
RESEARCH ARTICLE

A unified mechanism for innate and learned

visual landmark guidance in the insect central

complex

Roman GoulardID
1*, Cornelia BuehlmannID

2, Jeremy E. Niven2, Paul Graham2,

Barbara WebbID
1

1 Institute for Perception, Action, and Behaviour, School of Informatics, University of Edinburgh, Edinburgh,

Scotland, United Kingdom, 2 School of Life Sciences, University of Sussex, John Maynard Smith Building,

Falmer, Brighton, United Kingdom

* romangoulard@gmail.com

Abstract

Insects can navigate efficiently in both novel and familiar environments, and this requires

flexiblity in how they are guided by sensory cues. A prominent landmark, for example, can

elicit strong innate behaviours (attraction or menotaxis) but can also be used, after learning,

as a specific directional cue as part of a navigation memory. However, the mechanisms that

allow both pathways to co-exist, interact or override each other are largely unknown. Here

we propose a model for the behavioural integration of innate and learned guidance based

on the neuroanatomy of the central complex (CX), adapted to control landmark guided

behaviours. We consider a reward signal provided either by an innate attraction to land-

marks or a long-term visual memory in the mushroom bodies (MB) that modulates the for-

mation of a local vector memory in the CX. Using an operant strategy for a simulated agent

exploring a simple world containing a single visual cue, we show how the generated short-

term memory can support both innate and learned steering behaviour. In addition, we show

how this architecture is consistent with the observed effects of unilateral MB lesions in ants

that cause a reversion to innate behaviour. We suggest the formation of a directional mem-

ory in the CX can be interpreted as transforming rewarding (positive or negative) sensory

signals into a mapping of the environment that describes the geometrical attractiveness (or

repulsion). We discuss how this scheme might represent an ideal way to combine multisen-

sory information gathered during the exploration of an environment and support optimal cue

integration.

Author summary

In this paper, we modeled the neural pathway allowing insects to perform landmark

guided behaviours using their internal compass. First, by copying available details of the

neural connectivity between internal compass neurons and steering neurons in the fruit-

fly brain, we show this circuit can produce directed behaviour towards a visual landmark.

We then propose a mechanism by which this connectivity could be adapted through
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experience to support flexible landmark guidance behaviours such as attraction or meno-

taxis, that is, movement in arbitrary directions relative to the landmark. This mechanism

allows a simple goodness/badness signal, from innate or long-term memory pathways, to

be converted into an oriented steering signal relative to the visual surroundings. Further-

more, by simulating lesion experiments in the mushroom bodies of wood ants we high-

light the consistency of the model with biological observations.

1 Introduction

An open question in biology is how brain processing allows animals, from insects to mammals,

to use sensory cues differently and with flexibility according to specific contexts [1]. The naviga-

tion of insects provides an ideal system in which to explore this problem, because they face the

need to constantly update their memory to forage to new food sources and face new dangers/

obstacles on their way [2]. In this context, the substantial use made by central-place foraging

insects of specific visual landmarks to retrieve food sources or their nest [3–9] means that efficient

discrimination and the ability to learn to direct their paths relative to these landmarks is crucial.

To focus the problem, we consider the different effects that a single landmark cue can have

on an ant’s behaviour while learning to navigate to a food source. Naïve ants [7], like flies [10]

or locusts [11, 12], express a strong innate attraction to a vertical bar, assimilated as a singular

landmark; but when trained to find a feeder displaced from this landmark, the landmark can

then be used as a reference to keep a constant relative heading and thus return to the feeder

location [13]. This simple experimental paradigm already poses several key questions.

The first is how the insect brain controls the maintenance of a specific heading course [14].

Recently, the principle of encoding of orientation in insects has been uncovered following the

discovery of a subset of cells (EPGs) in the central complex (CX) functioning as an internal

compass [15, 16] similar to mammalian head direction cells [17]. These cells have also been

shown to be essential for insects to keep an arbitrary constant direction relative to a single cue

[18], a behaviour known as menotaxis [14, 19], suggesting a key role in orientation behaviours

in general [20, 21]. However, the neural architecture that allows the encoding of a desired

heading and its comparison with an internal compass is still to be determined [18].

The second question is how innate and learned behaviour can interact [7], or more gener-

ally, how various parallel pathways controlling directed behaviour could be combined.

Recently, Sun et al. [22] proposed a way to combine several navigation systems using a com-

mon architecture similar to the ring attractor formed by EPG neurons. The simple summation

of these orientation signals could be done directly and offered Bayesian optimal combination

characteristics [23] that could support the robustness of insect behaviour [24].

However, a third issue arises from the fact that not all navigation systems will necessarily

provide information in the form of a desired orientation. For example, computational models

of memory encoding in the mushroom bodies (MB) generally assume the output takes the

form of a goodness/badness value of an olfactory cue [25] or a familiarity value of visual scen-

ery [26]. Therefore, the integration of these signals into an ongoing orientation behaviour

requires an alternative explanation.

Here we propose an integrative and anatomically constrained model of the insect compass,

following the model described by Pisokas et al. [27], combined with a steering mechanism

inspired by the model previously proposed by Stone et al. [21], to drive both innate attraction

and innate, and learned, menotaxis. With minor, biologically plausible adaptations (see Fig 1),

our model supports the formation of a memory based on different sensory inputs. This

PLOS COMPUTATIONAL BIOLOGY A unified mechanism for visual landmark guidance in the insect central complex

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009383 September 23, 2021 2 / 30

Funding: We acknowledge support from the

Biotechnology and Biological Sciences Research

Council (BB/R005036/1). RG and CB received

salary from BB/R005036/1. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1009383


memory presents some important spatio-temporal properties that match nicely different

aspects of insect navigation. First, it matches well with the persistent behaviour observed in

Drosophila when the visual cues disappear [28]. Then, the scheme of the circuitry allows the

integration of external inputs carrying only an information of goodness/badness to produce

an appropriate steering, using exploratory behaviour (operant learning). This suggests a gen-

eralised mechanism for the different pathways involved in the overall control of movement

by the CX. In addition, it permits the inclusion of the reliability which could be helpful to

apprehend multisensory integration. This architecture could therefore underlie the integra-

tion of both external and internal (such as proprioception or motivational state) sensory

inputs in the general orientation scheme of the insect CX. Finally, we demonstrate the capa-

bility of the model to describe biological evidence in MB lesions supporting the combined

role of the bilateral MB structures.

2 Methods and results

2.1 Model overview

We start with a pre-existing model of the compass system in the insect brain [27]. This circuit

in the CX (specifically in the EB) is composed of three neuron subsets called EPGs, PEGs and

PENs (section 2.4) constituting a so-called ring attractor [16]. We assume here a visual input

to the EPG neurons, and proprioceptive input to PENs, which creates an activity ‘bump’ that

Fig 1. Abbreviation of brain structures and neurons, and schematic of the CX model. Indication of the different neuronal pathways used in the model, each

pathway is represented by only 1 neuron example showing input and output(s) termination. The left part of the diagram shows the EB compass pathway, the right part

shows the steering control pathway. Known pathways are indicated in plain lines while hypothetical pathways are shown with dotted lines.

https://doi.org/10.1371/journal.pcbi.1009383.g001
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tracks the animal’s heading [15, 29]. We extend this model to control steering by introducing

two sets of PFL3 neurons [30] (one controlling each turning direction, left and right) that have

heterogeneous connection strengths from the EPG (section 2.5); this sets a steering direction

relative to the bump. We then suggest a mechanism by which these heterogeneous weights can

be adapted during behaviour (section 2.6), effectively associating self-motion in a certain

direction to a positive (or negative) reward (operant conditioning). This allows steering in a

goal direction relative to the stimulus for any arbitrary offset of the bump relative to the stimu-

lus. Finally, we consider how a MB output, signalling familiarity of a visual panorama, could

be used as the reward input to the CX and hence establish steering in relation to a route or a

visual homing memory (section 2.7). We show this model can account for ablation experi-

ments [13] in which the loss of one MB results in ants exhibiting innate instead of learned

attraction (section 2.8).

2.2 Simulations

The model was implemented in python 3.6. Each neuron is represented by a simple firing rate

model [31]. The activation rule is either a linear function of the input (linear simple percep-

tron) capped between 0 and 1/-1 (excitatory/inhibitory) or a logic function (active or inactive

based on a threshold). The input function is the sum of the activity rate of the pre-synaptic

neurons.

The model simulations are conducted in a simple 3D environment containing a single

black object in a white background world, comparable with an laboratory experimental para-

digm used frequently in different insects and specifically in the experiments we seek to repli-

cate [13]. The 3D environment is a custom implementation in python 3.6 using the pyopenGL

library. The agent is placed at the beginning of the simulation at the center of the virtual envi-

ronment and moves freely until it either reaches the border of a circular area of 100 length unit

(l.u.) radius or exceeds 5000 time units (steps). The agent has a constant speed of 0.25 l.u./step
and moves in a straight line following the heading orientation updated every step. During each

simulation, a single object is placed randomly in the environment at 150 l.u. from its center,

thus beyond the border of the agent’s arena. This single object, also referred as a cue or land-

mark, is randomly chosen between a vertical cylinder, a cube or an inverted cone during every

individual simulation run. An innate exploratory behaviour is obtained by the addition of a

gaussian noise (sigma = 10˚) in the model steering behaviour, providing a basal exploratory

behaviour independent of the CX model output.

2.3 Visual circuit

The first layer of the model is a simple visual processing stage. The visual processing is not

based on biology, but just provides a simple edge detection process to detect the single land-

mark used in the simulations. Vision is considered fully panoramic around the azimuthal

dimension and from 0˚ to 80˚ in elevation (horizon line to the top, note the simulated world

contains no information below the horizon). The visual system is segmented into 1296 visual

units [48 × 27, inherited from the simulation resolution and the division of the azimuth (48

units) into 8 quadrants (6 units each)], homogeneously distributed on both dimensions. Each

unit acts as an edge detector (Fig 2B). For each unit, the summed intensity of the left (SL) and

right (SR) half of its visual field is compared (the difference is divided by the sum for normali-

zation) to obtain an index ranging from 0 (no edge) to 1 (vertical edge). The same process is

used to compare the top (ST) and bottom (SB) half of the visual unit. Then, the two indexes

for the vertical and horizontal edge are averaged to obtain the final output of the unit, a
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orientation-free edge index, ranging from 0 to 1:

Ivi ¼
jSleft � Srightj

Sleft þ Sright

Ihi ¼
jStop � Sbottomj

Stop þ Sbottom

Ii ¼
Ivi þ Ihi

2

ð1Þ

Where Sleft, Sright, Stop and Sbottom are the 4 halves summed light intensity values, Ivi and Ihi are

respectively the vertical and hoizontal edge indexes, and Ii the combined edge index for that

unit. Ii is close to 1 if the unit faces a corner (Ii = 1 if only a full corner of the visual unit is

obstructed), close to 0.75 if the unit faces only a vertical or a horizontal edge, and 0 if it does

not face any edge.

2.4 Compass: Ellipsoid body model

The main connectivity pattern in the Ellipsoid Body (EB) model is taken from Pisokas et al. [27],

who modeled the ring attractor function of the CX that has been highlighted in recent neurophys-

iological studies in insects [15, 32, 33]. Four neuron types interact to create a ring attractor, three

forming the excitatory part of the circuit, EPGs, PEGs and PENs, and one contributing inhibition,

Delta7 [27]. The connective scheme between all these neuron types are organised in set of col-

umns in two main parts of the CX, the EB and the Protocerebral Bridge (PB) but functionally

form a ring [15, 27], as shown in Fig 3A. The functionality that results from this ring attractor cir-

cuit is the creation of a bump of activity in the EB that follow the rotation of the visual environ-

ment, creating an allocentric representation of the insects’ orientation similar to a compass.

The visual input described above is segmented into 8 equal regions around the azimuth,

which (in our model) connect in a retinotopic pattern with the first neuron type, the EPGs

(Fig 3B). This retinotopic mapping has been made to simplify in the model the compass

function derived directly from a single conspicuous bar, and allow orientation tracking in

Drosophila during a bar fixation paradigm [15, 34]. Note that in fact, during bar following

experiments, the bump of activity in the EB expresses a constant, arbitrary offset with the bar’s

Fig 2. Model visual system. A. Map of the 1296 (48x27) elementary units composing the visual system. The visual span is fully panoramic (360˚) on the azimuth and

81˚ upward on the elevation. The red framed visual unit is the one used as example in B. B. Elementary visual unit process. Each unit acts as a orientation-free edge

detector. The comparison of the summed intensity of the left vs the right of the unit and of the top vs the bottom gives an index from 0 (no difference$ no edge) to 1

(corner edge) for each unit.

https://doi.org/10.1371/journal.pcbi.1009383.g002
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real position [15]. The real circuitry from vision to the EB in insects’ brain is known to be

more complex and involves the Ring neurons, which we will return to in the Discussion. We

will also show that the steering mechanism we propose is not dependent on the retinotopic

mapping but works for any arbitrary offset (section 2.6; Fig C in S1 Text).

The inhibitory connections between EPG neurons are considered global, as described in

studies of Drosophila brains [27]. The Delta7 inhibitory circuit is represented as a direct

Fig 3. Ellipsoid body compass model. A. Connectivity diagram between the main neurons of the EB-PB model, EPGs, PEGs and PENs. EPGs have inhibitory

connections with each other as indicated, via Delta7 neurons (black lines; one example is shown from the EPG4 in the central part of the diagram). EPGs (light blue)

form a recurrent circuit with PEGs (green) while forming connection with neighbouring EPGs through PENs (pink) on each side. B. Connection diagram from the

visual circuit to the EPGs. Each angular segment connects in a retinotopic manner to the EPGs. Intrinsically this results in an activity bump forming in the circuit that

corresponds to the direction of highest visual contrast. C. Proprioceptive inputs to the PENs. When the agent is engaged in a left turn, PEN1−8 are stimulated, while

during a right turn PEN9−16 are stimulated. This will trigger a counter-motion of the bump (posterior view) so that it still indicates the relative direction of the external

cue(s). D. Example of the function of the EB model in an arena surrounded by a single cue (here a cylinder represented by the black circle). The blue line shows the

path of the agent without any influence of the CX model, i.e. only produced by the steering noise. E. Activity rate of the three neuron types constituting the EB model.

On the first line, the activity of EPGs (blue for no activity to yellow for active) shows a perfect following of the cue orientation in the agent’s visual field (red line, scale

on the right). Even during a darkness episode (from 1500th to 2500th steps), the model keeps track of the cue position with a relatively low error thanks to the PENs

(second line) and PEGs (third line) combined actions.

https://doi.org/10.1371/journal.pcbi.1009383.g003
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inhibition from each EPG to all the other EPGs. This creates a winner-take-all circuit, resulting

in a single bump in neural activity that will follow the main contrast of the visual scenery. In

the simulations here, this is a single object present in the otherwise homogeneous surround-

ings of the agent.

Inside the same column, EPGs and PEGs form a recurrent circuit, which allows the bump

to persist in the absence of visual input (Fig 3E). EPGs also give presynaptic excitation to PENs

from the same column, but PENs form presynaptic connections with EPGs from a neighbour-

ing column. In addition, we assume the PENs receive input from the proprioceptive sensory

system (self-motion) through the Nodulus [15, 16]. The rotational speed of the agent is mea-

sured and injected as a binary input, 0 or 1 modulated by a fixed gain (K = 0.75), to all the

PENs on one side of the PB (PEN1−8 for a right turn or PEN9−16 for a left turn, Fig 3C). This

causes the bump to move rightwards or leftwards around the ring, maintaining coherence of

the bump position to the external cues even in darkness, as observed in the Drosophila brain

[15]. The activity rate of each neuron group of the compass model is set by the following set of

equations:

EPGiðtÞ ¼ VUiðtÞ þ 1:0 PEGijiþ8ðt � 1Þ þ 2:5 PENi� 1jiþ9ðt � 1Þ

� 0:2
P

EPGjðtÞ

PEGijiþ8ðtÞ ¼ 1:0 EPGiðt � 1Þ

PENiðtÞ ¼ 0:75 EPGiðt � 1Þ þ 0:75 NodLðtÞ

PENiþ8ðtÞ ¼ 0:75 EPGiðt � 1Þ þ 0:75 NodRðtÞ

8
>>>>>>>>>><

>>>>>>>>>>:

ð2Þ

Where VUi is the input from an octant of visual units (each octant connecting to a single EPG,

see Fig 3B), EPGj the vector of EPGs, excluding the current EPGi, acting through the inhibitory

pathway (Delta7), and NodL(t) and NodR(t) the rotational motion input from the noduli

encoding left turns (NodL(t) = 1) and right turns (NodR(t) = 1) respectively. The different

weights used to modulate the influence of each neuron type have been set to optimize the

tracking of the heading even in darkness (Fig 3E).

2.5 Steering: EPGs to PFL3s heterogeneous connection scheme

A neurophysiological bridge from the compass to the control of motor behaviour has recently

been identified in Drosophila [30]. This consists of a subset of neurons, the PFL3s, that are

downstream to the EPGs, and upstream to the DNa2 neurons, which are bilateral descending

neurons responsible for motor control and steering maneuvers [30]. Moreover, the PFL3s are

reported to represent the second largest input to these DNa02 neurons [37], supporting their

important role in steering control. We therefore modelled the PFL3 layer to transform the

compass bump into a steering command. We used Drosophila databases [35–38] to elaborate

the connection scheme from EPG to PFL3 neurons (Fig 4), forming synapses at the PB level.

This approach has already been used by Rayshubskyi et al. to model the steering behaviour of

Drosophila [30]. Each brain hemisphere possess 7 PFL3s, which each form synapses mainly

with a single EPG wedge (Fig 4A). We assumed that the DNa2 of each hemisphere integrate

the inputs from the whole set of PFL3s of the ipsilateral hemisphere, as each DNa02 has been

shown to be acting independently [30]. Thus, the influence of each EPG depends only on its

synaptic connection to one or more PFL3 on each side. We therefore represent two PFL3s

(one on each side) for each EPG (Fig 5A), and set the synaptic weight between them to the

sum of synapses from each EPG tile (Fig 4B) to a PFL3. Note this means a PFL3 cell in the
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model could represent from 0 to 3 actual PFL3 cells, with a corresponding weights from zero

to one which we obtain from the Drosophila database [35–38](i.e., the weights are normalized).

The synapses between EPGs and PFL3s are represented as excitatory (Fig 5A) as EPGs are

reported to form cholinergic synapses with PFL3 [35–39]. The output of the PFL3 neurons are

determined by the following equation:

PFL3iðtÞ ¼ EPGiðt � 1Þ oEPG� PFL3
i ð3Þ

With oEPG� PFL3
i the synapse strength between an EPG neuron and the corresponding PFL3

Fig 4. The EPG to PFL3 connectome at the interface between the compass and the steering control. The full connectome is assessed from online

Drosophila brain databases (https://v2.virtualflybrain.org, [35–38]). The full list of the synaptic connection between neurons annoted PFL3 and EPGs is given

in S1 Table. A. (a) Division of the EB in wedges 15. (b) Quantity of synapses expressed as a function of the EB wedges and the PFL3 columns. B. (a)

Relationship between EB wedges and the EPGs modeled here (Fig 3A). (b) The connectome is transformed into EPG-PFL3 synapse weights to create the

steering model (see section 2.5). Weights are obtained by summing for each EPG the synapses on the right or on the left part of the PB. The gains are then

normalized to fit between 0 and 1.

https://doi.org/10.1371/journal.pcbi.1009383.g004
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neuron. The unilateral sum of the PFL3 outputs is therefore considered to represent the motor

signal received by each DNa02 neuron [30] and their comparison directly gives a steering com-

mand, calculated as follows:

DsteerðtÞ ¼
P

PFL3right
i ðtÞ �

P
PFL3left

i ðtÞ þ �
10
steer ð4Þ

With Δsteer the change in direction taken by the agent at time t, and �10
steer the gaussian steering

noise with a standard deviation of 10˚. The steering signal produced by the PFL3s populations

comparison is constrained to a [-2.5 2.5]˚.step−1 range to avoid unrealistic turning speed and

instability. Note that this constraint on the model output is smaller than the steering noise applied

and, therefore, preserves stochastic exploratory behaviour (see next section 2.6) while guiding the

general direction of motion. Please note that we did not consider here the polarity (excitation/

inhibition) of the PFL3 to DNa2 synapses but rather use the creation of a left-right difference to

drive the steering. However, it has been reported PFL3 neurons from the left (respectively right)

PB connect directly onto DNa02 on the right (left) [40]. In addition, considering a greater activa-

tion on the right DNa02 (compared with the left) produces a leftward turn [30], our PFL3 synap-

ses to the DNa02 can be considered inhibitory (left activation promote left turns), as it has been

assumed by Hulse et al. [40] whereas Rayshubskiy et al. [30] assumed the opposite.

To generate a steering signal in the PFL3 layer, we propose here that the observed heteroge-

neity in the distribution of EPG-PFL3 synapse weights is ideally suited to give rise to a Left-

Right inequality and thus to a turn. More specifically, the specific weights/connections pattern

Fig 5. EPG to PFL3 connectivity scheme. A. Diagram of the EPGs to PFL3s connectivity that drives the steering. Each EPG makes inhibitory connection to two PFL3

neurons, one on each side. The strength of the synapse depends on the index of the EPGi as shown in B. The summed activity rates of the right and left PFL3 neurons

are compared to obtain the CX steering signal. Finally, gaussian noise (ν = 0;σ = 10) is added to obtain the final steering command. B. (a) Synapse strength as a

function of the index of EPGi, obtained from the connectomic approach (Fig 4B; [30]). Synapses are inhibitory and therefore multiplied by -1. Red lines represent the

connection with the subset of PFL3s from the right part of the PB and green from the left part. Synapse weights are presented in a circular representation to show the

correspondence with the EPG input geometry. Index 1 corresponds to the synapse between ellipsoid body tile EPG1, connected to the rear right FOV (-157.5˚), and

PFL31, and so on, through to index 8, the synapse between EPG8, connected to the rear left (157.5˚), and PFL38. (b) Heatmap in the arena from 100 simulations in

total. The data are normalized to the landmark direction (indicated on the right). (c) Final direction/position of each simulation (n = 100) with the cue placed in

different positions around the arena, expressed in the cue reference frames. C. (a) Simulations (n = 100 for each shift condition) where EPG-PFL3 synapse weights

were shifted for 1 cell to the right/clockwise (compared to B.). Results show the heatmap relative to the cue (top) of the 100 simulations. (b) Simulations (n = 100 for

each shift condition) where EPG-PFL3 synapse weights were shifted for 1 cell to the left/anti-clockwise. Results show the heatmap relative to the cue (top) of the 100

simulations. (c)-(d) Equivalent to (a) and (b), respectively, with a 2 cells shift.

https://doi.org/10.1371/journal.pcbi.1009383.g005
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(Fig 5B) that frames the EB bump to the front of the visual field would suffice to generate an

innate attraction to the conspicuous landmark. The detection of the cue in the right part of the

visual field (as schematised in Fig 5A) would lead to an unbalanced excitation of the PFL3s

and thus a increased signal to turn right and ultimately centering the cue in the frontal field of

view (equally the detection of the cue in the left part of the visual field would have the opposite

effect). The general direction taken depends upon the intersection between the left and right

EPG-PFL3 synaptic weights, the steering noise only creating some stochasticity in the behav-

iour and a convoluted path as a consequence. When tested in the virtual environment, mim-

icking indoor arena experiments with a single landmark classically used in wood ants [13, 41],

we observed accordingly an innate attraction behaviour toward the cue (Fig 5B).

Crucially, assuming heterogeneous weights (or connections) occur between EPG and PFL3

neurons provides the flexibility to consider the adaptative outcome if the weight distribution is

altered. For example, it could be shifted to the right or the left (Fig 5C) to maintain the bump

in a different position other than the front of the agent. The subsequent oriented behaviour is

opposite in direction to the shift of the EPG-PFL3 synapse weights, because they define the

position in which the bump will be maintained during behaviour. Thus, by setting the weights

accordingly, the model is capable of producing either direct attraction to a cue or menotaxis at

any offset from the cue direction. We now go on to explore how the weights, instead of being

pre-determined, could be plastically altered through the agent’s own experience to produce

appropriately a flexibility of the oriented behaviour in different contexts.

2.6 A memory to modulate the EPG-PFL3 connection weights

In order to allow insects to deal with different goals at different times, the mechanism that ori-

ents them with respect to landmarks, visual memories or other external information should

allow some kind of plasticity or adjustment over time. Here we propose a mechanism that

adopts some characteristics of the model proposed by Stone et al. for path integration [21],

based on neuroanatomical evidence in bees, that accumulates a homing vector from the optic

flow speed estimation and the sky compass. Specifically, we add a set of units (similar to the

CPU4 units in [21] model) that get both compass and self-motion input, and implement a

one column (left or right) shift [42] before connecting to the steering neurons (PFL3 in our

model—CPU1a in [21] model). In the present model we limited the self-motion input to the

perception of rotations (in a bi-modal, left or right, way), which is used to inhibit ipsilaterally

the update of the synaptic weights between the EPG and PFL3 neurons, rather than directly

contributing to steering (Fig 6). The existence of such input, potentially provided by the

noduli, could be supported by recent observation in Drosophila at the PB level [42]. Stone et al.

[21] proposed that CPU4 neurons (PF-LC in Drosophila), arborizing between the FB and the

PB, could encode the memory for the path integrator. In contrast, here we propose that the

modulation that would drive the use of landmarks could be represented rather by a direct plas-

ticity between EPGs and PFL3s. Several studies have linked the FB to the encoding of desired

direction in insects brain [43–45]. In addition, PFL3s receive upstream inputs from synapses

in the FB [38], we therefore consider it as a target for potential modulatory neurons and refer

to the neurons in our model as FB neurons (FBn). In addition, we set the formation of this

memory under the control of a global reward signal representing the sensory pathway(s) influ-

enced by the desired heading [18]. The aim of the weight modulation is to enable the forma-

tion of a similar spatial weight pattern as presented in the previous section. We specifically

decided to apply the memory by the mean of a modification of the synaptic weight here for

consistency with the connectomic approach presented in the previous section (2.5). However,

we recognize that there is no evidence so far of EPG-PFL3 synapse plasticity and that the

PLOS COMPUTATIONAL BIOLOGY A unified mechanism for visual landmark guidance in the insect central complex

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009383 September 23, 2021 10 / 30

https://doi.org/10.1371/journal.pcbi.1009383


memory could, for example, be accumulated at the FB level, as it is proposed by a CPU4 accu-

mulation in Stone et al. PI model [21]. In fact, for the level of abstraction used here, such an

implementation would be computationally equivalent (as demonstrated in Fig C in S1 Text).

We rather focus on the potential of the functional columnar shift [21] and of the convergence

of the three following components: the self-motion perception, the compass information and

the influence of goodness-badness encoded sensory pathways. The FBns activity is set by the

following equation:

( FBnR
i ðtÞ ¼ EPGiðtÞ � NodRðtÞ

FBnL
i ðtÞ ¼ EPGiðtÞ � NodLðtÞ

ð5Þ

With Nod the inhibitory self-motion signal, from right (NodR(t) = 1) and left (NodL(t) = 1)

turns respectively. Therefore FBnR
1� 8
ðtÞ ¼ 0 during right turns and FBnL

1� 8
ðtÞ ¼ 0 during left

Fig 6. Steering CX model with external control. The central part of the diagram is similar to the model of EPG to PFL3 connection presented in Fig 5A except the

synapse weights are initially set homogeneously (oEPG� PFL3
i ¼ 0:5). On each side the model copies the [21] model architecture such that the connection between FBns

[red (right FBns) and green (left FBns) cells] and steering neurons (PFL3s, yellow cells) are shifted by one column, in opposite directions on each side. FBns also

receive rotatory self-motion information inhibiting inputs [light red (right turns) and green (left turns) lines] for the ipsilateral side, therefore the right FBns are

activated during left turns and viceversa. The reward signal (pink) is provided by the sensory pathway indicating goodness-badness of the current sensory input. The

modulation of the EPG-PLF3 synapses is under the control of this reward signal and the FBns as shown in the bottom-right inset. The steering command is obtained

by comparing the right and left summed activity of the PFL3s after the addition of a gaussian noise (ν = 0;σ = 10) as previously (Fig 5A).

https://doi.org/10.1371/journal.pcbi.1009383.g006
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turns. Then, the EPG to PFL3 synapse weights are updated as follows:

(
oREPG� PFL3

i ðt þ 1Þ ¼ oREPG� PFL3
i ðtÞ þ a FBnR

i� 1
ðtÞ RewCXðtÞ

oLEPG� PFL3
i ðt þ 1Þ ¼ oLEPG� PFL3

i ðtÞ þ a FBnL
iþ1
ðtÞ RewCXðtÞ

ð6Þ

Where oR=LEPG� PFL3
i is the synapse weight between EPGi and PFL3i on the right (R) or on the

left (L) FB. The synapses are initialized in the model with a value of 0.5 and restricted between

0.2 and 0.8 during the simulations. α is a free parameter set equal to 0.001. The reward signal

(Rew(t)) is set (as we describe below) to act as modulator for the synapse update by the FBns of

the neighbouring functional column on the right (for the left PFL3s) or the left (for the right

PFL3s). This learning rule is used as an efficient way to implement the key conceptual func-

tion, that the compass shift associated with rewarded actions should bias the steering weights,

rather than being intended as a biologically justified plasticity mechanism; as already dis-

cussed, and shown Fig C in S1 Text, there are alternative mechanisms that could serve the

same purpose.

The effect of Eqs 5 and 6 is as follows. Say the bump is centred on EPG3, as shown in Fig 6,

and the agent is turning right and observes a view which elicits a reward above threshold from

any sensory system. The right FBns being inhibited by the right turn, the left FBns will induce

an increase, under the control of the high reward level, in the EPG-PFL3 synapse shifted by

one column to the left (counter-clockwise) from the EPG bump, on the EPG4. This leads to the

increase of the tendency to turn right if the cue was to appear on the left of its current rewarded

orientation. It therefore induces a memory of the motor action that led to a rewarded orienta-

tion, and thus corresponds perfectly to an operant behaviour. By exploring the environment,

this mechanism creates two weight distributions that frame the position of the EPG activity

bump at its maximally attractive orientation in the local environment.

To reproduce the innate attraction to a simple cue, widely observed in insects [46, 47], we

created a reward signal provided by the visual processing used in this paper. The aim is to have

reinforcement of the signal from the frontal ommatidias (i.e. when facing the cue). This can be

done using a mask on the visual units as shown in (Fig 7, top panels). The mask is multiplied

with the visual input and the output summed across all units to provide the reward signal:

RewCXðtÞ ¼
P

Mi IiðtÞ ð7Þ

With RewCX being the CX reward signal used to update the EPG-PFL3 synapses, I the matrix

of the edge detection indexes (Eq 1) estimated by the visual units (Fig 2) and M the mask

matrix (same size as I). We tested alternative masks (M) with either a sharp or graded prefer-

ence (Fig B in S1 Text). for a frontal orientation of the strongest contrasts, and either with or

without negative responses for contrasts at the rear of the visual field (Fig 7A and 7B for sharp

masks and Fig B in S1 Text for graded ones). The aim of these masks, rewarding contrasts in

the frontal part of the visual field, is to reinforce the weights so as to stabilize the landmark in

the center of the visual field and therefore produce attraction to it.

Using the architecture presented in Fig 6, we show its capability to generate a memory able

to drive an innate attraction behaviour toward a single cue (Fig 7A). As observed with the syn-

aptic weights inherited from the native connectomic (Fig 5B), the weights produced by the

model define the general direction taken by the agent at the intersection of the left and right

sets of weights. In addition to adding stochasticity to the path, the noise added to the steering

behaviour is crucial here to generate the initial exploration necessary for the synaptic memory

acquisition. Even using a discrete filter, which does not carry any information about the left or

right displacement of the cue from the current heading, the model generates a consistent

behaviour and coherent weight distribution for the EPG to PFL3 synapses (Fig 7A). The use of
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a negative sensory input, when the cue appears at the rear of the visual field, to the model

improves the performance (10% more path ending at the cue orientation, Fig 7B). The negative

input is more essential when a graded preference function is used, otherwise experience of

some positive reward in all directions leads to random preferred orientations (Fig B in S1

Text). In both cases (continuous or discrete masks), the advantage of positive and negative sen-

sory inputs is of interest considering that insects are known to associate (innately or learned)

positive or negative values to olfactory [48] and/or visual cues [2]. Furthermore, the modifica-

tion of the mask, to reward the cue in a shifted position, produces an oppositely shifted behav-

iour (Fig 7C and 7D), showing the ability to use the sensory information to drive oriented

behaviour relative to a landmark, similar to menotaxis [14, 19].

The formation of a memory in the CX also permits a sustained behaviour when directly

attractive cues disappear in the environment. To illustrate this we tested the model in static

simulations, where the agent is maintained in the center of the arena and can only rotate, and

we made the cue disappear after a given time, necessary to form the EPG-PFL3 synaptic mem-

ory (Fig 8A). The persistence of the behaviour depends on the capability of the EB compass to

maintain its function in darkness [15]. The accumulation of error along time in absence of the

landmark produces a gradual shift in the behaviour (Fig 8C.a). Alternatively, if we complement

the compass with an absolute reference in the environment, which could be provided in insects

by sky cues ([49, 50], Fig 8B), the agent can maintain a consistent straight direction for an

indefinite period after the disappearance of the attractive landmark (Fig 8C.b).

Note that for these results (excepting Fig 8C.b) the bump and the landmark which generates

the attraction were directly attached, i.e., the ring-attractor compass represents a truly allo-

centric compass based on the external landmark cue. In contrast, in the insect brain during

bar-following paradigms it is known that while the movement of the EPG bump follows the

bar movement, the actual position of the bump has an apparently arbitrary offset from the bar

Fig 7. Innate behaviour under the control of a visual reward signal. Simulations of the FB steering model (Fig 6) using a reward signal provided by the visual

processes to modify the EPG-PFL3 synapse weights. We created the visual reward signal to the CX using different masks. Results for each panel include (a) the final

path directions (n = 50 simulations), (b) the probability density function of the final direction vector relative to the cue orientation, (c) the averaged EPG-PFL3s

synapse weights and (d) examples of 5 simulation paths. See also Fig B in S1 Text for results with continuous masks. A. Visual reward to the FBs is equal to the sum of

the visual units signal through a discrete mask equal to 0 outside the 30˚ frontal area or 1 inside. B. Visual reward to the FBs is equal to the sum of the visual units

signal through a discrete mask equal to 0.5 inside the 30˚ frontal area, -0.5 inside the 30˚ rear area, or 0 otherwise. C. The mask is shifted by 45˚ to the left of the visual

field. The reward area extends from 30˚ to 60˚. D. The mask is shifted by 45˚ to the left of the visual field. The reward area extends from -30˚ to -60˚.

https://doi.org/10.1371/journal.pcbi.1009383.g007
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azimuth [15]. To explore this, we reproduced such an offset between the EB bump and the

visual cue’s position in the visual field by applying a random shift in the connectivity between

the visual units and the EPGs (Fig D in S1 Text). This means each simulation expresses a

unique offset between the bump and the landmark. However, the innate attraction behaviour

to the cue produced by the model is unchanged as the model defines the correct set of weights

to drive the behaviour toward the landmark in any situation. Thus, the model does not use the

bump as an absolute compass but rather as a reference point to interpret another signal (here

the valence signal from a sensory pathway) to define the orientation to take.

2.7 Incorporating a visual familiarity memory from the mushroom bodies

In addition to using a single visual input to generate an innate attraction to single object, as

described above, we also tested how the output of the Mushroom Bodies (MB), a bilateral

structure tightly associated with memory in the insect brain [51], could be used to generate a

local memory in the CX to control appropriate orientated behaviour. To do so, we adapted the

Fig 8. Persistence of direction in the absence of the landmark. A. (a) Simulations are done in a static mode, i.e. the agent never leaves the center of the arena and only

rotates around its vertical axis. (b) After the 2000th step the cue disappears. B. (a) We tested the model in the same configuration as before, where the landmark is used

both as the main cue for the compass and to generate the directed behaviour (Fig 7C). Results are shown in C.a. (b) We tested another configuration where the compass

was provided with cues from the absolute orientation in the environment (such as sun position or sky polarization could provide). The attraction behaviour is kept based

on the landmark as before. Results are shown in C.b. C. EPG activity rate (blue to yellow) and relative landmark orientation (red line, right scale) during simulation of

the cue disappearance paradigm showed in A. (a) The compass and the attraction are both based on the landmark (B.a). The direction can be maintained but slowly

drifts as there is no external reference. (b) The compass is based on an absolute orientation perception (potentially from sky cues) while the attraction is based the

landmark (B.b). Note this creates a potential offset in the position of the bump and the landmark, but the agent still moves towards the landmark. The heading can be

accurately maintained when the landmark disappears.

https://doi.org/10.1371/journal.pcbi.1009383.g008
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model of familiarity encoding for route memories that has been hypothesised to occur in the

social insects MB [26], and use its output as the reward input in our model. Recently, experi-

mental results have supported the importance of MBs to view-based memory and navigation

in ants [13, 52, 53]. The direct influence of a MB memory is also supported by the existence of

several MBONs largely projecting into the FB in Drosophila [54].

The MB is modeled as a network (Fig 9A) composed of 10000 Kenyon cells (KCs) each

sparsely connected to 3 to 5 visual Projection Neurons (vPNs). vPNs are directly taken as the

outputs of the visual units calculating the edge indexes from the panoramic view (Fig 2). The

long-term memory is formed by a simple associative learning rule at the interface between the

KCs and the output of the MB (MBON, Mushroom Body Output Neuron). The MBON signal

is calculated as the sum of the KCs activity [KCi—binary, either 0 (active) or 1 (inactive)]

weighted by their associated synapse weight (oKC� MBON
i ) and normalized by the number of KCs

active, thus maintaining the MBON value between 0 and 1:

MBON ¼

P
oKC� MBON

i KCiP
KCi

ð8Þ

Fig 9. Orientation to a goal direction supported by the MB long-term visual memory. A. Mushroom bodies model diagram. The visual Projection

Neurons (vPN) correspond to the visual units (Fig 2) extracting edge from the panoramic view. Each KC has a random post-synaptic connection

pattern with 2 to 5 vPNs and a pre-synaptic connection to the MB output neuron (MBON). During the learning procedure, the memory reward signal

(DAN) is activated and induces the decrease of the synaptic strength between the activated KCs and the MBON. The MBON activity is then used as the

reward signal to adapt the CX circuit. B. Schematic of the learning phase before the simulation. The agent faces the feeder during 100 steps from a

position in between the feeder and the center of the arena (learning pose), with an orientation error from −15 to 15˚. The MB model memory is

updated during this phase (DAN active). C. Example paths from the retrieval experiments using the MB model as an input for the CX model. D. Final

direction vectors for 50 simulations with the feeder at 0˚ and the cue oriented at 45˚. The red arc shows the median (dot) 95% C.I. obtained by

bootstrapping (rep = 10000). E. Averaged right (red) and left (green) EPG-PFL3 synapses weights (shaded area: ±s.d.) obtained from 50 simulations.

https://doi.org/10.1371/journal.pcbi.1009383.g009
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The KC-MBON synapses weight are initially set as 1 and updated under the control of a

rewarding signal (DAN, Dopaminergic Neuron) following the learning rule (inherited from

classic MB associative memory models [26, 51]):

oKC� MBON
i ðtÞ ¼ oKC� MBON

i ðt � 1Þ þ D
KC� MBON
i ð9Þ

Where oKC� MBON
i (2[01]); and D

KC� MBON
i is given in Table 1.

The learning phase is made to mimic learning walks/flight observed in insects during which

they face a targeted location (nest, food) and acquire some visual memory [55–57]. Therefore,

the DAN activity is kept to 1 during the whole learning phase to generate the visual memory.

The agent is placed at the mid-distance between the center of the arena and a virtual feeder

(always at 0˚ at the edge of the arena) and scans the environment during 100 time steps (0.3˚/

step) over a range from −15 to 15˚ centred on the feeder (Fig 9B). This range is chosen arbi-

trarily to match the span of the discrete visual mask (Fig 7A). At the end of the learning phase

the DAN activity is set to 0 during the test phase to avoid the development of new MB

memories.

Following the MB learning rule, which decreases the synapse strength from KC to MBON

during learning episodes, the weaker the signal from the MBON, the stronger the familiarity of

the current visual scene. Therefore, the MBON output is translated into a positive reward for

greater familiarity, (RewCX(t) = 1 − MBON(t)), and used to influence the EPG to PFL3 weight

updates as before. To avoid the influence of the noise at low familiarity, we used a threshold on

the MBON value so as any value lower than 0.25 is equal to 0.0.

Using the MB familiarity of the visual scene as the reward input to the CX model enables

the agent to be directed towards the feeder location (Fig 9C and 9D). Despite the restriction of

the memory to a single episode at a single location, and the noisy familiarity observed during

the simulations, the model is able to induce direct oriented behaviour toward the goal location

albeit sometimes after expressing an initial erratic behaviour, due to the steering noise. The

averaged EPG-PFL3 synapses weights clearly show a pattern to keep the landmark/bump in

the correct orientation [�45˚ on the left (counter-clockwise)] to reach the virtual feeder

(Fig 9E).

2.8 Lesion experiments

In order to link our model to biological experiments [13], we set up simulations where the MB

could be fully silenced (i.e., output equal to 0). The mushroom bodies are present as a pair of

structures in insect brain. Therefore, the first step was to duplicate the MB used in previous

simulation to obtain two identical structures, one for each hemisphere. Both MB follow the

same vPN-KC connectivity parameters (as previously shown, Fig 9A), but their connectivity is

independent. In addition, each MB receives homogeneous inputs from the entire set of vPNs

Table 1. Mushroom bodies visual long-term memory learning rules. KC to MBON synapses are updated depending

on the KC activity level and a reward signal coming from dopaminergic neuron (DAN), considered on (1) during the

learning phase and off (0) otherwise (during the test phase). Only the combination of an active KC with an active DAN

induce the reduction of the corresponding KC-MBON synapse weight.

DAN(t) KCi(t) D
KC� MBON
i (t+1)

0 0 0

0 1 0

1 0 0

1 1 -0.2

https://doi.org/10.1371/journal.pcbi.1009383.t001
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from the panoramic view of the agent, i.e., the connectivity from both eyes is presupposed

identical (Fig 10A). It is not known to what extent the mushroom bodies receive inputs from

the contralateral compound eyes, however, anatomical [58] and behavioural [13] observation

supports the existence of cross-over in ants. The MB output consists on each side of a single

MBON neuron which connects to the FBns of the same side only. Therefore, the ablation of

one MB deprives the ipsilateral FBns of any memory related inputs. To keep the model to the

simplest case scenario we linearly added both innate visual (Vin) and MB inputs to generate a

common reward signal to control the memory as follows:

RewCXðtÞ ¼ oMB MBONðtÞ þ oVin VinðtÞ with
oVin 2 ½0:5 1:0�

oMB 2 ½3:5 4:5�

8
<

:
ð10Þ

With Vin the signal provided by the visual mask (see Eq 7), ωVin the gain modulating the visual

innate attraction pathway and ωMB the gain modulating the MB pathway. For each simulation,

a pair of gains is randomly selected from a uniform distribution in the range indicated in Eq

10. The ranges of the pair of gains are set to advantage the MB pathway (approximately with a

factor 4 here) and obtain a behaviour biased towards a learned visual heading (Fig 10B), mim-

icking the real behaviour of wood ants in similar experimental paradigm [13]. The unilateral

“lesion”/silencing of a MB occurs between the learning phase and the test phase (Fig 9B) and,

therefore, blocks the influence of the visual long-term MB memory on the formation of the CX

memory (EPG-PFL3 synapses) on the side of the lesion.

When a MB is unilaterally silenced and the agent presented with a landmark at ±45˚ from

the feeder, the model reverts to a strong attraction to the landmark in all cases (Fig 10C and

10D). This is due to the importance of both EPG-PFL3 distributions (i.e., one for each side of

Fig 10. Replication of unilateral mushroom body lesion experiments from [13]. A. Schematic of the model including both MB and innate visual attraction. Both

elements are linearly summed to form a single reward signal, using individual weights (ωVin & ωMB) to modulate the influence of each component. Lesions are

indicated by the black scissors and the results are reported in C and D (Left and right lesion respectively). B. Simulation with the combination of innate attraction

(ωVin) and the mushroom bodies (ωMB) pathway. The learning procedure is similar as presented in Fig 9B. From top to bottom, final directions (blue arrows, nsim =

100) taken during the simulations [blue arc indicate the median (dot) 95% C.I. obtained by bootstrap (nrep = 10000)], examples of path obtained during simulations,

and averaged right (red) and left (green) EPG-PFL3 synapse weights (shaded area: ±s.d.) obtained during 50 simulations. C. Unilateral lesion of the left mushroom

body. Final direction vectors and example paths. D. Unilateral lesion of the right mushroom body. Final direction vectors and example paths.

https://doi.org/10.1371/journal.pcbi.1009383.g010
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the CX model) in defining the orientation in which to keep the EB bump. With only one of the

two, the MB memory does not influence the position of the bump and therefore only the

innate attraction to the landmark actually influences the behaviour.

3 Discussion

Our principal objective was to build a neuroanatomically inspired neural network model [21,

27, 30] capable of explaining the use of the ellipsoid body compass as a reference to maintain

the course toward a desired direction [18], reinforced either by innate or learned pathways.

We first showed the intrinsic potential of the synapse pattern from the EPG (compass) to PFL3

neurons within the protocerebral bridge, as identified in the Drosophila connectome [38], to

produce a stable course following the compass bump of activity directly (Fig 5B) or, poten-

tially, with a constant offset (Fig 5C). This is achieved by: (i) the division of the PFL3 neurons

into two unilateral subsets independently controlling turns towards each side [38]; and (ii) the

unbalanced connectivity scheme between the compass neurons (EPGs) and these unilateral

subsets (Fig 4). This organisation corresponds to a more basic, perhaps ancestral, control

scheme called tropotaxis [44] in which the left-right comparison of a sensory signal controls

the orientation taken [59]. In addition, the control of steering by a continuous probabilistic

comparison of left and right turns naturally produces oscillatory or zigzag pattern that resem-

bles paths observed in insects following pheromone trails, odor plumes [60] and/or visual

guidance [9, 61, 62]. We show here how this left-right structure of the CX output from the

PFL3 neurons could be co-opted by sensory (visual attraction) and memory (MB visual long-

term memory) pathways that do not themselves have such a left-right structure, through an

adaptively acquired memory. The key mechanism we propose is that an association between

self-motion and the compass signal can be acquired under the control of reinforcement. This

depends on the known anatomical shift between functional columns in the CX, previously

used to support steering output in a path integration model [21]. This shift allows the current

compass pattern to be ‘mentally rotated’ to the left and right, so that the link between the pre-

ceding compass pattern, the turning action (right or left) and the consequent reward can be

made.

Although in the presented model we have hypothesised that this memory resides in the

EPG-PFL synaptic weights, we believe it is equally plausible that the required modification

occurs upstream in the FB neurons, which could then have a direct modulatory input to PFL3

neurons (Fig C in S1 Text). Nevertheless, a short-term synaptic plasticity is plausible at the CX

level similar to the plasticity observed at the synapses from the Ring neurons to the EPGs [63,

64]; note such short term change in synaptic efficacy may not be observable as changes in the

number of synapses [40] (section 2.5). A possibility is that innate behaviours could be

imprinted as long-term synaptic differences, modulating the number of synapses [30], while

learned behaviour could be supported by more plastic (and reversible change) in the synaptic

molecular modulation. Independently from the mechanism of CX memory formation, we

demonstrated the suitability of such a memory to support several oriented behaviours; innate

attraction to a bar [7, 10], menotaxis behaviour [14] and reaching a memorized location [13].

Such a memory process is coherent with the central role of the CX in spatial learning [65],

in the storage of short-term orientation memory [28], and in the convergence of multiple path-

ways and the selection of a range of sensory driven behaviours [32]. Moreover, this memory

process permits considerable behavioural flexibility including permitting orientation even

when an offset [15] exists between the compass representation (i.e., the bump location) and

allocentric cues in the environment (Fig D in S1 Text). In addition, this model can reproduce

the impact of unilateral MB lesions on the behaviour of wood ants [13]; after a simulated
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unilateral silencing the model reverts to innate behaviour (under the assumption of a linear

addition of the pathways and the unilateral influence of the MB). This emphasizes the impor-

tance of both MBs in memory view-based navigation in the CX. It also supports a unilateral

influence of each MB on the CX control of the navigation behaviour, also supported by the evi-

dence of lateralization in the insects’ memory [66]. As such, there is an interesting correspon-

dence to the model recently proposed by [44] in which the left and right MB are assumed to

learn views oriented respectively to the left and right of the target direction. This is comparable

to using the unilateral self-motion inhibition signal in our model to select which MB stores the

visual memory, rather than to select which set of FBn influence the association of visual mem-

ory to reward in the CX. Both models pinpoint the potential role of the CX to integrate and

smooth steering driven by the MB visual memory. The model in [44] has the advantage of pro-

viding a non-redundant role for the two MBs, whereas our model can be more easily general-

ised to different modalities, including non-directional reward signals, as shown by the

combination of innate and learned behaviour (Fig H in S1 Text).

3.1 Assumptions in the model about CX inputs

Our model has abstracted from neuroanatomical reality to simplify the connections from the

visual system to the EB, by using a direct retinal input. Indeed, it is known that the visual

inputs to the EPGs, conveyed by ‘ring’ neurons [67], are not fully retinotopic. Ring neurons

connect from the Lateral Triangle (LTR) to the EB [34]. LTR glomeruli conserve localized

visual receptive fields but form connections with the entire EB tile set [67], potentially modu-

lated by neuronal plasticity [63]. The effect of this connection scheme is the preservation of a

visual scenery representation in the EB [63] whereas an arbitrary offset can arise between the

external location of visual information and the EB activity ‘bump’ in bar following experiments

[15]. Although we did not explicitly include ring neurons, the model could reproduce the effect

of this variable offset through a retinotopic shift in the connection from the visual inputs to the

EB, and can function with such offset (Fig D in S1 Text). The representation of innate attrac-

tion as a modulatory signal and not as an intrinsic hardwired system allows this flexibility.

Alternatively, the apparent randomness of some menotactic behaviour in insects could be

explained by a hardwired architecture, where some arbitrary bump offset fixes the preferred

direction. The different behaviours (direct attraction or menotaxis) observed in different spe-

cies and in different contexts [wood ants [7, 9, 13] and flying Drosophila [68] attracted by land-

mark versus walking Drosophila, innately [18], and ants, through learning [69], both keeping a

landmark in a specific orientation of the visual field] argues for some flexibility in insect ori-

ented behaviour.

The second input we assume is available to modulate the memory is the perception of rota-

tional self-motion. The interaction of optic-flow and compass-mediated signals has already

been proposed in the form of a speed measurement for the path integrator [21]. However, in

our model, the implementation of a pathway carrying self-rotation estimation is required. The

ability of insect visual systems to untangle of the optic flow generated by translation and rota-

tion [70] supports our choice. In addition, self-rotation might also be perceived by a mechano-

sensory pathway from the legs [71], or be estimated from efference copy from the motor

system [72]. Nevertheless, the implementation here is highly inferential; but could be sup-

ported by the existence of pathways between the EB and the FB involving the noduli inputs

(hAB neurons [42], P-F3N2d and P-F3N2v [39]). In our model, we found that the main advan-

tage of selecting, specifically, ipsilateral inhibition (i.e., right turns inhibit right FBns and left

turns inhibit left FBns) was to facilitate the exploration and the integration of several cues

(innate and memorized). Contralateral inhibition, for example, would lead to an attraction to
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the stronger cue and neglect of sparsely accessible cues such as the MB long-term memory (Fig

E in S1 Text).

Finally, a key assumption of the model is that the CX receives a reward signal based on sen-

sory or memory pathways. The FB represents an ideal target to model the influence of parallel

sensory pathways on the CX [44] because it receives inputs from several other brain areas,

including the MB [73–75], while sharing the columnar organisation observed in the EB and

the PB [16]. For example, Drosophila FB has been shown to be necessary to the control of the

steering in a visual pattern recognition paradigm [76], involving the EB [77]. We did not target

a specific neuron type so used a generic FBn denomination. However, the parallel with

CPU4a/b identified in bees as part of the path integrator makes the corresponding neurons

P-F3N2d and P-F3N2v [39] plausible targets in the FB as they also make mixed synaptic con-

nections to the noduli [39]. In addition, the CX is one of the main structures in the insect’s

brain, along with the MB, receiving dopaminergic innervation, notably in the FB [78]. The

role of dopaminergic input in synaptic modulation and learning processes in the MB [79] sug-

gests a similar role in the CX to generate a synaptic memory. This is consistent with observa-

tions that link the dopaminergic circuit in the CX to the regulation to wake/sleep arousal or

stimulus specific arousal [80] and more generally its proposed function to modulate the

arousal threshold in Drosophila [81].

3.2 An operant strategy to find where to go

The main principle of our model is the formation of a memory during the exploration of the

environment surrounding the insect under the influence of goodness/badness signals derived

from innate and/or learned preferences. The exploratory behaviour here is crucial, supporting

the scan of the surroundings and integrating the proprioception information correctly (Fig E

in S1 Text) to ensure an optimal behaviour. Note that, although our model does not need any

systematic scanning of the visual environment to decide the course to take [26], it is not able to

provide a steering command to an orientation that has not been previously seen (some other

proposed navigation models do have this capacity, e.g., by using the frequency transformation

of the visual scenery [22, 82], or a biased memory [44]). However, a large number of insect spe-

cies express systematic scanning procedures before determining a route/direction to take [e.g,

ants [83, 84]; dungbeetles [85], sandhoppers [86]], supporting our model assumptions. To cre-

ate an exploratory behaviour in our simulation we add noise to the steering output from the

PFL3, which is needed to generate correct attraction to the cue or the feeder (Fig F in S1 Text).

Adding a stochastic component as noise to the behaviour is intended to account for the effect

of locomotor mechanics and/or external disturbances. Alternatively, the oscillatory behaviour

observed in the path of insects (wood ants [9], cockroachs [87], locusts [61], wasps [88], moths

[89]) could provide a systematic and controlled exploration of their surroundings that would

serve the same function. In addition, head movements and initial systematic scanning behav-

iour [83] offer ways to increase the exploration of the environment while maintaining the

course.

3.3 Why use the CX for innate attraction?

Our model focuses on the potential of the specific CX architecture to support different ori-

ented behaviours (attraction, menotaxis, visual memory guided) based on inputs in the form

of (undirected) attractiveness and/or repulsion. As such, the EB is assumed to play a role even

in the innate attraction to a visual landmark, which we assume induces a reward signal when

appearing in the frontal area of the visual field, modulating the EPG to PFL3 synaptic weights

to cause steering towards it. In walking Drosophila, disrupting the EB abolishes menotaxis but
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not direct attraction to a cue [18]. Indeed, it seems highly likely that alternative direct sensory

pathways for innate attraction exist, such as observed connections from visual lobes to steering

neurons downstream from the CX [30], and are able to control the behaviour without requir-

ing the orientation representation provided by the CX [90]. However, although CX memory

may not be necessary for attraction to conspicuous cues, it might still provide several advan-

tages in enhancing innate behaviours [43].

One is the creation of a stable heading that can persist even with a disappearance of the cue

(s) (Fig 8), as long as the EB bump motion is supported by other cues (for example the proprio-

ceptive cues maintaining heading tracking in darkness, Fig 3D). The existence of a persistent

influence of a cue after its disappearance has been shown in Drosophila [28, 91], as well as the

relative reliability of the EB compass in darkness [15]. Therefore, the CX could act as a

smoothing filter, in addition to direct taxis mechanisms, to generate a short-term memory of

the sensory world when this appears to be unsteady. For example, the experiments by Neuser

et al. [28] on the short-term memory of landmark guidance with disappearing bars support the

interplay between sensory taxis pathways and the formation of a short-term orientation mem-

ory. In their paradigm, Drosophila show a sequence of behaviour while the environment is

modified: (i) a patrol behaviour between two bars at 0 and 180˚; (ii) attraction to a new bar

appearing at 90˚ while the others disappear; and (iii) a reversion to the patrol behaviour in the

original direction, in the absence of any cue, when the newly appeared bar disappears. This

would be consistent with our model if it was assumed that the CX memory formed during (i)

is over-ridden, but not altered, during the brief presentation in stage (ii), and will guide the

behaviour in (iii) when all landmarks disappear (c.f. Fig 8).

Note that these advantages of smoothing and persistence should also apply to enhance

either menotaxis or memory-guided orientation over a direct taxis system, e.g., smoothing the

integration of the MB signals that can be unsteady [44]. The integration of a sparsely accessible

sensory signals could be particularly interesting considering the cluttered and dynamic envi-

ronments within which insects forage. The ability of desert ants to perform homing while

walking backwards would also be supported by a short term storage of the direction indicated

by visual memory, which can be set during intermittent ‘peeks’ to check the direction [92]. In

addition, the temporal dynamics properties of neurobiological circuits involved in the smooth-

ing/filtering of this signal probably should include some forgetting mechanisms allowing the

memory to be reversible. For the paradigm we used, with a distant landmark for an agent con-

fined to an arena, forgetting was not necessary, but in a more complex navigation scenario

where the insect may pass the landmark, forgetting, and therefore the creation of a real work-

ing memory, would be crucial. We plan to investigate in the future how this model could be

applied to complex route learning/following using an integration/decay dynamics [44], or

whether the integration of the path could erase the memory along a route [21].

The temporal integration at the CX level also makes it possible to explore several innately

attractive features of the environment and build-up a global direction vector combining them.

This individual consideration of landmarks rather than the deciphering of the global layout of

the environment would match some observations in insects [93, 94]. It is also noteworthy that

attraction to vertical lines in wood ants has been proposed [95] to be sustained by their func-

tional potential to resemble tree trunks (a key source of food) and therefore could be deter-

mined by earlier life experience. That is, the nature of the attractive target may become refined

as particular visual stimuli are discovered to be rewarding. This can be considered as a more

general principle, in which a ‘map’ of the visual environment’s attractiveness [96] generates a

heading vector, for any location, based on the EB bump. The same architecture could also be

generalised to other sensory inputs, such as olfaction or wind sensing (see Fig G in S1 Text for
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gradient ascent capability), to generate such a combined heading vector (or a set of vectors)

and enhance the robustness of the behaviour (see section 3.4).

3.4 Optimal sensory integration

In addition to its spatio-temporal properties, the convergence of several sensory pathways

onto a single compass-driven scheme offers an interesting substrate to look further into opti-

mization of the navigation behaviours. Optimal integration in biological systems has been con-

sidered to conform to Bayesian-like principles [23, 24, 97–99], as a principled way to take

noise and uncertainty into account. Social insects and central-place foragers have evolved

under high pressure to be able to return reliably to their nests, and hence make use of multiple

redundant mechanisms, and a wide range of sensory cues including visual cues (polarised

light, landmarks, sun, light gradients), magnetic fields, optic flow, odours, wind direction, tac-

tile cues and/or proprioception [100–103]. The problem of how these are combined for robust

navigation has been considered in mathematical models [23] but how it might be realised in

the brain of the animal is still unknown [22]. Here, the modulation over time of the weight dis-

tribution during the exploration of the sensory environment offers a way to generate directly a

combined probablility distribution from multiple inputs. An example that we observe from

our simulation is the impact of negative rewards in addition to positive ones in creating the

landmark attraction (Fig 7). It has been recently shown in homing ants that memorizing anti-

views or repellent memories, in addition to an attractive memory, could help in determining

the course to take [2, 104]. The combination of these two opposed pathways on our synaptic

memory model would automatically create a combined distribution (Fig H in S1 Text),

improving the homing performance as proposed in [105].

Importantly, this use of two different reward signals could be directly extended to two (or

more) rewards that come from different sensory systems. For example, if the agent was

equipped with mechanosensors similar to insect antennae, we could define the equal rearward

deflection of both antennnae as rewarding, corresponding to an upwind heading direction.

This could be combined with the existing reward when the visual landmark is centred, so that

the two inputs simultaneously affect the adaptation of the weights. The relative strength of the

two cues might then allow smooth transition between upwind flight when the visual stimulus

is weak (far away from a learned location) to visual attraction as this cue becomes stronger or

more reliable (from close range). In the model presented here, there is one set of weights

between the EPG and PFL3, which can be influenced by multiple reward signals as just

described. However, an alternative implementation (with similar computational effect) would

be to assume the FB connections provide pre-synaptic modulation of the EPG-PFL3 connec-

tions, and the extent of this modulation is under adaptation by the reward signal. This alterna-

tive opens up the interesting possibility of having multiple sources of compass information

integrated as parallel streams, i.e., several sets of FBns that, instead of copying the EPG com-

pass activity, have an activity bump driven by independent directional cues, such as wind

[106–108], or celestial information [101]. Indeed, the summation of several sensory compasses

offer a good basis for theoretically optimal cue integration [22]. The combination of different

compasses under a single reward provided by sensory and/or memory pathways might

allow their flexible re-use depending on their availability and their reliability in the local

environment.

Here we combined two different systems for visual reward, one innate and one learned.

The interaction between innate and learned modalities is important for insect navigation [7,

102]. We considered the simplest case where the influence of each pathway is added linearly.

The exploration of different integration strategies could help us better understand the
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interaction between innate and learned behaviours. We therefore believe that this model will

help in exploring the ontogeny of the transformation from innate to learned landmark use

[7, 109].

Supporting information

S1 Text. Supporting methods and figures. Fig A. Simulations with no modulation of the

EPG-PFL synapses. A. 5 examples of paths where the EPG-PFL3 synapse weights are set equal

and constant. B. Boxplot (Median: Red, Inter-quartile: shaded box) of the exploration ratio,

calculated as the percentage of the 360˚ surroundings faced by the agent, during 50 simula-

tions. C. Heatmap of 50 simulations stacked adjusted to the cue location (0˚). D. Probability

density function of the angular speed (all 50 simulations data stacked) corresponding to the

10˚ s.d. gaussian noise applied to the output of the steering model (red line). Fig B. Innate

attraction under the control of a visual reward signal. Simulations of the FB steering model

(Fig 6) using a reward signal provided by the visual processes to modify the EPG-PFL synapse

weights. We created the visual input signal to the CX using different masks. Results for each

panel include (a) the final path directions (n = 50 simulations), (b) the probaility density func-

tion of the final direction of the 50 simulstions, (c) the averaged EPG-PFLs synapse weights

and (d) examples of 5 simulation paths. A. Visual input to the FBs is equal to the sum of the

visual units signal through a continuous proportional mask from 0 (rear units) to 1 (frontal

units). B. Visual input to the FBs is equal to the sum of the visual units signal through a contin-

uous proportional mask from -0.5 (rear units) to 0.5 (frontal units). C. Visual input to the FBs

is equal to the sum of the visual units signal through a discrete mask equal to 0 (outside the 30˚

frontal area) or 1 (inside the 30˚ frontal area). D. Visual input to the FBs is equal to the sum of

the visual units signal through a discrete mask equal to 0 (outside the 30˚ frontal area and the

30˚ rear area), 0.5 (inside the 30˚ rear area) or 1 (inside the 30˚ frontal area). Fig C. Alterna-

tive memory model. A. Model diagram. The memory is integrated as a separate set of neurons

(similar to CPU4 in [21]), which receive inputs from the reward signal (Vin or MB), the self-

motion and the EPGs. The inhibition from FBns/CPU4s to the PFL3s/CPU1as present the

same shift of 1 column as the model described in Fig 6. B. Results from simulation where the

reward signal is provided by the visual system and generate an innate attraction to the cue (dis-

crete positive mask). C. Results from simulation where the reward signal is provided by the

MBs after an initial learning phase. In this case the MB is a singular structure providing a simi-

lar signal to each side of the CX model. Fig D. Using an offset compass does not compromise

the model function. A. The connectivity between the visual units and the E-PGs has been

shifted by a random value. The bump produced therefore expresses a constant offset different

for every simulation. B. Final direction vectors relative to the cue for 20 simulations. C. Overall

EPG-PFL synapse weights. The lines indicate the mean value for each EPG-PFL couple (red

for the right side and green for the left) and the shaded area the standard mean deviation (s.e.

m.). D. 4 individual experiment paths and the associated EPG-PFL synapse weights generated

during the simulation (red for the right side and green for the left). Fig E. Impact of the self

motion integration in the model. A-B-C. Model simulations with a combination of innate

attraction and visual memory (MBs) as presented in Fig 10A & 10B. (a) Final direction vectors

for 50 simulations. The arc represent the median (dot) ± 95% C.I. obtained via bootstrap

(rep = 10000). (b) Averaged right (red) and left (green) EPG-PFL synapse weights (shaded

area: ±s.d.) obtain during 50 simulations. A. Ipsilateral inhibitory circuit from the self-motion

signal to the FBns. This corresponds to the circuit presented in Fig 6. B. Contralateral inhibi-

tory circuit from the self-motion signal to the FBns. C. Circuit without any integration of the

self-motion by the FBns layer. Fig F. Impact of the steering noise on the model performance.
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The influence of the noise standard deviation applied to the steering is tested in the case of the

innate attraction alone (ωMB = 0) and combined with the visual memory (ωVin and ωMB set as

in Fig 10B). Fig G. Gradient ascent properties, potential for the olfactory pathway. A. The

reward signal (ICX, input to the CX) is defined here as the difference (Δs) of the concentration

in sensory input [s(t)]. Negative input, decrease of the concentration are not considered here

(Δs� 0$ Δs = 0). The value of Δ is multiplied by a free parameter ωOlf to adapt roughly the

amplitude to the same range as the visual pathways (innate and learned). During the simula-

tions the visual compass is maintain, and keep it’s function to modulate the EPG-PFL3 synap-

tic weights, thanks to a landmark randomly positioned around the arena. B. Simulations with

3 different sources positioned at 100, 150 and 200 lu. from the arena centre creating a gaussian

gradient (respectively s.d. = 50, 100 and 150 lu.). Left panels show the gradient shape and 5

paths example (white lines). Right panels show the final direction vectors of the full set of sim-

ulations (n = 20). Fig H. Influence of an attractive-repulsive MB views memory on the

model. A-B-C. (a) Final direction vectors of 50 simulations. The red arc indicates the median

(red dot) 95% C.I. obtained by bootstrap (nrep = 10000). (b) 5 path examples. (c) Averaged

right (red) and left (green) EPG-PFLs synapse weights (shaded area: ±s.d.). For these simula-

tions, in contrary to the other results presented in the paper, synapses weights were not capped

to 0.8. A. Simulations with attractive views memory only acquired facing (±15˚, blue span) the

feeder (green dot). This correspond to the same simulations as presented in Fig 9. B. Simula-

tions with repulsive views memory only. MBON value is multiplied by -1 before connecting

the FB neurons. Repulsive views are acquired in the same manner than the attractive one while

facing 180˚ ± 15˚ (red span) away from the feeder (green dot). C. Simulations with both attrac-

tive and repulsive views memory. Each memory use the very same subset of KC neurons but is

processed on a different MBON (positive for attraction, negative for repulsion). D. Probability

density function of the final directions for 1000 simulations in the 3 conditions (Attractive

memory, positive memory and attractive & positive memory).

(PDF)

S1 Table. S1_Table.csv: Table referencing the list of synaptic connection from EPGs to

PFL3s. Presynaptic_Neuron: ID of the presynaptic neuron; PreN_ID: ID tag of the presynaptic
neuron; Postsynaptic_Neuron: ID of the postsynaptic neuron; PpstN_ID: ID tag of the postsynap-
tic neuron; Nb_Synapses: Synapse count. EPG2PFL_connection.txt: txt version of the refer-

ence table. EPG2PFK_table_connections.csv: csv file containing the synaptic connection

from EPGs to PFL3s as a cross table. TableSynapses.pdf: image plot representing the extracted

cross table synaptic connection from EPGs to PFL3s. WeightCircular.pdf: circular plot con-

version to the 1-on-1 EPG to PFL3 synaptic weights.

(ZIP)
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