow).

https://doi.org/10.1371/journal.pone.0205911.g004
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for each force target, the minimum-norm non-negative muscle activation m0:

m0 ¼ arg min (jjm jj) such that f ¼ H �m and mi � 0 with i ¼ 1 . . . nm

where f is the applied force and nm the number of muscles. The Matlab function quadprog was

used to calculate these minima. We then tested an alternative affine scaling strategy considering

that the CNS might generate co-contraction patterns starting from the minimum-norm non-

negative muscle vector m0 and increasing null space activation along a unique direction (hypoth-

esis 2, Fig 4B). We thus considered the differences between the muscle activation vectors (m)

observed for each force target in different blocks and m0 and we tested whether increased co-

contraction levels were achieved by scaling m � m0 which is, by construction, a null space vector.

Angles between m � m0, recorded during trials with the same endpoint force target and different

co-contraction levels were calculated. The cosine of the angles between m � m0 calculated dur-

ing different blocks should be close to 1, despite the physiological EMG variability whose effect

we assessed, as for the first hypothesis, by computing the angle between the m � m0 vectors cal-

culated during different repetitions of the same baseline target.

We also tested whether the CNS used an affine scaling law obtained by scaling the differ-

ence of the muscle vector observed in each perturbed condition and the mean muscle vector

observed, for each target, in the baseline condition (m � m2) (hypothesis 3, Fig 4C). In this

case the cosine of the angles between m � m2calculated during different perturbed blocks

should be close to 1, despite the physiological EMG variability whose effect we estimated by

computing the angle between m2 � m2 in each baseline repetition respect with the mean

among the baseline repetitions (m2).

Finally, we tested an additional hypothesis involving the mean muscle activation vector

recorded during the pure co-contraction block (m3 or equivalently n3 as such vector does not

generate any actual force and thus belongs to the null space of H). For each target, the null

space projection of the muscle vector observed in each perturbed condition (n4, n5, n6) might

be obtained by a linear combination of the null space projection of the muscle vector in the

baseline condition (n2) and the pure co-contraction vector m3 (hypothesis 4, Fig 4D). In this

case the cosine of the angles between the null space vectors ni (averaged over repetitions dur-

ing different perturbed blocks, i = 4,5,6) and the subspace spanned by n2 and m3 should be

close to 1, despite the physiological EMG variability whose effect we estimated by computing

the angle between the null space projection of different repetitions of the baseline vectors (n2Þ

with respect to the subspace spanned by the mean of the projection of the other repetitions

and m3. The EMG data used to test the four hypotheses were obtained by averaging the time

samples in the static phase.

Statistical analysis. Repeated measures ANOVA was performed on time-to-criterion,

force and cursor errors, amplitude and offset of the muscle activation cosine tuning with block

as factor (4 levels: baseline B2 and three noise levels B4, B5, B6) to assess the effect of the per-

turbation. Post-hoc tests were performed to check the relationships between different blocks,

based on the ANOVA outcomes. To this end multiple comparisons were carried out via six t-

tests comparing the distributions in each pair of experimental blocks. Due to the unequal sam-

ple size between blocks the Welch Two Sample t-test was applied.

The effect of the perturbation on the preferred directions angles of cosine tuning was tested

comparing the cosines of the angles between preferred directions of all pairs of 4 blocks (6 lev-

els). As Kolmogorov-Smirnov tests indicated that the cosines of the angles were not normally

distributed, the Kruskal-Wallis (KW) non-parametric test was used to compare the medians

across block pairs. Post-hoc Bonferroni corrections were applied to post-hoc comparisons.
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Assuming that the muscle patterns in different repetitions of the same baseline target were

generated according to the same co-contraction strategy, i.e. with collinear null space vectors,

we used the observed directional variability of the muscle activation vectors recorded during

different repetitions of the same baseline target to estimate the effect of the physiological vari-

ability and EMG noise on the assessment of the collinearity between null space vectors among

different blocks. Thus, we used the distribution of the values of the cosine of the angles

between null space vectors recorded during different repetitions in the baseline block to assess

whether a cosine value smaller than 1 between perturbed and baseline nulls space vectors was

significantly different from the value expected in presence of only physiological variability and

EMG noise, indicating a deviation from collinearity.

To test the first hypothesis on null space vectors scaling, we computed the angles between

the null space projections of each target repetition of perturbed blocks trials with respect to

each repetition of baseline block trials for the same target, and we compared its distribution

with the distribution of the angles among each target repetition of the null space projections of

baseline trials.

To test the second hypothesis on null space vectors scaling, we computed the difference

between the observed muscle activation vector (mi, i = 2 for baseline, i = 4,5,6 for perturbed

blocks) and the non-negative minimum-norm muscle activation vector (m0) for each target.

The distribution of the angle between all the repetitions of the m4,5,6-m0 calculated during the

perturbed blocks and all the repetitions of the m2-m0 calculated during the baseline block was

compared with the distribution of the angle among the different repetitions of the m2-m0 cal-

culated during the baseline block.

To test the third hypothesis on null space vectors scaling, we subtracted the muscle activa-

tion vector, recorded during the baseline block and averaged among the repetitions of the

same target, from each repetition of the muscle activation recorded during the perturbed

blocks (mp � m2). Its distribution was compared with the distribution of the angle among the

different repetitions of the m2 � m2 calculated during the baseline block.

Finally, to test the fourth hypothesis, for which the generation of null space vectors when

additional co-contraction was required was achieved as linear combination of the null space

component of the muscle vector recorded during the baseline condition (force-only) and the

muscle vector recorded during the pure co-contraction condition, for each target, we com-

puted the angle between the mean null space projection (averaged over repetitions) of the mus-

cle activation vector of each perturbed block (ni, i = 4,5,6) and the subspace spanned by the

mean null space projection of force-only muscle activation vector (n2) and mean muscle acti-

vation vector recorded during the pure co-contraction block (m3). To assess the deviation for

a perfect alignment with the subspace due to physiological variability and EMG noise, for each

target, we computed the angle between the null space projection of the muscle vectors for each

repetition in force-only condition and the subspace spanned by the mean of the null space pro-

jection of the remaining repetitions and the mean muscle activation vector in the pure co-con-

traction condition, and we averaged the angles obtained for the different repetitions. Then, for

each perturbed block, the distribution of the angles for all targets was compared with the distri-

bution of the angles due to noise.

For all four tests, a Wilcoxon singed rank test was used to test the statistical difference, with

a p-value threshold of 0.05.

Results

All subjects could reach and maintain the cursor within each target with the required 3% MVF

tolerance when no perturbation was applied to the cursor (baseline). All subjects could also
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reach each target and increase co-contraction to maintain the cursor within the target with the

required 3% MVF tolerance during at least one trial of each perturbed block. Examples of rec-

tified, filtered, resampled, baseline subtracted, and MVC normalized EMG signals are shown

in Fig 5 (top) together with the cursor position (bottom) for a baseline trial (left) and a per-

turbed trial (noise level 2, right).

Task performance

The number of selected successful trials was: 46.9 ± 9.3 (mean ± SD across subjects, see indi-

vidual performance in Fig 6A) over 60 baseline trials, 11.1 ± 3.9 over 15 pure co-contraction

trials, 48.7 ± 9.1 over 60 perturbed trials of noise level 1, 46.4 ± 9.0 over 60 perturbed trials of

noise level 2, 42.4 ± 13.5 over 60 perturbed trials of noise level 3. The time required to reach

and hold the target position (time-to-criterion, Fig 6B) increased in the perturbed blocks. The

ANOVA performed on time-to-criterion showed a significant effect of the block factor (F1,

1770 = 243.7, p< 0.001). Post-hoc comparisons (Welch t-test) indicated that significant differ-

ences were present between the baseline block and all perturbed blocks and between all pairs

of perturbed blocks (B2-B4: t(812.8) = -10.8, p<0.001; B2-B5: t(773.8) = -11.5, p<0.001;

B2-B6: t(742.6) = -16.3, p<0.001; B4-B5: t(895.8) = -1.11, p = 0.27; B4-B6: t(882.3) = -6.3,

p<0.001; B5-B6: t(899.7) = 5.1, p<0.001).

Fig 5. Examples of muscle activity and cursor position time-course in a baseline and a perturbed trial. A trial of the baseline block (left) and a trial of the

perturbed block with perturbation magnitude level 2 (right) for the same force target (target 20 of Fig 2) are shown. EMG data were rectified, low-pass filtered,

resampled, baseline subtracted, and normalized to the MVC of each muscle. Cursor position was resampled. Targets were positioned at 20% MVF

(corresponding to a displacement of 5 cm from the origin) with a tolerance around the target of 3% MVF (yellow bands). The dashed vertical lines indicate the

time of target appearance (Target go), the last time of the trial in which the cursor entered the target (Start hold), and the end of the hold phase, i.e. the 1s

interval in which the cursor remained in the target (End hold). In perturbed blocks (right) the oscillation of the cursor started at Target go and ended at End

hold.

https://doi.org/10.1371/journal.pone.0205911.g005
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The comparison between force and cursor errors provided an indication of the perturbation

compensation strategy used by each subject. Subjects could succeed in the task if they managed

to combine a reduction of the cursor oscillation, achieved by increasing co-contraction, and an

increase in the accuracy of the end-point force exertion. Thus, the required accuracy could be

obtained with different combinations of co-contraction and force accuracy increments. The

mean cursor position error (Fig 7B) reflects the combination of both force accuracy and co-con-

traction, while the mean force error (Fig 7C) only reflects force accuracy. The difference

between the cursor error and the force during baseline block was due to the filtering effect of

the first mass-spring-damper system. Significant effects of the block factor were observed both

for the force error (F1,1778 = 209.7, p< 0.001) and the cursor error (F1, 1778 = 45.4, p< 0.001).

Post-hoc comparisons (Welch t-test) indicated that significant differences in the force error

were present between the baseline block and all perturbed blocks but not between perturbed

blocks (B2-B4: t(549.7) = 12.4, p< 0.001; B2-B5: t(743.1) = 10.75, p< 0.001; B2-B6: t(754.9) =

12.01, p< 0.001), B4-B5: t(737.4) = -0.47, p = 0.6; B4-B6: t(753.6) = 1.48, p = 0.13; B5-B6: t(914)

= -1.62, p = 0.11). Post-hoc comparisons (Welch t-test) indicated that significant differences in

the cursor error were present between the baseline block and all perturbed blocks, between B4

and B6, but not between B4 and B5 and between B5 and B6 (B2-B4: t(456.6) = 8.8, p< 0.001;

B2-B5: t(767.9) = 6.53, p< 0.001; B2-B6: t(730.9) = 5.3, p< 0.001; B4-B5: t(545.6) = -1.25,

p = 0.212; B4-B6: t(584.5) = -3.7, p< 0.001; B5-B6: t(903.1) = -1.70, p = 0.09). Thus, subjects

implemented a strategy that reduced the applied force error and performed the force-reaching

task more accurately with the noise perturbation; i.e., both force and impedance adaptation

occurred, similarly to what observed when learning to reach in a divergent force field [8].

Fig 6. Task performance. (A) Success rate. The mean fraction of successful trials is shown for each subject and each noise

condition together with its mean among subjects. The bars represented the percentage of selected trials that were successful

(subjects were able to remain within the target for 1 s). The color indicated the noise level (blue: no noise, dark red: noise level

1, medium red: noise level 2, light red: noise level 3). (B) Time-to-criterion (mean ± SD) for each subject and noise condition

together with its mean among subjects. Time-to-criterion was the time required by the subject to reach and hold the target

position. It corresponded to the beginning of the hold phase for successful trials and to the last time the subject got inside the

target for the non-successful trials.

https://doi.org/10.1371/journal.pone.0205911.g006
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Muscle activation and its projection in the null space

As in previous studies [32,37,38,39] the activation of most muscles was modulated by force tar-

get direction. Fig 8 shows the dependence of the activation of three muscles, recorded in sub-

ject 8 during baseline (blue) and perturbed blocks (red), as a function of the target. As

expected, muscles were more active during perturbed blocks with respect to baseline block.

Each muscle applies an end-point force along one direction, its ‘pulling vector’, i.e. the col-

umn of the H matrix corresponding to that muscle. The direction of the pulling vector gener-

ally does not coincide with the direction of peak activation [40]. During isometric conditions,

if no co-contraction is required and the target force has a direction that is opposed to the pull-

ing direction of a muscle, that muscle should not be active [38,41]. Data recorded during the

baseline block (target directions 2, 13, and 18 for BicShort, 7 and 19 for TriLong, 5, 7, and 19

Fig 7. Cursor position and exerted force errors. (A) Example of the actual force exerted by the subject (red), used to calculate the force

error, and the feedback of force given as the cursor displacement (green), used to calculate the cursor error, along the x component. The

trial is the same as in the right side of the Fig 5. The target position is in dark yellow and the tolerance in yellow. (B) The cursor position

was converted into the force exerted by the subject. This cursor force differed from the force applied by the subject because of the

perturbation. The figure represents the norm of the difference between the force related to the cursor position and the target force,

averaged during the hold time and normalized to MVF, for different blocks and subjects (mean ± SD across trials). On the right side the

cursor error was averaged among subjects (mean ± SD across subjects). Blue bars are baseline block (no noise), red bars represent the

perturbed blocks with different noise levels (noise 1 dark red, noise 2 medium red and noise 3 light red). (C) Norm of the difference

between the force applied by the subject at the endpoint and the target force, averaged during the hold time and normalized to MVF,

for different blocks and subjects (mean ± SD across trials). On the right side, the force error was averaged among subjects (mean ± SD

across subjects). Blue bars are baseline block (no noise), red bars represent the perturbed blocks with different noise levels (noise 1 dark

red, noise 2 medium red and noise 3 light red).

https://doi.org/10.1371/journal.pone.0205911.g007
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for DeltM in the examples of Fig 8, blue lines) indeed showed that most muscles exhibited little

activation for targets in directions opposite to their pulling vector. In contrast, data recorded

during perturbed blocks show that most muscles were active for all target directions. This

Fig 8. Examples of directional tuning of muscle activations. The mean muscle activation of three muscles recorded

from subject 7 are shown as a function of target number (see Fig 2A and 2B) in baseline (blue) and perturbed blocks

with perturbation magnitude level 1 (dark red), level 2 (medium red) and level 3 (light red). Note that the targets,

defined in Fig 2A, are arranged at the vertices of a dodecahedron. Muscle activation is expressed as the fraction of the

MVC recorded during the MVF block (B1).

https://doi.org/10.1371/journal.pone.0205911.g008

Fig 9. Null space component of the muscle activation vector. (A) Example of the ratio between the norm of the

muscle activation vector and the norm of the projection of the muscle activation vector in the null space of the H
matrix. Data were recorded from subject 8 in the baseline block (blue) and in perturbed blocks with magnitude level 1

(dark red), level 2 (medium red) and level 3 (light red) and averaged over repetitions of the same target. (B) Null space

projection of the muscle activations, normalized to MVC, of successful trials averaged during hold phase and

repetitions (mean ± SD among directions and repetitions) for all subjects. On the right side, the null space projection

of the muscle activations, normalized to MVC, of successful trials averaged during hold phase and repetitions was

averaged among subjects (mean ± SD across subjects).

https://doi.org/10.1371/journal.pone.0205911.g009
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indicates that, if the task requires stiffening the arm while exerting an isometric force along a

direction, the CNS activates muscles that were silent during the pure force exertion task, possi-

bly to counteract the forces generated by other muscles whose activity increases to module co-

contraction. To quantify the increase in muscle activation we then computed the norm of the

muscle activation vector. Significant effects on the norm of the muscle activation vectors were

observed for the block factor (F1,1778 = 696.3, p< 0.001). The Welch t-test comparisons indi-

cated that significant differences were present between baseline block and the other perturba-

tion conditions and between B4 and both B5 and B6 but not between B5 and B6 (B2-B4: t

(699.76) = -22.9, p< 0.001; B2-B5: t(741.3) = -28.3, p< 0.001; B2-B6: t(761.46) = -30.4,

p< 0.001; B4-B5: t(891.78) = -2.4, p = 0.02; B4-B6: t(905.02) = -4.1, p< 0.001; B5-B6: t

(913.88) = 1.86, p = 0.06).

To assess how the magnitude of the null space projection with respect to the magnitude of

the muscle activation vector changes with co-contraction, we computed their ratio for each tar-

get direction (Fig 9A). As expected, the norm of the null space component in perturbed blocks

was higher than in the baseline block. The mean fraction observed in the baseline block was:

0.909 ± 0.021 (mean ± SD across subjects of the fraction averaged for each subject across direc-

tions), and was statistically different from the mean fraction observed in the perturbed blocks

(0.966 ± 0.010 in the perturbed block with perturbation magnitude level 1, 0.970 ± 0.012 in per-

turbed block with level 2, 0.968 ± 0.013 in perturbed block with level 3). The statistical differ-

ence was tested with a two-sided Wilcoxon rank sum test with a p-value threshold equal to 0.05.

Even in the baseline condition, the null space projection represented a large fraction of the

norm of the muscle activation vector. As a non-zero projection of the muscle activation vector

in the null space is necessary to satisfy the physiological constraint of non-negativity of the mus-

cle activations, we wondered whether the observed fraction of the norm of the null space com-

ponent could be due to the non-negativity constraint rather than to a neural control strategy.

Thus, we estimated the non-negative muscle activation vector with minimum norm required to

generate the applied force (see Methods) and projected such vector onto the null space. The

average ratio between the norm of this projection and the norm of the baseline muscle activa-

tion vector across directions and subjects was 0.60 ± 0.06 (mean among subjects ± SD), which

was tested to be significantly different from the ratio observed in all blocks and all subjects with

a Wilcoxon rank sum (p-value threshold 0.05) and smaller than it. This indicated that a compo-

nent of the observed muscle activation vectors was not due to the constraint of non-negative

muscle activation.

Fig 9B shows the norm of the projection of the muscle activation vector in the null space

(mean ± SD across directions) for all subjects and all blocks. Significant effects on the norm of

the null space projection of the muscle activation vectors were observed for the block factor

(F1,1778 = 713.3, p< 0.001). The Welch t-test comparisons indicated that significant differences

were present between baseline block and perturbed blocks and between the perturbed blocks

Fig 10. Cosine tuning of muscle activation. A-D: Example of the parameters of a spatial cosine function characterizing the directional tuning of three muscles

(Biceps short head, Triceps long head, and Deltoid middle) of subject 8. Muscles with non-significant fit (p� 0.05) or low quality of the fit (R2� 0.5) for each

noise level is reported in black, otherwise baseline (no noise) is reported in blue and perturbed blocks in red (perturbation magnitude level 1 in dark red, level 2 in

medium red and level 3 in light red). Cosine tuning functions are fitted on MVC normalized muscle activations and therefore amplitude and offset also represent

normalized values. (A) Projection of the preferred directions on the horizontal (x-y, first column), frontal (x-z, second column) and sagittal (y-z, third column)

planes (the preferred directions amplitude was normalized to 1). (B) Amplitude of the cosine tuning (data normalized to MVC). (C) Offset of the cosine tuning.

(D) R2 of the reconstruction. E-H: Comparison of the cosine tuning for different blocks (mean ± SD) among muscles with significant (p< 0.05) and good quality

(R2 > 0.5) fit in the baseline block and in at least one perturbed blocks. (E) Angle (in degrees) between the preferred directions in the baseline block and in

perturbed blocks. (F) Amplitude of the cosine tuning. (G) Offset of the cosine tuning. (H) R2 of the cosine fit. I-N: Comparison of the cosine tuning for different

blocks, mean ± SD among subjects. (I) Angle (in degrees) between the preferred direction in the baseline block and in the perturbed blocks. (L) Amplitude of the

cosine tuning. (M) Offset of the cosine tuning. (N) R2 of the cosine fit.

https://doi.org/10.1371/journal.pone.0205911.g010
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(B2-B4: t(708.84) = -23.5, p< 0.001; B2-B5: t(748.57) = -28.8, p< 0.001; B2-B6: t(773.18) =

-30.8, p< 0.001; B4-B5: t(892.83) = -2.43, p = 0.015; B4-B6: t(903.68) = -3.94, p<0.001; B5-B6:

t(913.53) = 1.6, p = 0.11). Thus, subjects increased the null space component of their muscle

activation vector as the level of the perturbing force increased.

Cosine tuning

The dependence on the target of the activation of most muscles could be fitted by a spatial

cosine function (Fig 10). The number of muscles with a non-significant (i.e., p� 0.05) cosine

fit was 1.1 ± 0.8 (mean ± SD across subjects, n = 8) in the baseline block, 1.6 ± 2.1 in the per-

turbed block with perturbation magnitude level 1, 2.5 ± 3.4 in the perturbed block with level 2,

and 2.1 ± 2.5 in the perturbed block with level 3. Thus, most of the 17 recorded muscles had a

significant cosine-tuning in all conditions even if there was a small decrease in the number of

muscles with a significant cosine-tuning when higher co-contraction was required. As muscle

activation could have a significant cosine tuning even if the cosine function did not capture

most of the variation, we also quantified the number of muscles with a R2 value lower than 0.5.

The number of muscles with a low quality of the cosine tuning fit (R2� 0.5) was 2.2 ± 1.6

(mean ± SD across subjects, n = 8) in the baseline block, 3.5 ± 3.3 in the perturbed block with

perturbation magnitude level 1, 4.0 ± 4.3 in the perturbed block with level 2, and 3.4 ± 3.1 in

the perturbed block with level 3. We then selected for further analysis only the activations of

the muscles with a significant cosine tuning and a value of the cosine fit R2 > 0.5. The number

of muscles whose baseline block activation and at least one perturbed block activation satisfied

these selection criteria was 14.1 ± 2.3 (mean ± SD across subjects, n = 8) out of 17 recorded

muscles. Thus, most of the muscles, in each subject, had activations that were cosine tuned

both in the baseline block and in at least one perturbed block. The number of perturbed blocks

in which muscle activation was cosine-tuned, if the baseline block activation was cosine-tuned,

was 2.7 ± 0.7 out of 3 perturbed blocks. Thus, a muscle that was cosine-tuned in the baseline

block was in most cases also cosine-tuned in at least two of the perturbed blocks.

The angles between the preferred directions (Fig 10E) in baseline and perturbed blocks

were calculated together with the cosine tuning amplitude (Fig 10F), offset (Fig 10G) and R2

(Fig 10H) values. Examples of the cosine tuning parameters for three muscles (as in Fig 8) are

shown in Fig 10A, 10B, 10C and 10D. The mean angle between the baseline preferred direction

and the preferred direction in any perturbed block, for muscles with a significant and high R2

(> 0.5) cosine tuning, was 21.2˚ ± 5.6˚ (mean ± SD across subjects, Fig 9E). The percent

increase in the values of the cosine tuning amplitude and offset in any perturbed block with

respect to the baseline block were 38% ± 13% (mean ± SD across subjects, Fig 9F) and 166% ±
73% (mean ± SD across subjects, Fig 9F) respectively. Thus, when increased co-contraction

was required, the preferred direction slightly rotated while the amplitude and especially the

offset of the cosine tuning increased. Statistical analysis revealed significant effects of the block

factor on the cosine tuning amplitude (F1,436 = 10.18, p < 0.01) and offset (F1,436 = 87.32,

p< 0.001). Post-hoc comparisons (Welch test) identified significant differences between the

baseline block and perturbed blocks but not between the perturbed blocks both for the cosine

tuning amplitude (B2-B4: t(236.56) = -2.1, p = 0.04; B2-B5: t(215.35) = -2.6, p = 0.01; B2-B6: t

(219.27) = -2.9, p<0.01; B4-B5: t(209.8) = -0.47, p = 0.63; B4-B6: t(214.8) = -0.9, p = 0.37;

B5-B6: t(211) = 0.44, p = 0.66) and offset (B2-B4: t(149.2) = -8.5, p< 0.001; B2-B5: t(130.15) =

-8.7, p< 0.001; B2-B6: t(137.54) = -9.24, p< 0.001; B4-B5: t(199.65) = -1.32, p = 0.19; B4-B6: t

(207.97) = -1.7, p = 0.1; B5-B6: t(210.58) = 0.29, p = 0.77). Furthermore, there was a significant

effect of block pair on the cosines of the angles between preferred directions (KW: df = 5, χ2 =

16.84, p< 0.01). Post-hoc tests however showed that only the difference between the cosines
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of the angles between the preferred directions in the baseline (B2) and in the last perturbed

blocks (B6) and between the first (B4) and in the second (B5) perturbed blocks was significant

(p = 0.016).

Null space components

As muscle activation vectors generating the same force with different levels of co-contraction

differ only in their projection onto the null space of the EMG-to-force matrix, to characterize

the co-contraction strategies we first tested whether subjects increased their co-contraction by

linearly scaling the null space projection observed in the baseline condition (hypothesis 1).

Such scaling strategy predicts, in the absence of any physiological variability in the activation

of the muscles and EMG noise, the cosine of the angles between the null space component in

the baseline block and those in the perturbed blocks to be equal to 1. To assess the significance

of a deviation from a cosine value of 1 in presence of variability of the EMG signal, we esti-

mated the distribution of the values of the cosine of the angles between the null space projec-

tions recorded during different repetitions of the same baseline target. The distribution of the

cosines of the angles between the null space projection recorded during the block with distur-

bance magnitude level 1 and the null space projections recorded during the baseline block was

significantly different (p< 0.05) from the distribution of the cosines of the angles among the

different repetitions of the baseline block in 5 out of 8 subjects (subject id: 1, 2, 3, 4, 7; p-values

of subjects 5, 6, 8 were respectively: 0.203, 0.233, and 0.488). In the block with disturbance

magnitude level 2 the differences were significant in 6 out of 8 subjects (subject id: 1, 2, 3, 4, 5,

7; p-values of subjects 6, 8 were respectively: 0.094, and 0.054) and in the block with distur-

bance magnitude level the differences were significant in all subjects. Therefore, as a non-col-

linearity between the null space projection of the muscle activation recorded during the

perturbed blocks and the null space projection of the muscle activation recorded during the

baseline was observed in most subjects and disturbance magnitudes, the first hypothesis was

not supported.

We then tested whether the changes in null space components observed when higher co-

contraction was required could be explained by scaling of the null space vector representing

the difference between the observed muscle activation vector (mi, i = 2 for baseline, i = 4,5,6

for perturbed blocks) and the non-negative minimum-norm muscle activation vector (m0 see

Methods) for each given target (hypothesis 2). The distribution of the cosine of the angles

between the m4-m0 recorded during the block with disturbance magnitude level 1 respect with

the m2-m0 recorded during the baseline block was significantly different (p< 0.05) from the

distribution of the cosines of the angles among the different repetitions of the baseline block in

5 out of 8 subjects (subject id: 1, 2, 3, 4, 7, p-values of subjects 5, 6, 8 were respectively: 0.186,

0.122, and 0.723). In the case of disturbance magnitude level 2 the difference was significant in

6 out of 8 subjects (subject id: 1, 2, 3, 4, 5, 7, p-values of subjects 6, 8 were respectively: 0.073,

and 0.365) and in the case of disturbance magnitude level 3 the difference was significant in all

subjects. Thus, in most cases m4,5,6-m0 recorded during perturbed blocks was not obtained by

scaling the m2-m0 recorded during the baseline block, indicating that also the second hypothe-

sis was not supported.

We then further tested whether the changes in null space components observed when

higher co-contraction was required could be explained by scaling of the null space vector rep-

resenting the difference between the muscle activation vector recorded during the perturbed

blocks (m4, 5, 6) and the muscle activation vector recorded during the baseline block (m2) for

each given target (hypothesis 3). The muscle activation recorded during the baseline block,

averaged among the repetitions of the same target, was subtracted from the muscle activation

Co-contraction muscle patterns

PLOS ONE | https://doi.org/10.1371/journal.pone.0205911 October 19, 2018 20 / 30

https://doi.org/10.1371/journal.pone.0205911


recorded during each repetition of perturbed blocks (mi � m2). The distribution of the cosine

of the angles among all the pairs of mi � m2 recorded during blocks with different disturbance

magnitude levels resulted to be significantly different (p< 0.05) from the distribution of the

angles among the different repetitions of the mi � m2 calculated during the baseline block in

all subjects and disturbance magnitude levels. Thus, also the third hypothesis on a scaling rule

was not supported as the null space projections of m4;5;6 � m2 among different perturbed

blocks were not collinear.

Finally, as none of three scaling hypotheses was supported, we tested whether the modula-

tion of the null space projections during perturbed block could be obtained as a linear combi-

nation of the null space projections observed for each target in the baseline condition, in

which only the generation of force was required, and the null space vector generated in the

pure co-contraction condition (m3), in which subjects had to voluntarily increase co-contrac-

tion without generating force (hypothesis 4). As the cosine of the angle between m3 and its

null space projection was 0.98 ± 0.03 (mean ± SD across subjects), we verified, as expected,

that it belonged to the null space. The distribution of the angle between ni (i = 4, 5, 6) averaged

on repetitions of the same target, and the subspace spanned by n2, averaged on repetitions of

the same target, and m3, also averaged on repetitions, was compared with the distribution of

the angles between different repetitions of the n2 and the same subspace due to noise (see

Methods). The distribution of the angles between ni the subspace spanned by n2 and m3, was

significantly higher than the distribution of the angles between different repetitions of n2 and

the same subspace in all perturbed blocks of only one subject (subject 1, p = 0.015 for block 5,

p< 0.001 for blocks 5 and 6) and in only one perturbation magnitude level of a second subject

(block 4 of subject 4, p< 0.001). Therefore, in most subjects and disturbance magnitudes, the

null space projection of the muscle vector generated during a combined force and co-contrac-

tion task was achieved by a linear combination of the null space projection of muscle activation

recorded during a force-only task and the null space vector recorded during a pure co-contrac-

tion task.

Discussion

We investigated muscle coordination underlying voluntary modulation of co-contraction dur-

ing the generation of isometric forces in different spatial directions. Many unstable manipula-

tion tasks involved in everyday activities require the stiffness regulation by modulating co-

contraction while generating end-point forces. We aimed at characterizing co-contraction dur-

ing force generation in multiple directions over 17 muscles including most of the muscles that

generate force at the hand. We used a virtual manipulation environment with a visual perturba-

tion to induce systematic changes of endpoint force direction and muscle co-contraction. Sub-

jects had to displace a cursor in space and reach one of 20 targets by applying isometric forces at

the hand. When a sinusoidal perturbation was applied to the cursor, to keep the cursor within

the target subjects were asked to reduce the magnitude of the oscillation of the cursor by co-

contracting their arm muscles. All subjects were able to reach the target and to maintain the cur-

sor within the target in at least one trial at each of three perturbation magnitude levels and, on

average, in at least two thirds of the trials. Subjects succeeded by both increasing co-contraction,

thus reducing the magnitude of the cursor oscillation, and by generating forces that matched

the target more accurately, thus letting the cursor oscillate around a point closer to the center of

the target sphere and thus better exploiting the target tolerance. In terms of individual muscles,

in most cases the directional modulation of activation was well captured by a spatial cosine

function both during baseline and when the perturbation was applied. When a higher level of

co-contraction was required, the cosine function’s offset increased largely and its amplitude
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slightly. With regards to muscle patterns, higher co-contraction was associated to an increase in

magnitude of the null space projections. However, even in the baseline condition, null space

magnitude was higher than the minimum possible magnitude, estimated for each force target as

the null space projection of the minimum-norm non-negative muscle pattern. Moreover, the

increase in magnitude of the null space projection was not achieved following one of three

tested vector or affine scaling rules. Neither the null space vector observed in the baseline condi-

tion, nor the difference between the baseline null space vector and the minimum-norm non-

negative null space vector, nor the difference between the perturbed blocks null space vector

with the smallest disturbance magnitude and the baseline null space vector were scaled when

increased co-contraction was required. However, the null space projections of the muscle vec-

tors observed during the combined force and co-contraction task, were achieved as a combina-

tion of the null space projections of the muscle vectors observed during the generation of only

force and the muscle vectors generated for a pure co-contraction task.

A novel approach to study voluntary modulation of co-contraction

Co-contraction modulation has been investigated before but mostly in a few muscles. Co-con-

traction in muscles with opposite mechanical actions around some joint increases in tasks that

require the stabilization of the position of that joint under mechanical perturbations or desta-

bilizing forces. Hogan [1] recorded surface EMG from a pair of forearm flexor and extensor

muscles while subjects maintained the upper arm horizontal and the forearm flexed in unsta-

ble vertical orientation and held a load in the hand. De Serres and Milner [5] showed that co-

contraction of three wrist flexors and one wrist extensors increased when wrist angle had to be

maintained while operating against an unstable load. Lacquaniti and collaborators [12,42]

showed that hand impedance is modified when catching a falling ball through both anticipa-

tory and reflexive co-contraction, with a transient reversal of the direction of stretch reflex

responses centered on impact. Modulation of co-contraction has also been observed for the

adaptation of reaching movements under perturbing forces. Thoroughman and Shadmehr

[13] recorded EMG from four muscles as subjects learned to move a manipulandum that cre-

ated systematic velocity-dependent forces. Co-contraction in two pairs of antagonist muscles

was high when subjects were initially exposed to the force field and then rapidly declined dur-

ing learning. Burdet and collaborators [8] showed that with practice subjects learned to make

straight movements in a destabilizing divergent force field by selectively increasing stiffness in

the direction of instability. While early in the learning period there was an increase in agonist-

antagonist co-contraction [15], as the subject became more successful in counteracting the

instability of the divergent field, the EMG was gradually reduced but remained higher than for

reaching without perturbation [43]. While co-contraction is automatically regulated during

unstable interactions with the environment, it can also be voluntarily increased. Gomi and

Osu [28] studied the controllability and spatial characteristics of hand impedance during dif-

ferent co-contractions while maintaining a given arm posture. Subjects received visual feed-

back on the EMG activation level of three pairs of antagonist muscles as bar graphs on a

monitor and were instructed to match specific activation levels indicated by reference markers,

thus allowing to voluntary regulate co-contraction either in all muscle pairs or at specific

monoarticular muscle pairs. Even if subjects could modulate co-contraction and regulate the

joint stiffness ratio at the elbow and shoulder joint during posture maintenance, the change of

stiffness geometry was limited. Perreault and collaborators [19] also found that subjects were

able to voluntarily change stiffness orientation when provided with real-time visual feedback

of end-point stiffness but the magnitude of these changes was small. Recently, the capability of

human subjects to decouple stiffness and force control by voluntary co-contraction has been

Co-contraction muscle patterns

PLOS ONE | https://doi.org/10.1371/journal.pone.0205911 October 19, 2018 22 / 30

https://doi.org/10.1371/journal.pone.0205911


investigated during thumb-index finger grip [44]. Subjects could decouple grip stiffness from

force when using co-contraction on average by about 20% of the maximum measured stiffness

over all force levels. In sum, several previous studies have demonstrated the capability of mod-

ulating co-contraction in a few pairs of antagonistic muscles either for stabilizing posture and

movement or voluntarily through visual feedback of EMG activity or estimated stiffness.

Our goal was to characterize co-contraction in most of the shoulder and arm muscles gener-

ating force at the hand, and to relate their activity modulation across force directions to their

mechanical action. Using isometric force generation, we could adequately characterize the end-

point force generated by each muscle using a linear mapping, which could be estimated by mul-

tiple linear regression. However, as there was no mechanical instability at the hand, rather than

instructing subjects to modulate co-contraction by providing feedback of the activity of individ-

ual muscles, which would have been a highly non-intuitive and challenging task with many

muscles [28,29], we simulated a controllable perturbation in a virtual environment [33]. Sub-

jects received feedback of the generated isometric force spatial vector as the displacement of a

spherical cursor from a rest position matching the center of their palm displayed stereoscopi-

cally on a mirror occluding their hand and forearm [32,34,45]. Generation of a specific force

target was thus achieved as reaching a corresponding spatial target and it was then possible to

simulate instability by perturbing the cursor. Because the cursor position was simulated in real-

time as the position of a mass coupled through a spring to the position of a second mass coupled

through a second spring to the center of the palm, subjects controlled the mean position of the

cursor by generating isometric force on the first mass and the amplitude of the cursor oscillation

under a perturbing sinusoidal force by setting the stiffness of the second spring with their mus-

cle activation. The magnitude of the stiffness was regulated according to the magnitude of the

projection of the instantaneous muscle activation vector onto the null space of the linear map-

ping of muscle vectors into endpoint force, i.e. the space of all muscle patterns not affecting end-

point force. Such null space thus represents a multidimensional generalization of the notion of

co-contraction of a pair of agonist-antagonist muscles. Importantly, as our aim was to investi-

gate muscle coordination during co-contraction, with this approach we did not bias the selec-

tion of a specific co-contraction pattern as we would have done by instructing subjects to

achieve a specific level of activation in each muscle with muscle-specific visual feedback. While

subjects could have selected any null space vector to increase the stiffness of the virtual spring

and to reduce the oscillation of the cursor, it is reasonable to assume that they used a strategy

normally employed to reject a perturbation applied at the hand during a quasi-static manipula-

tion task that requires generating a force in a specific direction. Thus, we could systematically

investigate voluntary modulation of co-contraction in an intuitive and easy to perform task

with a well-defined mechanical characterization of muscle action that reproduced some of the

features of the natural control of impedance during unstable manipulation. Finally, as the pres-

ent approach relies on the characterization of co-contraction during isometric force generation,

it allows to investigate the feed-forward control strategies used to deal with disturbances inde-

pendently of the contribution from reflexes that would be active with real perturbations.

Modulation of activity in individual and multiple muscles

We first characterized co-contraction at the level of individual muscles. In accordance with

previous studies [32,37,39] we found that in baseline conditions, i.e. when generating isometric

forces in different directions without increased co-contraction, muscle activation was modu-

lated by force direction and the directional tuning could be approximated, in most cases, by a

cosine function. We thus wondered how co-contraction affected the directional tuning. We

then characterized the changes in the parameters describing a spatial cosine function:
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preferred direction, amplitude and offset. We found small changes in the preferred direction

and large changes in amplitude and especially in offset. Such changes are compatible with a

global control of co-contraction, i.e. a control strategy that affects muscle activation over mul-

tiple target directions, thus modulating the parameters of the entire directional tuning curve.

In contrast, since each muscle has a preferred direction along which its activation is maximal,

a local control of co-contraction might affect only the activation of those muscles whose pre-

ferred direction is either aligned with the target direction or in the opposite direction, i.e.

those muscles that most closely approximate at the endpoint the notion of agonist and antago-

nist muscles around a single joint. However, according to such a control strategy, different

muscles would be modulated for different target directions and, then, co-contraction would

mostly distort rather than modulate the cosine tuning. As most of the muscles had a significant

(p< 0.05) and good quality (R2 > 0.5) cosine tuning both in baseline and in perturbed condi-

tions, while we cannot rule out a contribution of a local control strategy, the data suggest that

the control of co-contraction occurs mostly by an increase in activation of each muscles across

all directions according to a direction-independent amount (cosine offset) with some contri-

bution from a directional-dependent component (cosine amplitude).

We then characterized co-contraction in terms of coordination of multiple muscles by pro-

jecting the observed muscle activation vectors onto the null space of the EMG-to-force map-

ping. Surprisingly, we found that, even in the baseline, the magnitude of the null space

projection was on average across subjects and target direction over 90% of the magnitude of

the entire muscle activation vector (Fig 9A). As the dimensionality of the null space (14 for 17

recorded muscles) is much larger than the dimension of the orthogonal force space (3), we

wondered whether such a large magnitude of the null space projection was an obligatory con-

sequence of the fact that physiological muscle patterns are represented by non-negative vec-

tors. Indeed, mathematically, to achieve a specific force with a non-negative muscle vector it is

necessary to combine an appropriate null space vector to the minimum-norm muscle activa-

tion vector in the force space, which in general is not a non-negative vector. We then com-

pared the norm of the null space projections of the muscle vectors observed in the baseline

condition across force targets with the norm of the null space projection of the minimum-

norm, non-negative muscle activation vectors generating the same forces. We used quadratic

optimization and subject-specific EMG-to-force mappings to estimate such minimum-norm

vectors. The null space projections of the minimum-norm, non-negative muscle activation

vectors had a smaller magnitude than the projections of the observed muscle activation vectors

(66.5%), indicating that the level of co-contraction observed in the baseline was higher than

the level imposed by the non-negativity constraints. This discrepancy could be ascribed to the

higher co-contraction that might be required to maintain a specific posture in the setup. How-

ever, as the subject’s hand and forearm were fully supported and immobilized in a splint, no

muscular activity was required to maintain a stable posture in the setup. High levels of co-con-

traction have been reported in the early stages of motor learning [2,13,15,46,47]. However,

similar magnitudes of the null space projections were identified during the first and the last

trial of the baseline block, so it is unlikely that this large co-contraction was a consequence of

learning of a new task. The large magnitude of the null space projection may be due to a sub-

optimal recruitment of the muscles by CNS. Suboptimality might result from activating mus-

cles within synergies rather than individually [32], in an habitual pattern [48], or according to

a local rather than global optimization [49].

The magnitude of the projection of the muscle activation vector onto the null space further

increased when additional co-contraction was required to attenuate the effect of the sinusoidal

perturbation on the cursor (Fig 9A and 9B). As the task only required an increase of the mag-

nitude of the null space projection, changes in the direction of the null space component may
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provide additional information on the coordination strategies used to modulate co-contrac-

tion. One simple strategy is to scale the null space component of the muscle activation vector

selected in the baseline according the required level of co-contraction. As scaling of the entire

muscle vector would increase force together with co-contraction, an independent modulation

of the null space component is required. Scaling of the null space component observed in the

baseline would result in collinear null space components during the perturbation. Alterna-

tively, as we found that the baseline null space component was already larger than the mini-

mum-norm non-negative null space component, the null space components in perturbed

conditions might have resulted from scaling the increment observed in the baseline with

respect to the minimum-norm non-negative null space component. Otherwise, since the mini-

mum-norm non-negative solution may not be actually achieved by the CNS, the null space

components in perturbed conditions might have resulted from scaling the increment observed

in the perturbed condition with the smallest disturbance magnitude with respect to the base-

line null space component. None of these three possibilities were supported by the data as the

values of the cosine of the angles between the different null space vectors were significantly

smaller that the values expected from EMG variability estimated by computing the cosine of

the angles between different repetitions of the baseline trials to the same target for most partic-

ipants and disturbance magnitude levels.

We then wondered whether the null space projection of the muscle activations, recorded

during the three conditions in which subjects were asked to exert isometric force while

increasing co-contraction, could be achieved by a combination of the null space components

used during the generation of only force (baseline condition) and the muscle activation vector

used to generate co-contraction without force (pure co-contraction condition). For most sub-

jects and disturbance magnitude levels (20 out of 24) the null space projection of the muscle

activation vector for each target lay on the subspace spanned by the null space projection of

the baseline muscle activation vector and the pure co-contraction muscle activation vector,

indicating that the modulation of the null space vector with co-contraction, rather than follow-

ing a scaling rule, was achieved by the combination of the specific null space vector used to

generate pure co-contraction to the baseline force-only vector used for each target. The exis-

tence of such linear combination rule suggests that subjects relied on a subject-specific co-con-

traction strategy (as the pure co-contraction muscle activation vectors differed across subjects,

data not shown), that was used when an increase in co-contraction was required both with and

without force generation. However, the pure co-contraction vector was not simply scaled with

disturbance magnitude level, as in such a case the differences between the resulting null space

vectors would have been aligned, and this possibility was tested for hypothesis 3.

Lack of scaling of the null space projection of the muscle activation vector or the null space

component representing the difference between observed baseline muscle activation vector and

minimum-norm non-negative solution or the null space component representing the difference

between observed perturbed blocks muscle activation vector and baseline muscle activation vec-

tor indicates that the CNS selects a specific co-contraction pattern according to constraints or

control strategies yet to be identified. Scaling might be a convenient control strategy if the CNS

were free to choose any muscle activation vector in the null space, thus reducing the problem of

selecting the appropriate null space vector by mapping a desired level of co-contraction onto

the magnitude of a coefficient scaling the null space vector used in baseline conditions. How-

ever, the generation of null space vectors might be constrained, and it might not be possible to

scale the null space component used in the baseline. As for the selection of force-generating

muscle patterns [32,34,45,50], the CNS might rely on a small number of muscle synergies also

to generate the appropriate co-contraction patterns. If so, the generation of null space vectors

might be achieved by combining co-contraction specific muscle synergies, i.e. synergies which
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do not generate any force, or by specific combinations of force-generating synergies with zero

resultant force. In both cases, the null space vector that must be added to the baseline null space

vector to increase co-contraction must lie on the subspace generated by synergy combinations

thus making a scaling strategy unfeasible if the null space vector to be scaled does not lie on the

synergy subspace. Moreover, the selection of the co-contraction subspace of the null space

might take into account the stiffness generated by co-contraction patterns. In fact, approximat-

ing the mapping of muscle activation vectors into stiffness ellipses as a linear mapping [31], one

can define a null space of the muscle-to-stiffness matrix which is in general different from the

null space of the muscle-to-force matrix. Thus, there are co-contraction patterns that are effec-

tive in modulating stiffness and co-contraction patterns that are not (i.e. those belonging to the

intersection of the two null spaces). The CNS might organize synergies to simplify the genera-

tion of stiffness-modulating co-contraction patterns, even if such strategy has a cost in terms of

effort and controllability of the orientation of the stiffness ellipse [31]. We plan to investigate

the synergistic organization of co-contraction patterns in future work.

Simplifying assumptions

Our experimental method relies on some simplifying assumptions. The relation between the

rectified EMG signals and the force exerted by the arm was approximated as linear, a critical

step in the methodology because it allowed to compute in real-time the projection of the mus-

cle activation in the null space. Previous studies also modeled the relation between the EMG

signals and the end-point force as linear [29,40,51]. Such approximation is reasonable for the

generation of isometric forces with a magnitude much smaller than the MVF [52], as in our

case (20% MVF). However, the validity of the assumption was tested computing the recon-

struction of the end-point force as the product of the matrix that mapped the EMG onto the

end-point force for the EMG signal. The one subject that showed a relatively low end-point

force reconstruction (R2 = 0.61) was excluded from the dataset. Since the reconstruction of the

end-point force was satisfactory in the other subjects (R2 > 0.75), we considered this simplify-

ing assumption to be adequate for our purpose of identifying the null space projection of mus-

cle activation vectors.

An additional simplification was the simulation of isotropic end-point stiffness. Differently

from the human arm, whose end-point stiffness is known to be non-isotropic [53], the stiffness

of the spring controlling the cursor oscillation induced by co-contraction was the same in all

directions. However, when generating isometric forces, the end-point stiffness ellipse can be

controlled mostly in magnitude rather than in orientation [19]. Moreover, in our experiment

the perturbation amplitude was the same in all the three spatial directions and therefore there

was no need to reduce the oscillation selectively along one direction. Thus, using an isotropic

virtual stiffness simplifies the implementation of its online control without introducing a sig-

nificative limitation of the control capability of the participants with respect to the control of

the real end-point stiffness.

Finally, to test the collinearity among the null space vectors observed during different

blocks, we assumed that subjects used a consistent co-contraction strategy to generate muscle

patterns in different trials to the same end-point force target in the baseline block. Violation of

this assumption would broaden the distribution of the cosine of the angles among baseline rep-

etitions used to assess significant differences of the cosine of the angles between different

blocks. The violation of this hypothesis, for example if subjects used different strategies in dif-

ferent trials to modulate co-contraction while generating the same force target, could explain

why a few subjects did not show a significant difference in angle between the null space vectors

tested when assessing different scaling laws.
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Conclusions

We demonstrated that it is possible to investigate systematically voluntary modulation of arm

muscle co-contraction during multi-directional force generation using an isometric reaching

task in a virtual environment with a simulated disturbance. The fact that co-contraction is reg-

ulated by increasing the amplitude and the offset of the cosine tuning of individual muscles,

suggests a global rather than local control strategy. However, the fact that the coordination of

multiple muscles cannot be explained by simple scaling of null space vectors suggests that the

CNS is subject to constraints or exploits rules, such as muscle synergy combinations, yet to be

identified when voluntarily modulating co-contraction.
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