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Abstract

Background: To identify candidate key genes and pathways related to resting mast cells in meningioma and the
underlying molecular mechanisms of meningioma.

Methods: Gene expression profiles of the used microarray datasets were obtained from the Gene Expression Omnibus
(GEO) database. GO and KEGG pathway enrichments of DEGs were analyzed using the ClusterProfiler package in R. The
protein-protein interaction network (PPI), and TF-miRNA- mRNA co-expression networks were constructed. Further, the
difference in immune infiltration was investigated using the CIBERSORT algorithm.

Results: A total of 1499 DEGs were identified between tumor and normal controls. The analysis of the immune cell
infiltration landscape showed that the probability of distribution of memory B cells, regulatory T cells (Tregs), and
resting mast cells in tumor samples were significantly higher than those in the controls. Moreover, through WGCNA
analysis, the module related to resting mast cells contained 158 DEGs, and KEGG pathway analysis revealed that the
DEGs were dominant in the TNF signaling pathway, cytokine-cytokine receptor interaction, and IL-17 signaling
pathway. Survival analysis of hub genes related to resting mast cells showed that the risk model was constructed
based on 9 key genes. The TF-miRNA- mRNA co-regulation network, including MYC-miR-145-5p, TNFAIP3-miR-29c-3p,
and TNFAIP3-hsa-miR-335-3p, were obtained. Further, 36 nodes and 197 interactions in the PPI network were identified.

Conclusion: The results of this study revealed candidate key genes, miRNAs, and pathways related to resting mast cells
involved in meningioma development, providing potential therapeutic targets for meningioma treatment.
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Background
Meningioma, originating from meningothelial cells, is the
most common primary brain tumor, accounting for 35–40%
of central nervous system (CNS) tumors, with an incidence
of approximately 2 in 100,000 adults [1, 2]. There is an about
3:1 female predominance of meningioma due to the role of
estrogen [3, 4]. Meningioma is often associated with head-
aches, imbalances, impaired vision, and other neurological

problems that can leave the patient very weak [5]. According
to the WHO’s classification of nervous tissue tumors, men-
ingiomas belong to the meningothelial-cell tumors of the
meninges, and are classified into grades I, II and III. Treat-
ment for meningioma encasing crucial neural and vascular
structures, and for more aggressive histological types such as
anaplastic (grade III), may be very challenging. Although
most meningioma are classified as WHO grade I (85–95%),
and considered as benign solid tumors, the tumors can recur
even after complete resection, and the recurrence rate in
these patients have been reported to be 7.5% or 9.3% in 10
and 20 years, respectively [6, 7]. It is therefore of great value
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to explore the molecular mechanism underlying the develop-
ment of meningioma, as it will aid in disease treatment and
patient prognosis improvement.
Generally, the development and growth of a tumor usually

requires the appropriate microenvironment, as well as gen-
etic/molecular changes in the tumor cell. An increasing
number of evidence reports that the malignant phenotype of
tumor is influenced by the tumor-related microenvironment
[8–10]. The tumor-related microenvironment consists of
tumor immune cell types, density, and localization, and accu-
mulating evidence has shown correlations between immune
cell infiltration in different human tumors and clinical out-
comes [11, 12]. Meningioma, an immune-sensitive malignant
tumor, is infiltrated by numerous immune cells, including
CD8 lymphocytes, macrophages and mast cells (MCs) [13].
In different types of meningiomas, a variety of phenotypes of
MCs are found primarily in the lobule of connective tissues,
including malignancies independent of growth rate, grade, or
degree of calcification. In the last several decades, the import-
ance of mast cells under several physiological and patho-
logical conditions, has been described. However, their
molecular mechanism in meningioma development remains
unknown [14]. In the present study, we retrieved the
meningioma-associated microarray data from Gene Expres-
sion Omnibus (GEO) databases in order to investigate tumor
immune cell-related genes, transcription factors (TF), func-
tional processes, and pathways that could be significantly
correlated with meningioma development and overall patient
survival. Further analysis performed included tumor-
immune cell related Differentially Expressed Gene (DEG)
screening, Gene Ontology (GO), Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analysis, survival
analysis, TF-miRNA- mRNA and TF-miRNA- mRNA con-
struction, Protein-Protein Interaction (PPI), and drug-gene
construction.

Methods
Data source
In this study, the GSE43290 dataset containing the gene
expression profiles from meningioma tumor tissues ob-
tained from 47 patients and 4 normal control samples,
was downloaded from the Gene Expression Omnibus
(GEO) database (GSE43290: updated August 10, 2018;
https://www.ncbi.nlm.nih.gov/geo/) and accessed with
GPL96 [HG-U133A] Affymetrix Human Genome U133A
Array platform. GSE77259 dataset, which contained 17
samples (14 meningioma tumor tissues samples and 3
normal samples) was selected as the validation data, and
assessed by the platform of [HuGene-1_0-st] Affymetrix
Human Gene 1.0 ST Array. For survival analysis, the
GSE16581 dataset (updated May 25, 2019) including the
overall-survival (OS) data for 68 meningioma patients was
accessed using the GPL570 [HG-U133_Plus_2] Affymetrix
Human Genome U133 Plus 2.0 Array platform.

Data preprocessing and identification of DEGs
According to the Series Matrix data Files of GSE43290,
GSE77259 and GSE16581, each dataset was normalized
independently using Robust Multiarray Average (RMA)
algorithm in the Affy Bioconductor package in R [15, 16].
The Bioconductor annotation packages for GSE43290 and
GSE16581 were specifically hgu133a.db, hugene10sttran-
scriptcluster.db and hgu133plus2.db. Afterwards, the
Facto MineR package in R was used for principal compo-
nent analysis (PCA) and clustering.
To identify the DEGs between meningioma and normal

samples, the improved t-test method based on empirical
bayes provided by the limma R package (Version: 3.40.6)
[17] was used with the threshold of P. value< 0.05 and
|logFC| > 1. Volcano Plot of DEGs was obtained through
the ggpubr package in R (version 0.2.2), and hierarchical
clustering was performed using pheatmap package in R
(|logFC| > 2). Principal Component Analysis (PCA) and
clustering analysis for the DEG were conducted using the
FactoMineR package in R with |logFC| > 2.

Analysis of abundance of infiltrating immune cells
The CIBERSORT deconvolution algorithm [18] was used
to estimate the matrix of abundant immune cells on the
expression matrix of the samples, so as to analyze the
abundance of infiltrating immune cells. The parameters
were set as perm = 100 and QN = TRUE. The barplot,
pheatmap and vioplot were plotted using R language.
P < 0.05 was considered as subsets of immune cells with
significant differences.

Screening immune cell related modules and genes
Based on tumor samples of immune maceration, the
DEGs were analyzed by using the WGCNA package in R
software (Version 1.68) [19]. The gene sets that signifi-
cantly correlated with the degree of infiltration of differ-
ent immune cell subsets were screened, and the genes
were found to be related to the immune cell subsets.
The boxplot of immune-related DEGs between tumor
and normal samples was constructed based on the
ggboxplot function of ggpubr package in R.

Survival analysis
Survival analysis was performed using Survival package
(version 2.44–1.1) with log rank test (cut off: P.value<
0.05) was used based on the immune-related DEGs and
clinical information of GSE16581, and survival curve
was constructed. Univariate and multivariate Cox regres-
sion analysis was conducted using the coxph method in
survival package [20], and ggforest package in R was
used for HR forest mapping construction.
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Construction of TF-miRNA- mRNA co-expression network
miRWalk3.0, miRDB, TargetScan, and miRTarBase were
used to predict miRNA-mRNA interactions. TF-mRNA pairs
were obtained using the online database TRRUST (https://
www.grnpedia.org/trrust/) [21]. The co-expression network
was constructed using Cytoscape software, and enrichment
analysis was carried out for transcription factors of DEGs in
the risk model.

Functional enrichment analysis
For the functional annotation of DEGs, the ClusterProfi-
ler package in R (Version 3.12.0) was used to identify
the enriched GO terms and KEGG pathways [22]. The
results were considered to be significant with FDR ad-
justed p < 0:05.

Screening of pathways associated with meningioma
Out of the pathways associated with meningioma in
CTD (http://ctdbase.org/, KEGG pathway enriched by
transcription factors and immune-related genes was fur-
ther screened, and a pathway diagram drawn with the
pathview package in R (version 1.24.0).

Protein-protein interaction (PPI) network construction
In order to further predict the interaction of protein
pairs, the Search Tool for the Retrieval of Interacting
Genes (STRING) database [23] was used with a confi-
dence score > 0.7. And the PPI integrated networks were
mapped by Cytoscape 3.4.0 software [24]. Finally,
MCODE [25] was used to screen the modules of hub
genes from the PPI network, with the node Score > =10
as cut-off criterion.

The prediction of drug-gene interaction
Drug-gene interaction was predicted by Drug Gene
Interaction database (DGIdb) 3.0 (Version: 3.0.2) [26],
and the network was constructed with the Cytoscape
software. The DrugBank database [27] was used to re-
trieve information about predicted drugs.

Results
Identification of DEGs
Following differential gene expression analysis and filter-
ing with the cut-off criteria of P. value < 0.05 & |logFC| >
1, the DEGs between tumor and normal cells were
screened. For the GSE43290 dataset, a total of 1499 DEGs
were identified, out of which 73 were up-regulated and
1426 were down-regulated. For the GSE77259 dataset,
4830 DEGs, including 2536 up-regulated and 2294 down-
regulated genes, were identified. Moreover, a total of 673
overlapping DEGs, such as MYC, TNFAIP3 and SLC2A3
in both GSE43290 dataset and GSE77259 dataset were ob-
tained (Supplementary Fig. 1).

Furthermore, volcano plot and PCA clustering of DEGs
in GSE43290 showed that the DEGs between the two
groups could be significantly distinguished (Fig. 1A and
B). Additionally, using a threshold of |logFC| > 2, 255
DEGs out of the 1499 DEGs in GSE43290 were further
screened, and the expression pattern of these DEGs could
divid the samples into two groups (Fig. 1C). To further
predict the potential functions of these DEGs in meningi-
oma, enrichment analysis was performed. The results of
GO analysis showed that these DEGs were functionally
classified by Biological Process (BP), Cellular Component
(CC), and Molecular Function (MF) (Fig. 1D). Among
them, several BPs related to immune response (leukocyte
migration, leukocyte chemotaxis) and responses processes
(reponse to metal ion, response to zinc ion, positive regu-
lation of response to external stimulus) were significantly
enriched; moreover, CCs and MFs were found to be
mainly associated with regulation of cardiac electrical ac-
tivity. Furthermore, KEGG pathway analysis revealed a
series of enriched pathways, such as IL-17 signaling path-
way and TNF signaling pathway (Fig. 1E).

The immune cell infiltration landscape
Based on the gene expression profiles of GSE43290, the
difference in immune cells infiltration between tumor
and control samples among 22 immune cells types, were
detected using CIBERSORT algorithm. As shown in
Fig. 2A, 48 of the 51 samples were valid (P value < 0.05),
including 44 tumor samples and 4 normal samples.
Among the 22 immune cell types, the percentage of
CD8+ T cells (yellow) and M2 macrophages (blue) in
each sample was relatively high. The heatmap showing
the 22 tumor immune cells was illustrated in Fig. 2B,
which also confirmed the high infiltrating abundance of
CD8+ T cells and M2 macrophages in all samples. Based
on the violin plot (Fig. 2C), the probability of distribu-
tion of memory B cells, regulatory T cells (Tregs) and
resting mast cells in tumor were obviously higher than
those in the control samples (all, P < 0.05), indicating
that the immune infiltration proportions could be useful
in distinguishing meningioma patients from healthy
patients.
In addition, a lot of literature have shown that mast

cells (MC) were associated with the development of
meningioma [13, 14, 28], and resting mass cells infiltra-
tion ratio was relatively high in this study. Hence, the
follow-up analysis focused on resting mast cells.

Weighted correlation network analysis (WGCNA) co-
expression networks
When correlation coefficient threshold was set at 0.85, the
soft-thresholding power was 6 (Supplementary Fig. 2A).
Through WGCNA analysis, 10 co-expression modules were
constructed based on the 1499 DEGs (Supplementary
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Fig. 2B), of which the grey module was the gene set that
could not gather into other modules, so there were only 9
valid gene modules.
Subsequently, as shown in Fig. 3, the correlation be-

tween each module and the degree of invasion of im-
mune cells in tumor tissue was calculated. The results
revealed that yellow, the module with the highest correl-
ation, contained 158 DEGs, consisting of 2 up-regulated
and 156 down-regulated genes (Supplementary Table 1).
Yellow modules are negatively related to degree of rest-
ing mast cells infiltration in meningioma tissues, and the
correlation between genes in the yellow module and the
degree of immune cell infiltration was summarized in
the Supplementary Table 2.
Furthermore, GO functional analysis revealed that the

genes in yellow module were dominant in biological pro-
cesses involved in response to leukocyte migration, mol-
ecules of bacterial origin, and inflammatory response
(Fig. 4A); KEGG pathway analysis revealed that the
genes were mainly enriched in the TNF signaling path-
way, cytokine-cytokine receptor interaction and IL-17
signaling pathway (Fig. 4B).

Risk model construction of key genes
In order to identify whether each key gene related to
resting mast cells correlated with prognosis of meningi-
oma patients, univariate and multivariate analyses were
performed. K-M survival analysis revealed that CXCL8
and MYC were associated with prognosis of meningioma
patients. Moreover, based on the COX univariate and
multivariate regression analyses showed CXCL8 and
MYC might be prognostic biomarkers for meningioma
patients (Table 1 and Fig. 5A).
Subsequently, based on the 9 genes in univariate re-

gression analysis above, the risk model was constructed.
Firstly, the meningioma patients were categorized into
low- or high-risk patients, and the cut off value was the
median risk score (Fig. 5B). The scatter plot of survival
time of risk model samples showed that the survival time
of samples was relatively lower in the high-risk group
the low-risk group (Fig. 5C). Monolayer clustering ana-
lysis of RNA expression in the risk model of each sample
showed differences in the key genes between high and
low risk groups (Fig. 5D). Moreover, K-M survival curve
indicated that the survival time between the high and

Fig. 1 Differential expression analysis and function enrichment. (A), volcano plot of differentially expressed genes. The blue dots represent down-regulated genes,
red dots represent up-regulated genes and grey dots represent the genes without significant expression changes between meningiomas and normal gorups; (B),
the principal component analysis of all samples shows the significant differences between these two groups; (C), heatmaps of differentially expressed genes. The
light blue and pink blocks in the top represent normal and meningiomas samples, respectively. The Y-axis represent all the differentially expressed genes; Bubble
diagrams show the significantly enriched gene ontology annotation terms (D) and KEGG pathways (E). The size of bubbles represent the count of genes, and
thre color from red to blue represent the P value from samll to large
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low risk groups was significantly different (P value =
0.00436; Fig. 5E), suggesting the risk model of 9 key gene
related to resting mast cells was successfully
constructed.

TF-miRNA- mRNA co-regulation network
Based on the database (miRWalk3.0, TargetScan,
MiRDB, and MirTarBase) with the Score > 0.95, 145
miRNAs acting on 3’UTR region of the genes in the risk
model associated with resting mast cells were predicted.
Then, according to the retrieval of HMDD V3.2 data-
base, 3 miRNA-mRNA pairs (including MYC-miR-145-
5p, TNFAIP3-miR-29c-3p and TNFAIP3-miR-335-3p)
were obtained, respectively. Subsequently, and 37 TF-
mRNA pairs (including 6 mRNAs and 27 TFs) were
screened using the online database of TRRUST. Lastly,
based on mRNA-miRNA pairs and TF-mRNA pairs,
miRNA-TF-mRNA co-regulation network was con-
structed using Cytoscape (Fig. 6A). The nine genes in
prognostic risk model and the TFs that regulated their
expression were considered as important genes in

meningeoma. Therefore, expression of these genes and
TFs were verified using an external dataset GSE54934.
Except for HIST1H2BN, the expression of all genes in
prognostic risk model showed decreased trend in menin-
geoma compared to normal, especially in the expression
of CXCL2 and SLC2A3 (Supplementary Fig. 3A). In
addition, the expression of the 27 TFs showed decreased
trend in meningeoma than normal, especially in the ex-
pression of CEBPB, DDIT3, ETS2, FOSL2, SMAD1,
TCF4. These findings were consistent with our results
(Supplementary Fig. 3B). However, not all genes showed
significant differences, and this might be explained by
the difference in sample size in meningeoma (n = 22)
and normal groups (n = 3).
Additionally, in order to further investigate the poten-

tial biological functions of the genes involved in
miRNA-TF-mRNA co-regulation network, the GO
terms and KEGG pathway analyses were conducted. As
illustrated in Fig. 6B, the functional processes of the
genes were primarily related to biological regulation,
while KEGG pathway analysis revealed that the genes

Fig. 2 The landscape of immune cells infiltration in meningiomas cohort. (A) Histogram show the landscape of 22 immune cells infiltration in all samples.
X-axis represent samples and Y-axis represent the proportions of each immune cell infiltration; (B) Heatmap of the 22 immune cell proportions. X-axis represent
samples and Y-axis represent the infiltration abundance of 22 immune cells. Color from red to green represent the infiltration abundance from high to low; (C)
The violin plot show the difference on infiltration abundance of 22 immune cells between meningiomas and normal samples. Red represents tumor group,
and blue represents the normal group
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were enriched in Tumor Necrosis Factor (TNF) signal-
ing pathway and IL-17 signaling pathway (Fig. 6C).

PPI network and modules analysis
According to STRING database, the PPI network (PPI
score = 0.4) was constructed with 27 TFs in miRNA-TF-
mRNA co-regulation network and 9 DEGs in the risk
model using Cytoscape. As shown in Fig. 7A, there were
36 nodes and 197 interactions in the PPI network. With
score > 12, a module with 15 nodes and 88 interactions
was further revealed from the PPI network using the
MCODE of Cytoscape software (Fig. 7B).

Drug-gene network
Similarly, based on the 9 DEGs in the risk model, a total
of 50 drug-gene interacting pairs, including 3 target
genes (CXCL2, CXCL8 and MYC), and 49 drugs were
identified using the DGIdb 3.0 database. Furthermore,
drug-gene interaction network was constructed by
Cytoscape software (Fig. 8).

Discussion
Till now, the etiology of meningioma has not been fully
elucidated, however, it is believed to involve environ-
mental and genetic factors, with genetic factors being
the important factors determining its development.
Hence, in the present study, according to the microarray

data from GEO database, we screened a series of genes,
including MYC and CXCL8, as well as the TNF signaling
pathway, cytokine-cytokine receptor interaction, and IL-
17 signaling pathway, related to resting mast cells which
are involved meningioma pathogenesis and prognosis.
Moreover, based on the 9 key genes related to resting
mast cells in meningioma, the PPI network, TF-miRNA-
mRNA network, drug-gene interaction network were
constructed, respectively; among which, the key miRNAs
and TF that might play important roles in meningioma
were selected.
Tumor immunotherapy has achieved promising results

in clinical application [29, 30]. To identify new indicators
for meningioma prognosis improvement, an increasing
number of reports have focused on tumor-infiltrating im-
mune cells, in accordance with the function and compos-
ition of tumor cells in cancer occurrence and
development [13, 14, 31–33]. In our study, based on the
analysis of abundant infiltrating immune cells (CIBER-
SORT deconvolution algorithm with the parameters of
perm = 100 and QN =TRUE), we found that the probabil-
ity of distribution of memory B cells, regulatory T cells
(Tregs) and resting mast cells in tumor samples was
significantly higher than that in control samples. Actually,
although some literature showed that T cells regulatory
cells (Tregs) associated with Meningioma [30–32], our
subsequent analysis of T cell regulation did not turn out

Fig. 3 The module-trait relationships in WGCNA analysis. The plot show the correlations of gene modules with the infiltration abundance of regulatory T cells
(Tregs) and resting mast cells. The number in each block represent correlation coefficient and P value (numbers in parentheses), respectively
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well. In addition, there is increasing underlying evidence
of the association between mast cells and meningioma de-
velopment [13, 14, 34], but the molecular mechanism of
mast cells in meningioma immunotherapy remains
unclear.
In order to explore the genes related to infiltration of

resting mast cells in meningioma tissue, WGCNA ana-
lysis with R language package was performed on DEGs
of meningioma patients and normal controls. The results

showed yellow modules are negatively related to the de-
gree of infiltration of resting mast cells in meningioma
tissues, thus, genes such as MYC, CXCL2, CXCL8 and
FOSL1 in the module, are inversely associated with the
degree of mast cell infiltration. Pathway analysis revealed
that the genes were mainly enriched in the TNF signal-
ing pathway, cytokine-cytokine receptor interaction, and
IL-17 signaling pathway. It has been reported that the
cytokine-cytokine receptor interaction signaling pathway

Fig. 4 Functional analysis of differential expression genes related to resting mast cells infiltration. Bubble diagrams show the significantly enriched
gene ontology annotation terms (A) and KEGG pathways (B). The size of bubbles represent the count of genes, and thre color from red to blue
represent the P value from samll to larger. The BP, CC and MF in gene ontology annotation terms are biological processes, cellular component and
molecular function, respectively

Table 1 The univariate and multivariate Cox regression analysis

Gene Univariate analysis Multivariate analysis

HR lower.95 upper.95 p.val HR lower.95 upper.95 p.val

CXCL8 1.002 1.001 1.004 0.001 1.007 1.001 1.014 0.025

MYC 1.002 1.001 1.004 0.003 1.003 1.000 1.005 0.030

CXCL2 1.010 1.003 1.017 0.006

CXCL3 1.007 1.002 1.013 0.008

TNFAIP3 1.002 1.001 1.004 0.010

FOSL1 1.031 1.002 1.061 0.036

HIST1H2BN 1.147 1.008 1.305 0.038

BCL2A1 1.007 1.000 1.014 0.038

SLC2A3 1.001 1.00 1.002 0.0495
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Fig. 5 Construction of prognostic risk model. (A) Forest plot show the hazard ratio of the nine prognosis-related genes in Cox multivariate analysis; (B) The
classification curve of the sample risk model; (C) Survival time scatter plot of risk model; (D) heatmap show the expression pattern of nine genes in risk model
with the risk score from low to high. The color from red to blue represent genes expression from high to low; (E) The K-M survival curveshow the difference on
overall survival of patients in high risk and low risk groups

Fig. 6 Regulatory network for the genes in prognostic risk model. (A) The miRNA-transcription factor (TF)-mRNA regulatory network. The circle
nodes represent the genes in prognostic risk model, rhombus nodes represent the predicted TFs, and triangles represent the predicted miRNAs.
Bule and red nodes represent down-regulated and up-regulated, respectively. Bubble diagrams show the significantly enriched gene ontology
annotation terms (B) and KEGG pathways (C) for the genes and TFs in the regulatory network. The size of bubbles represent the count of genes,
and thre color from red to blue represent the P value from samll to larger. The BP, CC and MF in gene ontology annotation terms are biological
processes, cellular component and molecular function, respectively
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is involved in the meningioma. Additionally, although
the TNF signaling pathway or IL-17 signaling pathway is
rarely studied in meningioma, many researches have re-
vealed the activation of the TNF or IL-17 signaling path-
way in various brain diseases such as neuroinflammatory
injury [35], autoimmune encephalomyelitis [36], and is-
chemic stroke [37]. Moreover, survival analysis (Survival
package with log-rank test; threshold value of P value <
0.05) of key genes related to resting mast cells showed
that the risk model constructed based on 9 key genes
(CXCL8, MYC, CXCL2, CXCL3, TNFAIP3, FOSL1,

HIST1H2BN, BCL2A1 and SLC2A3) could predict the
prognosis of patients with meningioma. A previous study
reported that MYC expression is dysregulated in human
meningioma, indicating its potential role in oncogenic
processes [38]. Cai et al. [39] found that c-MYC in men-
ingioma is targeted by RIZ1 to negatively regulate the
ubiquitin-binding enzyme E2C/UbcH1. It has also been
found that the methylation of Werner syndrome protein
is associated with invasive meningioma occurrence and
development via MYC expression regulation [40]. More
importantly, MYC is associated with the TNF signaling

Fig. 7 The protein-protein interaction (PPI) network and modules analysis. (A) The PPI network for the nine genes in prognostic risk model and the predicted
TFs in the regulatory network. (B) The significant module with score > 12 identified from the PPI network. The triangle node represents up-regulated differential
gene; Arrowhead nodes represent down-regulated differential genes; The red nodes represent the differential genes in the prognostic model, and the blue
nodes represent other differential genes (TFs in the regulatory network)

Fig. 8 Drug-gene network for the genes in prognostic risk model. The network shows the predicted targeted interactions between small molecule drugs and
the genes in prognostic risk model. Blue represents downregulated genes in prognostic risk model, and green represents drugs, respectively. The lines
represent there is targeted interaction between small molecule drug and gene
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and cytokine-cytokine receptor interaction pathways.
Similarly, it has been found that CXC receptor activates
ERK1/2 and stimulates meningioma cell proliferation
[41], and in systematic investigation of quercetin for car-
diovascular disease treatment, CXCL8 is enriched in the
TNF signaling and IL-17 signaling pathways [42]. Hence,
we speculate that the key genes, including MYC and
CXCL8, are involved in meningioma progression via the
regulating of different pathways such as the TNF signal-
ing pathway, cytokine-cytokine receptor interaction, and
IL-17 signaling pathway.
With the increasing studies on miRNAs, researchers

have reported that miRNAs are involved in the develop-
ment of several cancer types [43]. In the present study,
based on the genes in the prognostic model associated
with resting mast cells, 3 miRNA, including miR-145-5p,
miR-29c-3p, and miR-335-3p, were predicted based on
the databases (miRWalk3.0, TargetScan, MiRDB, and
MirTarBase) with the Score > 0.95, and the miRNAs-
TFs-mRNA co-regulation network was constructed.
Among these target miRNAs, miR-29c-3p is reportedly
down-regulated in meningioma [44], and Dalan et al.
[45] indicated that low expression of miR-29c-3p corre-
lated significantly with higher recurrence rates in men-
ingioma patients. However, no evidence of a correlation
between hsa-miR-145-5p, or miR-335-3p and meningi-
oma was reported till now. Notwithstanding, miR-145-
5p is linked to psychiatric and neurodegenerative disor-
ders [46]. Further, circPTN can sponge miR-145-5p to
promote stemness or proliferation in glioma [47]. Hence,
based on the findings, we speculate that the downregula-
tion of these miRNAs, including miR-29c-3p and miR-
145-5p associated with resting mast cells may cause
meningioma.
There were also some limitations in this study. Micro-

array studies of meningioma are limited owing to a lack
of human disease tissues or appropriate disease models.
There were obvious difference on the sample size in
meningioma and normal groups, which might be an
influencing factor for results. In addition, the results
should be confirmed by clinical samples and data, in-
cluding the infiltrating abundance of mast cells, the ex-
pression of genes in prognostic model, and the
prognpstic value of the risk model. Moreover, further
functional assays were lacked to confirm the regulatory
mechanism in TF-miRNA-mRNA network and the pro-
posed hypothesis.
In conclusion, this study conducted a bioinformatics

analysis of DEGs related to resting mast cells, and
deregulated pathways based on GSE43290, GSE77259
and GSE16581 datasets. DEGs of MYC and CXCL8,
miRNAs of miR-29c-3p and miR-145-5p, as well as
pathways such as the TNF signaling pathway, cytokine-
cytokine receptor interaction, and IL-17 signaling

pathway, probably involved in meningioma development,
were obtained. These findings could improve the under-
standing of the pathogenesis and molecular mechanisms
of resting mast cells in meningioma. Taken together, this
was the first study to explore gene signatures related to
resting mast cells in meningioma by a bioinformatics
analysis. Moreover, this study combined immune infil-
tration with prognostic risk models in the meningioma
direction; meanwhile, CIBERSORT deconvolution algo-
rithm was used to quantify the infiltration abundance of
each immune cell, and the correlation between modules
and immune cells was calculated. However, further clin-
ical studies are required to confirm the function of the
identified genes.
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