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ABSTRACT

Compiling the catalogue of genes actively involved
in cancer is an ongoing endeavor, with profound im-
plications to the understanding and treatment of the
disease. An abundance of computational methods
have been developed to screening the genome for
candidate driver genes based on genomic data of so-
matic mutations in tumors. Existing methods make
many implicit and explicit assumptions about the
distribution of random mutations. We present FAB-
RIC, a new framework for quantifying the selection of
genes in cancer by assessing the effects of de-novo
somatic mutations on protein-coding genes. Using a
machine-learning model, we quantified the functional
effects of ∼3M somatic mutations extracted from
over 10 000 human cancerous samples, and com-
pared them against the effects of all possible single-
nucleotide mutations in the coding human genome.
We detected 593 protein-coding genes showing sta-
tistically significant bias towards harmful mutations.
These genes, discovered without any prior knowl-
edge, show an overwhelming overlap with known
cancer genes, but also include many overlooked
genes. FABRIC is designed to avoid false discover-
ies by comparing each gene to its own background
model using rigorous statistics, making minimal as-
sumptions about the distribution of random somatic
mutations. The framework is an open-source project
with a simple command-line interface.

INTRODUCTION

Cancer is a genetic disease, dominated by somatic genetic
mutations altering key cellular processes such as DNA re-
pair and cell cycle (1). Most arising somatic mutations are
considered passenger mutations, whereas only a small frac-
tion of them have a direct role in oncogenesis, and are thus
referred to as cancer driver mutations (2–4).

In recent years, cancer genomic research has benefited
from increasing quantities (and quality) of molecular data.
The Cancer Genome Atlas (TCGA) is a valuable resource
of genomic data from cancer patients covering >10 000
samples in over 30 cancer types (5). An ongoing effort in
cancer research is compiling a comprehensive catalogue of
cancer genes which have a role in tumorigenesis. Knowledge
of these genes is crucial for diagnosis and treatment of the
disease (6,7).

Numerous computational frameworks have been de-
signed for the purpose of identifying suspect cancer genes
(8–12). Most of these frameworks, regarded as ‘frequentist’,
are based on the premise that cancer genes are recurrent
across samples and can be recognized by excessive numbers
of somatic mutations. In contrast, passenger mutations are
expected to appear at random. Assessing whether a gene
shows an excessive number of mutations must be considered
in view of an accurate null background model. Since cancer
is characterized by order-of-magnitudes variability in mu-
tation rates among cancer types, samples and genomic loci
(9,13), the frequentist approach requires complex modeling
of gene mutation rates as a function of the composition of
samples and cancer types that produced the mutations. It
must also incorporate variations in mutation rates based on
genomic regions or chromatin structures under study (14–
16). Modeling all these variables introduces numerous as-
sumptions about the observed somatic mutations, which, if
violated, may result in false discoveries (9,17,18). The sensi-
tivity of the frequentist approach to modeling choices leads
to lingering uncertainty and controversy (8).

An alternative to the frequentist approach, which can be
regarded as ‘functionalist’, considers the content of muta-
tions rather than their numbers. It is based on the premise
that somatic mutations in cancer genes, regardless of their
number, are subjected to positive selection and, as a re-
sult, are more damaging than expected at random. Under
the functionalist approach, each gene has its own inherent
background model which only depends on static proper-
ties of the gene and the number of mutations. It then deter-
mines whether the observed mutations appear more damag-
ing than the same number of random mutations. Other vari-
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ables, such as the samples or cancer types that the mutations
have originated from, or the specific genomic region of the
gene under study, do not need to be part of the model. As a
result, the functionalist approach can make fewer assump-
tions about the background distribution of random muta-
tions.

Example of a simple functionalist model is the non-
synonymous to synonymous (dN/dS) ratio (19,20) which is
a common metric for the evolutionary selection of a gene. A
richer functionalist model was recently explored by Onco-
driveFML (21). OncodriveFML estimates the pathogenic-
ity of mutations using CADD (22), which provides numeric
scores for the clinical effects of mutations. OncodriveFML
then compares the CADD effect scores of the somatic mu-
tations observed within a gene to those of random muta-
tions using permutation tests. Despite being a functional-
ist framework, OncodriveFML still uses a rather complex
background model that includes sample identities and can-
cer types. As a result of its complex background model, it
is unable to calculate probabilities analytically, and requires
computationally demanding permutation tests.

With the goal of developing an analytical functional-
ist model, we introduce a new framework called FABRIC
(Functional Alteration Bias Recovery In Coding-regions).
FABRIC is a purely functionalist framework, with a sim-
ple background model that is completely agnostic to sam-
ples, cancer-types and genomic regions. This simplicity al-
lows analytical calculation of precise P-values per gene. As
a result, FABRIC can provide a detailed ranking of all genes
by significance.

FABRIC is comprised of three components: (i) a
machine-learning prediction model used to assign quanti-
tative effect scores to mutations in coding regions, based
on their rich proteomic context, (ii) a simple background
model per gene, which doesn’t require any covariates in the
input data, and (iii) precise calculation of the probability for
the extent of the damage caused by the observed mutations
compared to the background model.

We illustrate the performance of FABRIC by comparing
its results to commonly used catalogues of cancer driver
genes. We further compare between OncodriveFML and
FABRIC, used on the same input data (TCGA, >10 000
samples). We demonstrate the applicability of FABRIC in
both pan-cancer and cancer-type specific analyses.

MATERIALS AND METHODS

Dataset of somatic mutations

The dataset of somatic mutations in cancer, used in the anal-
yses throughout this work, was extracted from TCGA (5).
We used the somatic mutations processed by the MuTect2
workflow for variant aggregation and masking (23), down-
loaded through NIH’s GDC Data Portal (24). We selected
only the 33 open access files, corresponding to the 33 open-
access cancer type projects.

In total, these 33 projects contained 3 175 929 somatic
mutations across 10 182 samples. 2 956 550 of these mu-
tations were SNVs (i.e. substitutions of single nucleotides),
and 2 235 884 of these SNVs were in coding regions (i.e.
substituting a nucleotide within the open reading frame of
a protein-coding gene). Each of these coding-region SNVs

was assigned effect score(s) for the gene(s) it affected (occa-
sionally it happens that the same mutation affects multiple
overlapping genes).

Framework overview

FABRIC analyzes each protein-coding gene independently,
extracting all the single nucleotide variations (SNVs) ob-
served within the coding regions of that gene (Figure 1A). It
then uses a machine-learning model to assign functional ef-
fect scores to each SNV (Figure 1B), which measure the pre-
dicted effects of those variants explicitly on the protein func-
tion (see details below). Intuitively, this score can be thought
of as the probability of the protein to retain its original
biochemical function given the mutation. Simplistically, all
synonymous mutations are assigned a score of 1 (gene re-
tains full function), nonsense mutations are assigned a 0
score (gene retains no function), and missense mutations
are processed through the machine-learning model to ob-
tain a score between 0 to 1. The machine-learning model
was trained in advance on an independent dataset.

Independently to the calculation of scores for the ob-
served mutations, a background distribution for the ex-
pected scores is also constructed, assuming that unselected
passenger mutations occur at random by a uniform distri-
bution across the gene (Figure 1C). This background model
is precise, and calculated individually for each gene. Sig-
nificant deviations between the null background distribu-
tion to the observed effect scores are then detected (Figure
1D). z-values measure the strengths of deviations between
observed to expected scores, and, using routine statistical
tools, exact P-values are derived.

If a gene’s average z-value is significantly negative, it
means its observed scores are significantly lower than ex-
pected. This indicates that they are more damaging to the
gene function than expected by the same number of mu-
tations randomly distributed along the gene’s coding se-
quence. In such case, the gene is deemed to be ‘alteration
promoting’, reflecting its tendency to harbor damaging mu-
tations, which are presumably beneficial to the development
and evolution of the tumor. An observed score that is signif-
icantly higher than expected indicates the opposite, namely
genes less damaging and more constrained than expected.
We refer to these genes as ‘alteration rejecting’.

We illustrate FABRIC’s background model by a detailed
specific example of TP53 (Figure 1E–H). Importantly, the
12 background distributions of the TP53 gene, correspond-
ing to the 12 possible single-nucleotide substitutions (Fig-
ure 1F), are completely independent of the input data, and
represent only the inherent properties of the gene. The only
part of the background model actually dependent on the
input is the 12 frequencies (Figure 1E). Hence, the back-
ground model accounts for the exact number of mutations
and their single nucleotide substitution frequencies as ob-
served in the data for the studied gene. This per-gene back-
ground model doesn’t rely on any additional covariates. We
avoided the more complex signature of 96 trinuleotide fre-
quencies (25,26) as it would result in a too detailed back-
ground model compatible only with long proteins.

In order to keep the model simple and minimize the re-
quired assumptions, we restricted our framework to the
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Figure 1. FABRIC framework. (A–D) Framework overview, (E–H) background model (TP53 as an example). (A) All somatic mutations within a particular
gene are collected from a variety of samples and cancer types. SNVs within protein-coding regions are analyzed to study their effects on the protein sequence
(synonymous, missense or nonsense). (B) Using a machine-learning model, we assign each mutation a score for its effect on the protein biochemical function,
with lower scores indicating mutations that are more likely harmful. (C) In parallel, a precise null background score distribution is constructed (details in
E–H). (D) By comparing the observed scores to their expected distribution, we calculate z-values for the mutations, and overall z-value and P-value for
the gene. (E) 3167 SNVs were observed in coding regions of TP53 from which a 4 × 4 matrix of single-nucleotide substitution frequencies was derived.
Note that this matrix is non-symmetric (e.g. 25.3% of the substitutions are G to A, while only 2.9% are A to G). (F) For each of the 12 possible nucleotide
substitutions, an independent background effect score distribution was calculated, by considering all possible substitutions within the coding region of
TP53 and processing them with the same effect score prediction model used in (B). (G) By mixing the 12 distributions calculated in (F) with the weights
of the substitution frequencies calculated in (E), we obtained the gene’s final effect score distribution, used as its null background model for the analysis.
(H) According to the null background distribution, we would expect mutations within the TP53 gene to have a mean score of � = 0.49. However, the
observed mean score of the 3167 analyzed mutations is � = 0.05, which is 1.05 standard deviations below the mean (P-value < E–300). The observed mean
(0.05) was calculated from the 3167 SNVs observed in TP53 which are categorized as follows: 92 synonymous mutations (effect scores of 1), 512 nonsense
mutations (effect scores of 0) and 2563 missense mutations with an average score of 0.02.
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analysis of SNVs, accounting for 93% of the somatic mu-
tations in the analyzed dataset. Modeling non-SNV vari-
ations (e.g. indels, copy-number variations and chromo-
somal rearrangements) would require complex modeling,
thereby jeopardizing the robustness and validity of the re-
sults. Likewise, we restricted FABRIC to protein-coding
genes, and considered the functional effects of genetic vari-
ations only within the context of their proteins, allowing
direct proteomic-based interpretation of the results. By ig-
noring complex variations and effects (e.g. frameshifts and
splicing events), it is likely that in many instances we under-
estimate the damage to gene function.

Statistical framework & background model

Our framework uses a pre-trained prediction model for the
effect scores of missense variants, denoted φ (the training of
φ is discussed in the next section). For each variant v (in the
context of a protein-coding gene) we assign a deterministic
effect score ES(v) ∈ [0, 1] by the following rule:

ES (v) =
{ 0 v i s nonsense

φ (v) v i s missense
1 v i s synonymous

In order to construct a background distribution for
the effect scores expected at random (Figure 1), we first
consider each single-nucleotide substitution individually.
Let nt1, nt2 ∈ {A, C, G, T}, nt1 �= nt2 be two different nu-
cleotides. The background model for the substitution nt1 →
nt2 in gene i is determined by calculating ES(v) for all pos-
sible substitutions nt1 → nt2 within the open-reading frame
sequence of the gene. Specifically, let l1, . . . , lk be all the oc-
currences of nt1 within the open-reading frame sequence of
the gene. For each j ∈ {1, .., k}, let us denote by v̂ j the vari-
ant that results in upon substituting the occurrence l j of nu-
cleotide nt1 by nucleotide nt2 within the context of gene i .
The background distribution for the substitution nt1 → nt2
in gene i , denoted by Di,nt1,nt2 , is a uniform distribution over
ES(v̂1), . . . , ES(v̂k) (each chosen with probability 1

k ).
In order to construct the background distribution Di

for the entire gene i , we first calculate the frequencies
of the nucleotide substitutions of the observed variants
within the gene, denoted fnt1,nt2 for the observed frequency
of the nt1 → nt2 substitution. These frequencies satisfy:∑

nt1,nt2∈{A,C,G,T}, nt1 �=nt2 fnt1,nt2 = 1. We then take Di to be
a mixture of the twelve Di,nt1,nt2 distributions with fnt1,nt2 as
coefficients (i.e. to sample from Di one first samples a pair of
nucleotides nt1, nt2 with probabilities fnt1,nt2 and then sam-
ples from Di,nt1,nt2 ).

Let v1, . . . , vn be the observed variants in gene i . We
calculate the mean observed score of the gene μi =
ES(v1)+...+ES(vn )

n and compare it to the background model
of the gene, Di . We do this by calculating the gene’s mean
z-value zi = μi −μ̂i

σ̂i
, where μ̂i and σ̂i are the mean and

standard-deviation of Di . This is equivalent to calculating
the z-value for each variant individually (given by ES(v)−μ̂i

σ̂i
)

and then averaging them. This value summarizes the over-
all strength of alteration bias in the variants observed for
gene i , but it gives no indication of statistical significance.
When zi < 0, gene i is potentially alteration promoting, as

the observed effect scores are lower than those expected at
random, indicating more harmful variants. Similarly, zi > 0
indicates a potential alteration rejecting gene.

When zi < 0, we can derive the one-tailed P-value by cal-
culating:

pi = Pŝ1,...,ŝn∼D̃i
(ŝ1 + . . . + ŝn ≤ ES (v1) + . . . + ES (vn))

In other words, the P-value is the probability of obtaining
scores at least as low as the observed ones, assuming they are
independent and identically distributed (i.i.d.) according to
the background distribution Di . Similarly, when zi > 0 we
calculate the probability of obtaining scores at least as high
as the observed ones. All the reported P-values throughout
this work are two-tailed, obtained by multiplying the one-
tailed P-values by a factor of 2.

In order to compute the P-values, we need to calculate the
distribution of the sum of n i.i.d random variables, each with
distribution Di . The distribution of the sum is given by con-
volving Di with itself n times. To facilitate this computation,
we round all the values (both the observed values, and in
the background model) to two decimal digits, obtaining 101
distinct bins in the range [0, 1]: 0, 0.01, 0.02, . . . , 0.99, 1.
The distribution of the i.i.d sum is then given by 100n + 1
bins in the range [0, n]. This computation results in a pre-
cise probabilistic calculation given that the missense effect
score predictor φ outputs scores in a resolution of 2 decimal
places.

As evident from this mathematical formulation, FAB-
RIC makes only a single assumption: mutations under no
selective pressure distribute uniformly across a gene’s se-
quence (corrected for the observed intrinsic biases from
single-nucleotide substitution tendencies). If this one as-
sumption is accepted then the statistical results, which are
precise probabilistic calculations, are indisputable. In par-
ticular, FABRIC makes no assumptions about the valid-
ity of the pre-trained prediction model φ, or the effect-
score calculation schema ES in general. Formally, even if
the scoring function gives arbitrary scores, the calculated
P-values are still accurate, and significantly low P-values
provide strong evidence against the null hypothesis, namely
that the observed variants do not seem to distribute inde-
pendently and uniformly across the gene. A bad scoring
function would undoubtedly diminish the statistical power
of the framework, but should not result in false discoveries.
For the same reason, false discoveries should not result in
from including hyper-mutated genomic regions, samples or
cancer types. As the background model controls for the pre-
diction model, the number of observed variants and their
nucleotide frequencies, the assumptions of our framework
are minimal.

Effect score prediction model

A key component of FABRIC is a pre-trained machine-
learning model for predicting the effects of missense genetic
variants on protein function. Given the details of a mis-
sense variant, it predicts a numerical effect score between
0 (harmful) to 1 (harmless). There are numerous existing
tools assessing the pathogenicity of genetic variations (e.g.
CADD (22), SIFT (27), Polyphen2 (28), MutationTaster2
(29); for a collection of prediction tools, see (11)). However,
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FABRIC’s goal is to find positive selection at the gene level
(i.e. alteration promoting genes). It requires a predictor ca-
pable of assessing functional biochemical effects rather than
clinical pathogenicity scores (discussed in (30,31)). Since the
outputs of most existing predictors provide pathogenicity
scores coupled with clinical consequences (32), we devel-
oped a new tool––FIRM (Functional Impact Rating at the
Molecular-level), a dedicated predictor focused solely on as-
sessing functional proteomic effects. FIRM is the machine-
learning component incorporated into FABRIC.

In order to ensure that FIRM does not capture any
clinical or evolutionary information, we restricted its used
features to purely biochemical properties. For examples,
while most functional effect prediction tools use multiple
sequence alignment and evolutionary conservation of the
gene/protein sequence as a primary feature, we avoided it
altogether. FIRM extracts an immense set of features (1109
in total), aimed at capturing the rich proteomic context of
each missense variant. The main features included are: (i)
the location of the variant within the protein sequence, (ii)
the identities of the reference and alternative amino-acids,
(iii) the score of the amino-acid substitution under vari-
ous BLOSUM matrices, (iv) an abundance of annotations
extracted from UniProt, (v) amino-acid scales (i.e. various
numeric values assigned to amino-acids, as described else-
where (33,34)), (vi) Pfam domains and Pfam clans. For more
details about the extracted features, see the Supplementary
Methods.

Importantly, FIRM was pre-trained on a dataset inde-
pendent to TCGA used in our primary analysis of FABRIC.
Specifically, it was trained on a dataset of human genetic
variations extracted from ClinVar (35). ClinVar provides a
comprehensive catalogue of human genetic variations to-
gether with their clinical significance (e.g. pathogenic, be-
nign), as determined by various submitting groups (e.g.
OMIM (36)). It is important to note that while ClinVar
variants are labeled by pathogenicity, FIRM is capable to
extract only biochemical signal, due to its restricted set of
features. We extracted a final dataset of 37 008 variants from
ClinVar, 22 496 labeled harmful and 14 512 labeled harm-
less (see Supplementary Methods).

We used 3-fold cross-validation to estimate FIRM’s
performance. We chose a Random Forest classifier (im-
plemented by the scikit-learn Python library (37) with
the following hyper-parameters: n estimators = 100 and
min samples split = 50. We report the following perfor-
mance on ClinVar’s validation sets (average scores of the
three cross-validation folds): AUC = 90%, precision = 86%,
recall = 85.5%, specificity = 78.4%, F1 = 85.8% and accu-
racy = 82.7%. The overall good performance of FIRM reas-
sures that it learned to extract meaningful signal and assess
gene damage, despite the imperfections in the labeling on
the ClinVar dataset (38).

It is important to stress that our goal in developing FIRM
was not to improve the performance of state-of-the-art
pathogenicity prediction (32). Rather, our purpose was to
develop a model for predicting functional effects that does
not use any evolutionary selection information, thereby al-
lowing a separation between the goals of FIRM (measuring
functional alteration) and FABRIC (quantifying evolution-
ary selection). As stated above, FABRIC isn’t sensitive, in

terms of false discoveries, to inaccuracies in FIRM, due to
its probabilistic model which accounts for the predictions of
FIRM as part of the background model. Both the observed
somatic mutations and the background mutations are cal-
culated identically by FIRM.

When a machine-learning classifier is used, usually only
the predicted label (e.g. harmful or harmless variant) is of
interest, while the exact score given by the prediction model
has no significance. Furthermore, the exact scores (usu-
ally in the range 0–1) produced by algorithms like Random
Forests have no simple interpretable meaning. FABRIC re-
quired refined effect scores spanning the entire 0–1 range,
preferably with meaningful probabilistic interpretation. To
this end, we rescaled the outputs produced by FIRM such
that an effect score of s ∈ [0, 1] would indicate that roughly s
percentage of the validation-set variants with a similar score
were benign (e.g. ∼85% of ClinVar’s variants with an ef-
fect score of 0.85 were benign). This way, it can be useful
to think of a variant with an effect score of 0.85 as having
85% chance of being harmless, although this is by no means
guaranteed as we move from ClinVar to another dataset
(e.g. to TCGA), especially considering that ClinVar is highly
imbalanced and biased towards having mostly pathogenic
variants.

RESULTS AND DISCUSSION

A pan-cancer catalogue of alteration promoting genes

We applied FABRIC on 2 235 884 SNVs in the coding re-
gions of 17 828 genes containing at least one mutation (see
Materials and Methods, and ‘Constructing gene sequences
& annotations’ in the Supplementary Methods). Of these
genes, the somatic mutations in 593 genes were significantly
more harmful than expected at random (FDR q-value <
0.05; full ranked list of all analyzed genes is provided in Sup-
plementary Table S1-TCGA combined). A short excerpt
with the top 15 results is given in Table 1.

Notably, significant alteration promoting genes can dra-
matically vary in their total number and density of mu-
tations (i.e. number of mutations per nucleotide). For ex-
ample, TP53 has 2.69 SNV mutations per coding-region
nucleotide, while KMT2D has a 38-fold lower mutation
density (0.07). Even though TP53 is the most significant
alteration promoting gene (with respect to the calculated
q-value), the effect score z-values of APC (–1.31) and
ARID1A (–1.47) are lower than that of TP53 (–1.05), in-
dicating a potentially stronger effect size.

Notably, FABRIC is completely symmetric, detecting
genes either more or less damaged than expected. Despite
the methodological symmetry, we found only six significant
alteration rejecting genes, compared to the 593 alteration
promoting genes, confirming the dominance of positive se-
lection over negative selection in cancer (Supplementary Ta-
ble S1-TCGA combined).

Evaluation of the pan-cancer results

We compared our results against prominent resources of
cancer genes, used as a benchmark: the COSMIC-Census
catalogue (39), and the recently compiled PanSofware cata-
logue of 299 cancer driver genes (11). A substantial and sig-
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Table 1. Top 15 alteration promoting genes

Gene
symbol Gene name Chr

# Observed
mutations

Mutations
per nt

Observed/expected
mean score

Score
z-value

FDR
q-value

Census
annotationsa

TP53 tumor protein p53 17 3167 2.69 0.05 / 0.49 −1.05 0 OG, TSG, F
PIK3CA phosphatidylinositol-4,5-bisphosphate

3-kinase catalytic subunit alpha
3 1508 0.47 0.15 / 0.39 −0.68 4E-240 OG

APC APC, WNT signaling pathway
regulator

5 997 0.12 0.49 / 0.84 −1.31 7.3E-215 TSG

KRAS KRAS proto-oncogene, GTPase 12 783 1.38 0.04 / 0.24 −0.61 1.5E-177 OG
ARID1A AT-rich interaction domain 1A 1 640 0.09 0.45 / 0.82 −1.47 3.6E-169 TSG, F
BRAF B-Raf proto-oncogene,

serine/threonine kinase
7 819 0.36 0.10 / 0.41 −0.77 3.5E-145 OG, F

PTEN phosphatase and tensin homolog 10 656 0.54 0.06 / 0.33 −0.70 9.5E-116 TSG
IDH1 isocitrate dehydrogenase (NADP(+)) 1,

cytosolic
2 536 0.43 0.05 / 0.33 −0.68 4.8E-94 OG

CDKN2A cyclin dependent kinase inhibitor 2A 9 294 0.63 0.19 / 0.55 −0.99 9.9E-82 TSG
FBXW7 F-box and WD repeat domain

containing 7
4 442 0.21 0.20 / 0.52 −0.86 8.8E-81 TSG

KMT2D lysine methyltransferase 2D 12 1191 0.07 0.72 / 0.88 −0.65 5.9E-72 OG, TSG
NF1 neurofibromin 1 17 697 0.08 0.52 / 0.72 −0.67 6.9E-56 TSG, F
NRAS neuroblastoma RAS viral oncogene

homolog
1 286 0.50 0.06 / 0.34 −0.72 3.3E-52 OG

RB1 RB transcriptional corepressor 1 13 335 0.12 0.28 / 0.54 −0.82 1.2E-50 TSG
CTNNB1 catenin beta 1 3 442 0.19 0.30 / 0.53 −0.68 6.7E-49 OG, F

aOG, oncogene; TSG, tumor suppressor gene; F, fusion.

nificant overlap was found between the 593 detected genes
to these two external lists of cancer genes (Figure 2A). A
particularly remarkable enrichment is observed with respect
to the PanSoftware catalogue. Of the 299 genes reported
by the PanSoftware catalogue, 282 mapped into the list of
17 828 analyzed proteins-coding genes. Of these 282 genes,
147 (52%) were independently recovered by FABRIC over
the TCGA dataset (×15.7 enrichment, P-value = 2.2E–
144).

Our analysis gathers information from two distinct sig-
nals: (i) the composition of mutation types (synonymous,
missense or nonsense) and, (ii) the predicted effect scores of
missense mutations. As only the scores of missense muta-
tions vary, these two components are fully orthogonal. To
determine the contribution of each of the two complemen-
tary components, we considered, in addition to the full anal-
ysis (referred to as ‘overall analysis’ in Figure 2A), two other
variations: (a) the mutation-type analysis (abbreviated Mut-
Type) considers only deviations in the types of mutations
(i.e. synonymous, missense or nonsense), treating all mis-
sense mutations as one category; (b) the missense analysis
considers only missense mutations, looking for significant
differences between their observed to expected effect scores,
while disregarding the other two mutation types (i.e. syn-
onymous and nonsense mutations). While our overall anal-
ysis found 593 significant alteration promoting genes, the
mutation-type and missense analyses found 387 and 492
genes, respectively (see Supplementary Methods and Sup-
plementary Table S1-TCGA combined). As expected, we
found a significant overlap between the mutation-type and
missense analyses (P-value = 7.96E–30), confirming that
both capture the same signal of positive selection in can-
cer, despite their reliance on independent properties of the
data. These two components (Mut-Type and Missense, Fig-
ure 2A) are also capable of recovering many of the anno-
tated cancer genes, yet the integrated overall analysis (over-

all, Figure 2A) shows superior results. This proves that the
utilized machine-learning model, used for missense muta-
tions, has an important role in our framework. In partic-
ular, FABRIC is superior to methods that only look for
differences in mutation types, such as non-synonymous to
synonymous (dN/dS) ratios (20) (which is reflected as the
Mut-Type analysis). An exhaustive overlapping analysis is
available in Supplementary Table S2.

Importantly, 510 significant genes were found in the mis-
sense analysis: 492 (96.5%) had a negative effect score z-
value, indicating alteration promotion, and only 18 (3.5%)
had a positive z-value, indicating alteration rejection. Un-
like the overall analysis, which also considered synonymous
and nonsense mutations with predefined effect scores, the
missense analysis relied solely on the scores learned by
FIRM. The overwhelming imbalance in the directional-
ity of effect sizes (96.5% to 3.5%) is another strong evi-
dence that FIRM was successfully trained over the Clin-
Var dataset, and was able to extract meaningful signal in
the TCGA dataset, which was then utilized by FABRIC.

The PanSofware catalogue is based on a consensus from
several tools for detecting driver genes (11). Among these
tools, OncodriveFML is a functionalist method that does
not rely on mutation rates. We compared the performance
of FABRIC to OncodriveFML, the most prominent func-
tionalist method currently available, by independently ex-
ecuting the two frameworks on the same TCGA dataset
to find significant protein-coding genes (see Supplementary
Methods). We measured the percentage of Census and Pan-
Software genes recovered by each of the two frameworks
(Figure 2B). We find that despite the simplicity of FABRIC,
it performs slightly better than OncodriveFML. In fact,
FABRIC is evidently superior when it comes to the rank-
ing of the most significant results (up to the gene ranked
∼200). We attribute this difference to the fact that FAB-
RIC, in contrast to OncodriveFML, is capable of analyti-
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Figure 2. Overlap with known cancer genes. (A) We compared the lists of significant alteration promoting genes obtained by FABRIC against two resources
of cancer genes: Census (526 genes) and the PanSoftware (282 genes) catalogues. The top panel (blue) shows the total number of overlapping genes between
our analyses to each of the two compared resources. The numbers of genes that would be expected to overlap at random (given hyper-geometric distribution)
are shown in light blue. In addition to the standard form of our framework (the left bar in each of the panels), we also explore two other variations (Missense
and Mut-Type; see text). The ratio between the observed to the expected number of shared genes is defined as the enrichment factor for each pair, and
is shown on the lower panel (orange). (B) Comparison between FABRIC and OncodriveFML by measuring the percentage of genes recognized by the
external benchmark catalogs (Census and PanSoftware) from those discovered by each of the two methods, as a function of gene ranking (according to
reported significance). For example, the left figure shows that 64% of the top 100 most significant genes in FABRIC are recognized by Census, compared
to only 41% in OncodriveFML.
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Table 2. Alteration promoting genes across cancer types

TCGA
project Disease # Samples # Mutations

Avg. (std) mutations
per sample

#
Significant
Alteration
Promoting
Genes

#
Significant
Diff
Genesa

BRCA Breast Invasive Carcinoma 986 120 988 122.7 (347.8) 12 6
LUAD Lung Adenocarcinoma 567 208 180 367.2 (386.3) 14 5
UCEC Uterine Corpus Endometrial Carcinoma 530 886 377 1 672.4 (4159.7) 146 24
HNSC Head and Neck Squamous Cell

Carcinoma
508 102 309 201.4 (288.1) 15 7

LGG Brain Lower Grade Glioma 508 35 556 70.0 (635.7) 9 3
PRAD Prostate Adenocarcinoma 495 29 286 59.2 (408.3) 3 0
LUSC Lung Squamous Cell Carcinoma 492 181 116 368.1 (317.6) 12 2
THCA Thyroid Carcinoma 492 10 899 22.2 (52.3) 4 1
SKCM Skin Cutaneous Melanoma 467 392 571 840.6 (1423.4) 16 11
STAD Stomach Adenocarcinoma 437 213 144 487.7 (929.3) 10 1
OV Ovarian Serous Cystadenocarcinoma 436 75 168 172.4 (178.7) 3 0
BLCA Bladder Urothelial Carcinoma 412 134 513 326.5 (378.2) 36 15
COAD Colon Adenocarcinoma 399 264 786 663.6 (1360.4) 19 5
GBM Glioblastoma Multiforme 393 82 765 210.6 (964.8) 9 1
LIHC Liver Hepatocellular Carcinoma 364 54 238 149.0 (161.5) 5 0
KIRC Kidney Renal Clear Cell Carcinoma 336 26 693 79.4 (123.3) 5 3
CESC Cervical Squamous Cell Carcinoma and

Endocervical Adenocarcinoma
289 103 405 357.8 (1 157.9) 12 3

KIRP Kidney Renal Papillary Cell Carcinoma 281 23 765 84.6 (40.1) 1 0
SARC Sarcoma 237 28 159 118.8 (281.7) 2 0
ESCA Esophageal Carcinoma 184 45 313 246.3 (317.1) 4 0
PCPG Pheochromocytoma and Paraganglioma 179 2411 13.5 (7.4) 2 0
PAAD Pancreatic Adenocarcinoma 178 29 959 168.3 (1 534.7) 5 0
TGCT Testicular Germ Cell Tumors 144 3198 22.2 (12.1) 2 0
LAML Acute Myeloid Leukemia 143 9905 69.3 (271.7) 6 0
READ Rectum Adenocarcinoma 137 64 804 473.0 (1783.4) 10 2
THYM Thymoma 123 4737 38.5 (120.6) 2 1
ACC Adrenocortical Carcinoma 92 10 747 116.8 (316.1) 0 0
MESO Mesothelioma 82 3827 46.7 (43.8) 3 0
UVM Uveal Melanoma 80 1856 23.2 (58.6) 3 2
KICH Kidney Chromophobe 66 2896 43.9 (116.5) 1 0
UCS Uterine Carcinosarcoma 57 10 449 183.3 (681.7) 6 0
CHOL Cholangiocarcinoma 51 5503 107.9 (220.0) 2 0
DLBC Lymphoid Neoplasm Diffuse Large B-cell

Lymphoma
37 6406 173.1 (106.1) 1 0

aDiff Genes, genes with significantly different alteration bias compared to other cancer types (Figure 4C).

cally deriving exact P-values, as it is not limited by permu-
tation tests. OncodriveFML, on the other hand, gave the ex-
act same P-value (E–06) to the top 160 genes, meaning that
the ranking among the most significant cancer genes is ar-
bitrary in the OncodriveFML platform. It should be noted
that the rate of agreement between OncodriveFML and the
PanSoftware catalogue (Figure 2B) is likely inflated, as On-
codriveFML is one of the eight softwares used to derive that
catalogue (11).

Alteration bias across cancer types

The primary analysis in this work is presented from a pan-
cancer perspective. Namely, all the somatic mutations ex-
tracted from TCGA were combined into a single pool (per
gene), disregarding from which samples or cancer types they
originated. An important benefit of this pan-cancer setting
was the acquiring of the needed statistical power for the
analysis, obtained by maximizing the number of samples.

However, a notable heterogeneity exists among cancer
types in the dominance of cancer genes (40). To high-
light such differences, we conducted similar analyses, sep-

arately within each cancer type. By merely changing its in-
put data, FABRIC automatically recalculated the specific
background model for each combination of gene and cancer
type, based on the observed mutations in each combination.
As a result of each cancer type having its own unique back-
ground model, based only on observed mutations within
that cancer, FABRIC remained insensitive to differences
that exist between cancer types, such as cancer-specific nu-
cleotide substitution frequencies (26). We analyzed 33 can-
cer types, ranging from ∼40 to ∼1000 samples and ∼2000 to
∼900 000 somatic mutations in each (Table 2). In total, we
found 380 cancer-type specific alteration promoting genes,
involving 231 unique genes. The summary statistics of each
analyzed gene in each cancer type is available in Supplemen-
tary Table S1.

The results of all the analyses with at least 30 000 ob-
servations are also shown as quantile-quantile (QQ) plots
in Figure 3. Evidently, the total number of mutations is a
crucial factor in the obtaining of significant results across
cancer-type projects. For reference, a similar QQ plot for
OncodriveFML (showing a similar pattern) is available at
Supplementary Figure S2.
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Figure 3. Quantile–quantile (QQ) plots. Quantile–quantile (QQ) plots comparing the significance of FABRIC’s results (y-axis) to uniform distribution
(x-axis) across 14 different cancer types and the pan-cancer analysis (bottom-right corner). The total number of observations (effect scores of somatic
mutations) in each analysis is shown in parentheses. For visibility, very significant genes are truncated and shown as P = E–08.

The mild superiority of FABRIC over OncodriveFML,
which has been demonstrated over the pan-cancer TCGA
dataset (Figure 2B), is also observed across most cancer
types. For example, a similar trend is demonstrated in Uter-
ine Corpus Endometrial Carcinoma (UCEC; Figure 4A),
the TCGA project with the highest number of observed mu-
tations. Similar comparisons across other cancer types are
shown in Supplementary Figure S1.

To further highlight cancer-type patterns, the magnitude
of alteration bias across cancer types is shown for selected
genes (Figure 4B). We also present genes with significant
differences among cancer types (Figure 4C; see Supplemen-
tary Methods and Supplementary Table S1-TCGA diff),
marking genes within specific cancer types that show a sig-
nificant alteration bias compared to the same genes in all
other cancer types. Note that alteration bias compared to
the background model (Figure 4B) is not the same as alter-
ation bias compared to other cancer types (Figure 4C). For
example, TP53 is ranked at the top of the pan-cancer list
of alteration promoting genes (Figure 4B) but shows only a
weak difference in alteration bias across cancer types (not
among the top genes in Figure 4C), confirming its universal
role across many cancer types.

ARID1A, a well-studied cancer driver that belongs to the
growing set of cancer drivers found to play a role in chro-
matin remodeling (41), is a highly significant alteration pro-
moting gene across many cancer types (Figure 4B). How-
ever, in Skin Cutaneous Melanoma (SKCM) it is signifi-
cantly less damaged (Figure 4C), suggesting that its role in
oncogenesis within this cancer type is not as important com-

pared to other cancer types. FAT1 (FAT atypical cadherin
1) and CIC (Capicua transcriptional repressor), both well-
known cancer drivers, seem to be particularly dominant in
the Head and Neck Squamous Cell Carcinoma (HSNC)
and the Brain Lower Grade Glioma (LGG) cancer types, re-
spectively. FAT1 encodes a cadherin-like protein that binds
�-catenin, antagonizing its nuclear localization. Damag-
ing mutations to FAT1 that suppress its binding capacity
lead to activation of the Wnt signaling, which is fundamen-
tal in tumorigenesis (42). APC, another tumor suppressor
that binds �-catenin (43), seems especially dominant in the
Colon Adenocarcinoma (COAD) and the Rectum Adeno-
carcinoma (READ) cancer types, two cancer types sharing
high degree of molecular communality. Additional genes
that are especially dominant in specific cancer types are:
SETD2 in Kidney Renal Clear Cell Carcinoma (KIRC),
KMT2C in Breast Invasive Carcinoma (BRCA) and Cer-
vical Squamous Cell Carcinoma and Endocervical Adeno-
carcinoma (CESC), and GTF2I in Thymoma (THYM).

Alteration promoting genes unlisted in contemporary cancer
gene catalogues

Of the 593 significant pan-cancer alteration promoting
genes, we found an outstandingly large subset to overlap
with known cancer genes (Figure 2A), yet 426 of the re-
ported genes are not listed in either Census or the PanSoft-
ware gene catalogues; we denote them ‘unlisted genes’. The
full collection of all 426 unlisted genes is available in Sup-
plementary Table S1-TCGA combined unlisted; the top 10
are shown in Table 3.



Nucleic Acids Research, 2019, Vol. 47, No. 13 6651

Figure 4. Alteration bias across cancer types. (A) Comparison between OncodriveFML and FABRIC over Uterine Corpus Endometrial Carcinoma
(UCEC). Comparisons over other cancer types are shown in Supplementary Figure S1. (B) Average z-values of mutation effect scores (compared to
the expected backgrounds) across cancer types for the top 40 alteration promoting genes detected by FABRIC (sorted by significance). More negative
values (red) indicate genes that are more biased towards harmful mutations. Entries with less than 15 observed mutations were filtered out (gray color). (C)
Top 40 genes (of 68) found to have significant differences in alteration bias across cancer types. Each value indicates the mean z-value difference between
the relevant cancer type to all other cancer types. Negative values (orange) indicate genes that are more damaged in the relevant cancer types; positive
values (purple) indicate genes that are less damaged. Non-significant values (after FDR) are not shown (gray color).
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Table 3. Top 10 alteration promoting genes unlisted in cancer gene catalogues

Rank Gene symbol Gene name Chr
# Observed
mutations

Mutations
per nt

Score
z-value

FDR
q-value Literature evidence

41 ZC3H13 zinc finger CCCH-type containing 13 13 344 0.07 −0.45 4.1E-12 Weak [proliferation]
46 ZNRF3 zinc and ring finger 3 22 153 0.05 −0.65 1.5E-09 Strong [TSG, Wnt

signaling]
54 GRM5 glutamate metabotropic receptor 5 11 441 0.12 −0.31 2.8E-08 None
61 USP28 ubiquitin specific peptidase 28 11 240 0.07 −0.43 1.5E-07 Strong [DNA damage

response]
63 MICU3 mitochondrial calcium uptake family

member 3
8 88 0.06 −0.64 3.9E-07 None

70 CNOT1 CCR4-NOT transcription complex
subunit 1

16 467 0.07 −0.27 2.3E-06 Weak [OG, Hedgehog
signaling]

72 ZNF14 zinc finger protein 14 19 160 0.08 −0.47 2.9E-06 Weak [Methylation]
73 MAP2K7 mitogen-activated protein kinase

kinase 7
19 119 0.09 −0.51 3.5E-06 Weak [Motility]

75 LSM11 LSM11, U7 small nuclear RNA
associated

5 52 0.05 −0.81 3.9E-06 None

76 ATAD2 ATPase family, AAA domain
containing 2

8 319 0.08 −0.34 4.5E-06 Strong [OG,
proliferation]

Of the 426 unlisted genes, 51 are very significant (FDR
q-value < 1E–03). The most significant is ZC3H13 (q-value
= 4.1E–12, Table 3), which is ranked 41 in the list of 593 sig-
nificant genes. In other words, all 40 highest ranking genes
found by FABRIC are listed as cancer genes in either of the
two external catalogues. Among the significant alteration
promoting genes, those listed in Census and PanSoftware
show similar statistical properties, in terms of significance
(q-value) and effect size (z-value), to those unlisted in those
catalogues (Figure 5A), suggesting that the unlisted genes
could be genuine cancer genes.

To systematically examine whether the 426 unlisted genes
are supported in literature, we consider two databases curat-
ing the literature evidence of cancer genes: the Candidate
Cancer Gene Database, CCGD (44) and DisGeNET (45).
CCGD is a manually curated resource for genes implicated
in cancer by transposon mutagenesis in mice. DisGeNET
is the largest gene-disease association dataset. We queried
DisGeNET for neoplasm-associated genes. The 426 alter-
ation promoting genes unlisted in Census and PanSoftware
are supported by a significantly high number of studies ac-
cording to CCGD, and have a significantly high neoplasm
score according to DisGeNET (Figure 5B; see Supplemen-
tary Methods).

The alteration biases (z-values) of top unlisted genes are
also shown across cancer types (Figure 5C). For example,
ZNRF3 and MAP2K7 are dominant in Stomach adenocar-
cinoma (STAD), CNOT1 in Bladder urothelial carcinoma
(BLCA), and ATAD2 in Colon adenocarcinoma (COAD).

Among the ten most significant unlisted genes, three
(GRM5, MICU3 and LSM11) show almost no record in
literature for involvement in cancer (Table 3). Four genes
(ZC3H13, CNOT1, ZNF14 and MAP2K7) have weak sup-
port, mostly by in-vitro assays. These genes have been
manipulated in cell-lines and demonstrated cancer related
properties such as migration and cell division. The other

three genes (ZNRF3, USP28 and ATAD2) have strong ev-
idence for having a role in cancer. ZNRF3, a cell-surface
transmembrane E3 ubiquitin ligase, was implicated in regu-
lating the Wnt pathway in colorectal neoplasia (46). USP28,
a ubiquitin specific protease, acts as a tumor-promoting fac-
tor. Its high mRNA and protein levels correlate with low
survival rate. It stabilizes cell cycle genes via TP53 in re-
sponse to DNA damage (47). ATAD2 is an oncogene lead-
ing to enhanced cell proliferation and resistance to apop-
tosis. It is part of the Myc signaling pathway, and was
implicated in cervical cancer and other aggressive tumors
(48,49). The level of support demonstrated for these three
unlisted genes, independently implicated by FABRIC, em-
phasizes the incompleteness of contemporary cancer gene
catalogues.

We argue that the 426 unlisted genes are good candidate
for further research. Their significance by FABRIC pro-
vides strong evidence that they undergo positive selection
and play a role in tumor.

In summary, we developed FABRIC, a novel framework
for the detection of genes undergoing selection in cancer.
As a purely functionalist framework, it makes minimal as-
sumptions about the data. Its utilized signal (the functional
effects of mutations) is completely orthogonal to the signal
exploited by traditional frequentist approaches (the number
of mutations), allowing straightforward meta-analysis com-
bining the two approaches. Through an unbiased system-
atic analysis of ∼3M somatic mutations from ∼10K cancer
samples, we detected 593 alteration promoting genes. 426 of
these genes are unlisted in the prominent cancer gene cata-
logues. We have presented initial evidence for their relevance
to cancer, marking them attractive targets for further re-
search and consideration in cancer catalogues. We provide
the full analysis results as a comprehensive resource with
the quantified selection of all human coding genes, ranked
by statistical significance.
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Figure 5. Evidence for 426 significant genes unlisted in cancer catalogues. (A) FABRIC summary statistics (q-value and z-value) of the alteration promoting
genes in the significance range 1E–03 to 1E–06. Of the 89 presented genes, 43 are listed in Census or the PanSoftware cancer driver gene catalogues, while the
other 46 are unlisted in those lists. The two gene groups have similar q-value and z-value distributions (P = 0.23 and P = 0.47, respectively). (B) Literature
support, based on the CCGD and DisGeNET databases, for the three gene groups (see main text). Alteration promoting genes, according to FABRIC, are
supported by more studies according to CCGD, even those unlisted in Census and PanSoftware (2.3 studies on average, compared to 1.2; P = 1E-11). (C)
z-values of highly significant (FDR q-value < 1E–03) unlisted genes across cancer types, after keeping only genes with at least 15 observations in at least
one cancer type (e.g. most genes are presented for UCEC due to the high number of observations in this cancer type).
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