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Abstract
Translation of the genetic code on the ribosome into protein is a process of
extraordinary complexity, and understanding its mechanism has remained one
of the major challenges even though x-ray structures have been available since
2000. In the past two decades, single-particle cryo-electron microscopy has
contributed a major share of information on structure, binding modes, and
conformational changes of the ribosome during its work cycle, but the
contributions of this technique in the translation field have recently skyrocketed
after the introduction of a new recording medium capable of detecting individual
electrons. As many examples in the recent literature over the past three years
show, the impact of this development on the advancement of knowledge in this
field has been transformative and promises to be lasting.
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Introduction
In all organisms on earth, translation of the genetic code into protein 
is performed on the ribosome, a molecular machine of extraordi-
nary complexity that is composed of RNA and a large (∼80) number 
of proteins. Animals have them, plants have them, bacteria have 
them—all in different versions but with a common, virtually identi-
cal core. As a restless machine essential to life, it brings to mind our 
heart, the restlessness we experience every moment we are awake.

Since its discovery and first visualization in the 1960s, as an  
electron-dense granule studding the membrane of the endoplasmic 
reticulum1, the ribosome has been subject to many biochemical and 
biophysical studies that attempted to elucidate the mechanism of 
protein synthesis. Central to these studies were attempts at solv-
ing the ribosome structure. Once its structure was solved, so the 
thinking went, the way the ribosome reads the code and accordingly 
strings the amino acids up to form polypeptide—the precursor of 
the fully folded protein—would be revealed. The German language 
has a saying, adopted from the New Testament, “Wie Schuppen von 
den Augen fallen” (to fall like scales from the eyes), meaning that 
a long-sought solution to a problem becomes evident in a single 
flash of insight. But in the case of the ribosome, no such epiphany 
occurred for quite some time. Instead, hard work was required, 
drawing from x-ray crystallography, cryo-electron microscopy 
(cryo-EM), and mutation studies and increasingly by enlisting the 
help of other techniques capable of supplying information on the 
dynamics in real time, notably single-molecule fluorescence reso-
nance energy transfer (smFRET).

As background for the current explosive development of struc-
tural and functional knowledge in the ribosome field, it is of inter-
est to recall the relative contributions of electron microscopy and 
x-ray crystallography to the elucidation of ribosome structure. 
Electron microscopy employing negative staining provided first 
visualizations, sufficient to show the two subunits with differ-
ent sizes. Attempts by several groups to obtain well-ordered two- 
dimensional crystals, suitable for electron crystallography, were 
only moderately successful2,3. Meanwhile, x-ray crystallography 
made very slow progress because of the difficulties posed by the 
crystallographic phasing of both the 30S and 50S subunits, requir-
ing new approaches of labeling with compounds of sufficient  
phasing power. The first success in visualizing the subunits, their 
connecting bridges, and the intricate topology of the intersubunit 
space came with the single-particle cryo-EM approach4,5. Subse-
quently, initial structures relevant to the functional mechanism, 
showing the ribosome engaged with tRNAs and elongation fac-
tors, started to appear6–9. In the year 2000, subsequently referred 
to as the annus mirabilis of ribosome research, three x-ray struc-
tures appeared: one of the large subunit of an archaea bacterium10, 
the other two of the small subunit of a thermophilic bacterium11,12. 
These studies provided the first atomic models, revealing daunting 
complexity. However, critical information was missing not only for 
understanding the mechanism of action but even for a satisfactory 
characterization of the functional sites.

The translation field up to 2013
To understand the mechanism of translation on an elementary level, 
one has to figure out the structural basis for three events that are 

repeated for every single codon (that is, the element of the genetic 
code residing on the mRNA): (i) decoding, or the recognition of the 
current codon with the help of a cognate tRNA; (ii) peptidyl trans-
fer, or the way the new-coming amino acid is being linked to the 
nascent polypeptide; and (iii) mRNA-tRNA translocation, or the 
way the ribosome manages to move on to the next codon.

Ostensibly, the solution of each of these problems required, at the 
very least, the atomic structures of the complete ribosome bound 
with various combinations of tRNAs and elongation factors in a 
functional context. For instance, conclusions on the mechanism of 
peptidyl-transfer made on the basis of the large subunit with sub-
strates bound13 did not stand up to subsequent scrutiny (for exam-
ple, 14). Such structures, however, were not available for quite some 
time. The first x-ray structure of the complete ribosome came out 
in 200115 and contained three bound tRNAs, but its resolution was 
relatively low (5.5 Å), requiring the subunit structures published the 
year before for interpretation and atomic model building. Another 
structure from the same group provided the first mapping of the 
path of mRNA16. Then, for a number of years, a frustrating situation 
prevailed where functionally meaningful information was provided 
mainly by single-particle cryo-EM with increasingly better resolu-
tion but falling short, by a considerable margin, of the resolution 
required to pinpoint the crucial interactions between the various 
molecular players. X-ray crystallography, on the other hand, pro-
vided a few important structures in which mRNA and tRNAs were 
fortuitously bound to a model mRNA (for example, 17,18), estab-
lishing tRNA-ribosome interactions in the pre-translocational state 
and pinpointing the role of a magnesium ion in stabilizing a kink in 
the mRNA at the decoding center17.

To make use of knowledge provided by both techniques of structure 
determination, the hope was set on so-called hybrid methods19 (that 
is, by interpreting cryo-EM density maps in terms of available, suit-
ably modified x-ray models20–23). An example of radical change in 
structure from the free form studied by x-ray crystallography to its 
ribosome-bound structure visualized by cryo-EM was provided by 
release factors RF124 and RF220, illustrating the need for methods 
of flexible fitting.

Of course, the ribosome was only one of many structures facing the 
same quandary (that is, low-resolution density maps of functional 
states versus high-resolution atomic models of components). Start-
ing at the turn of the century, “hybrid” conferences (for example, 
“The Structure of Large Biological Complexes”25,26) were organ-
ized with the aim of bringing the communities of structural biolo-
gists together with those specialized in modeling, signal processing, 
and molecular dynamics simulations. Overall, these meetings were 
highly successful in creating an awareness of the complexity of the 
overall goal and in seeking solutions by connecting and integrating 
the methods employed in different fields.

In regard to tRNA selection and decoding, the basic principle by 
which the ribosome ascertains the formation of Watson-Crick  
pairing in the cognate case was settled early on27,28 and confirmed 
by many observations made since. The way the tRNA enters  
the ribosome as part of the ternary complex with elongation fac-
tor Tu (EF-Tu) and GTP was first observed by cryo-EM, with the 
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surprising conclusion that incoming tRNA is strongly deformed, 
constituting a molecular spring29–31, suggesting that its latent energy 
sets the threshold for cognate versus near-cognate codon selection32. 
Evidence that this mechanism is at work for the different classes of 
tRNA was later supplied by Li et al.33. Such structures showing the 
tRNA in the so-called A/T position were captured at the atomic level 
by x-ray crystallography using kirromycin or non-hydrolyzable  
GTP analogs14,34, supplying significant insight into the way GTP 
hydrolysis is triggered following recognition of a cognate codon 
at the decoding center. At that time, the best resolution achieved 
by single-particle cryo-EM of the A/T complex was in the range  
of 6 to 7 Å35, requiring flexible fitting of known structures for 
interpretation22. Insights into the stochastic nature of tRNA  
selection in real time were provided in pioneering work by the 
Puglisi group36,37.

Translocation of mRNA-tRNA is a multi-step process of high com-
plexity, during which the moiety formed by mRNA and two tRNAs 
bound to it via codon-anticodon interaction is moved along by the 
precise distance of one codon. Over a period of more than a dec-
ade, many structures shedding light on this process were obtained 
by cryo-EM and x-ray crystallography, starting with the observa-
tion of a ratchet-like intersubunit motion38,39 in apparent response to 
elongation factor G (EF-G; eEF2 in eukaryotes) binding, and bring-
ing increasing evidence for the existence of intermediate states40–44. 
Real-time recordings of FRET signals from individual ribosomes 
with strategically placed donor/acceptor combinations45 reported 
on the motions of the molecular machine and the way it is affected 
by binding of EF-G. Altogether, the state of knowledge three years 
ago on the events of the elongation cycle has been portrayed in an 
extensive review by Voorhees and Ramakrishnan46.

The effect of the “resolution revolution” in the field of 
translation
As we have seen, single-particle cryo-EM even before the advent 
of the direct electron detectors has vastly expanded the scope and 
potential for the elucidation of the mechanism of translation. With 
this technique, many discoveries of functional states and confor-
mational dynamics have been made since the turn of this century; 
however, as a result of new electron recording technology, the past 
three years in particular have brought an explosion of new informa-
tion at resolutions in the range of 2.5 to 4 Å—resolutions that in 
principle permit the building of atomic models without resorting 
to published x-ray structures (but see the caveat below). In several 
ways, this breakthrough development has simplified the interpreta-
tion of density maps since reliance on hybrid methods has become 
less important. On the other hand, the increase in resolution and the 
sharpening of tools for sorting and classification of heterogeneous 
data47–49 have meant that for each project a plethora of structures in 
different states—not just a single one—are created, presenting new 
challenges of interpretation.

This situation is in some ways reminiscent of a phenomenon in 
high-energy physics, which has seen a proliferation of different 
types of particles with ever more exotic qualities over the past two 
decades as the energy of beams in the colliders was raised. In a 
similar way, the number of observed states of the ribosome is stead-
ily increasing as the resolution of three-dimensional visualization 
improves, posing new questions at each turn.

A look at the literature in the past three years indicates that the 
effect of these new technological developments in electron micros-
copy on the exploration of the translation mechanism is transforma-
tive, multi-fold, and still emerging. The ribosome structure itself, 
at resolutions better than 3 Å, readily reveals features never seen 
before by cryo-EM: inventories of rRNA modification sites, loca-
tions of Mg2+ ions, and even water molecules50–53. It follows that 
fundamental multi-step mechanisms at the three functional cent-
ers can now be studied in much more detail than before. Again, it 
must be emphasized that owing to the capability of single-particle 
cryo-EM to capture molecules in their native states, high-resolution 
features such as locations of coordinating ions depicted are highly 
relevant for mechanistic interpretation of a molecular machine such 
as the ribosome.

However, it must be noted here that the advantage presented by the 
ability to look at the free molecule outside the crystal context comes 
at a price: as a rule, peripheral regions have reduced resolution com-
pared with the core. Therefore, de novo modeling, in cases where 
this has been attempted, usually starts in the core but often needs 
to stop before reaching the periphery, where modeling must rely on 
published x-ray structures which are not plagued by this limitation. 
An example is presented by our recent reconstruction of the 80S 
ribosome from Trypanosoma cruzi51. Separate refinements of the 
40S and 60S subunits yielded density maps at average resolutions 
of 3.7 and 2.5 Å, respectively, the difference in resolution reflect-
ing high internal flexibility of the small subunit. The large subunit 
itself displayed resolutions ranging from 2.3 Å in the core to 4.6 Å 
at the periphery. Approximately 85% of the map was of sufficient 
quality for ab initio modeling. However, a significant saving of time 
was achieved by following a different strategy54 making use of both 
the x-ray structure of the ribosome from yeast and a 5.5-Å cryo-
EM structure of the ribosome from T. brucei and making suitable  
substitutions in non-conserved regions. A 3.2-Å reconstruction 
of the entire T. cruzi 80S ribosome obtained by further refine-
ment (Figure 1) demonstrates the large spread in local resolutions,  
ranging from 2.5 Å in the core of the large subunit to 4.75 Å in  
some of its rRNA expansion segments and in parts of the small 
subunit (Figure 1).

With regard to mRNA-tRNA translocation, the challenge has been 
to explain the sequence of events as a result of the interplay between 
EF-G/eEF2 and the ribosome buffeted by Brownian motion. As 
to the initial binding of EF-G, an unexpected result was obtained 
by X-ray crystallography showing a compact conformation of the 
factor55. Further work, both with x-ray crystallography40,42–44 
and high-resolution cryo-EM56,57, revealed intermediate states 
in translocation with fully engaged EF-G/eEF2. Novel insights 
were provided by both smFRET experiments, that reported on the 
interaction between the ribosome and EF-G58,59, or by using a 
two-wavelength method, simultaneously acting on both EF-G 
binding and the ribosome rotation state60.

Because of a lack of x-ray structures, the understanding of the 
structural basis for IRES (internal ribosome entry site)-mediated 
translation has long had to rely on structures by cryo-EM at rela-
tively low resolution, starting with the study by Spahn et al. of the 
hepatitis C virus IRES-bound 40S subunit61. Knowledge in this area 
has been considerably advanced in four recent studies, two of which 
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focused on cricket paralysis virus IRES62,63 and one on the IRES 
of hepatitis virus C64. For the IRES element from Taura syndrome 
virus, inchworm-like translocation was observed in stunning detail 
by Abeyrathne et al.65 in a series of six reconstructions, with resolu-
tions in the range of 3.5 to 4.2 Å. What we have learned from these 
new results is the way the IRES RNA mimics mRNA and tRNA and 
interacts with the 80S ribosome to trigger conformational changes 
akin to those associated with regular mRNA-tRNA translocation 
in the host.

In the short time since the direct electron detectors came on the 
market, we have also seen an expansion of the scope of inquiry 
from model systems (Escherichia coli, Thermus thermophilus,  
rabbit, and yeast) to ribosomes from a larger variety of species. 
These include a number of eukaryotic parasites (Trypanosoma 
cruzi51, Leishmania52,53, and Plasmodium falciparum66,67) as there is 
now reasonable hope that the emerging structures may be of help 
in the design of more effective drugs. Here, the advance in reso-
lution is strikingly exemplified by comparison of the best density  
map achieved for Trypanosoma brucei (5.5 Å using conventional 
recording on film68), with those for T. cruzi (2.5 Å51 [Figure 1]) and 
Leishmania (2.8 Å52, 2.9 Å53) using recording on direct electron 
detectors. In a similar vein, the first atomic structures of mitochon-
drial ribosomes have now been determined69–72, again spurring hope 
that diseases relating to dysfunctions of mitochondrial translation 
may become understood and treatable.

One of the most promising and exciting developments set in motion 
by the high-resolution breakthrough is the exploration of ribosome 
biogenesis, a vast field as hundreds of factors are involved in ribos-
ome assembly and quality testing. Prior to the introduction of the 
new detectors, the first cryo-EM results showing assembly inter-
mediates in 40S subunit biogenesis were obtained by the Karbstein 
lab73. Examples of observations and discoveries made in recent 
high-resolution cryo-EM studies include the assembly pathway of 

Trypanosomatids51,52, large-scale domain motions during matura-
tion of the 60S subunit74 and evidence75,76 supporting the test drive 
paradigm of ribosome biogenesis77,78. Also worth mentioning in this 
context is a recent cryo-EM study which elucidates the structure 
of the earliest precursor of the eukaryotic ribosome, the 90S 
pre-ribosome79.

In conclusion, the past three years have seen an extraordinary devel-
opment of structural information relevant to the understanding of 
the mechanism of translation and translational regulation, fueled 
by the advent of the new detectors in electron microscopy. The  
fact that cryo-EM reconstructions can depict single molecules in a 
close-to-native environment and in a spectrum of multiple authen-
tic states gives extra credence to structures derived from them. As 
a result of the increasing volume of depositions of relevant high- 
resolution cryo-EM density maps and coordinates derived from 
them in the public database, the overall pace of research and the 
potential for gaining new knowledge by interpreting and integrating 
this information have already picked up dramatically and will do so 
for some time to come.

Abbreviations
cryo-EM, cryogenic electron microscopy; EF-G, elongation  
factor G; FRET, fluorescence resonance energy transfer; IRES, 
internal ribosome entry site; smFRET, single-molecule fluores-
cence resonance energy transfer.
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Figure 1. Cryo-electron microscopy map of the 80S ribosome from Trypanosoma cruzi at 3.2-Å resolution, before sharpening, colored 
by local resolution (see color key). (Left) Surface view. (Right) Central cut-away view. Like ribosomes from all Trypanosomatids, the T. cruzi 
ribosome possesses extra-large rRNA expansion segments, which all show up on the large subunit (on the right in each panel) as peripheral 
masses with high mobility. The density map shown (Liu et al., unpublished) was obtained from 235,000 particle images (Liu et al.51) after 
further refinement.
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