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The classic assay for a large population biomass is time-consuming, labor intensive, and chemically expensive. This paper would
find out a rapid assay for predicting biomass digestibility from biomass structural features without hydrolysis. We examined the
62 representative corn stover accessions that displayed a diverse cell-wall composition and varied biomass digestibility. Correlation
analysis was firstly to detect effects of cell-wall compositions and wall polymer features on corn stover digestibility. Based on the
dependable relationship of structural features and digestibility, a neural networks model has been developed and successfully
predicted the corn stover saccharification based on the features without enzymatic hydrolysis. The actual measured and net-
simulated predicted corn stover saccharification had good results as mean square error of 1.80E-05, coefficient of determination of
0.942 and average relative deviation of 3.95. The trained networks satisfactorily predicted the saccharification results based on the
features of corn stover. Predicting the corn stover saccharification without hydrolysis will reduce capital and operational costs for
corn stover purchasing and storage.

1. Introduction

Bioethanol production from lignocellulosic materials has
drawn worldwide attention due to the concern about deple-
tion of fossil fuel. In China, corn stover is one of the most
common agricultural residues and can be used as feedstock
to produce fuel ethanol because of its abundance, high
carbohydrate content, and low cost.

As the second generation of biofuels, corn stover conver-
sion into bioethanol principally involves three major steps:
physical and chemical pretreatments for cell-wall disassocia-
tion, enzymatic digestion towards soluble sugar release, and
yeast fermentation resulting in ethanol production [1]. In
this process, corn stover saccharification is the critical step
due to its complex structures and recalcitrance [2]. Many
factors such as cell-wall compositions, wall network styles,
and wall polymer features affect the corn stover digestibility
[3]. For example, plant cell walls are mainly composed of
cellulose, hemicelluloses, and lignin. Cellulose is a long chain
of glucose molecules linked to one another primarily by
glycosidic bonds [4]. Cellulose makes up about 30% of the

drymass of primary cell walls and up to 40% of the secondary
cell walls. The hydrogen bonds between different layers
of polysaccharides and the van der Waals forces between
the parallel chains contribute to the crystalline structure
of cellulose. The cellulose crystalline regions alternate with
amorphous regions [5, 6]. The crystalline index (CrI) and
hydrogen-bond intensity (HBI) have been characterized as
themajor features that affect biomass enzymatic hydrolysis in
plants [7]. Lignin is associated with cellulose or hemicellulose
to form a cell-wall network that is extremely recalcitrant for
enzyme penetration and degradation [8]. Lignin is composed
of three major phenolic components: p-coumaryl alcohol
(H), coniferyl alcohol (G), and sinapyl alcohol (S) [9]. The
efficiency of biomass saccharification during biofuel produc-
tion is strongly affected not only by the total amount of lignin
but also by the lignin monomer composition in plants [10].

Because of the heterogeneous nature of corn stover and
many factors affecting corn stover hydrolysis, corn stover
digestibility only can be measured by saccharification with
a high enzyme loading for at least 72 h. It would require a
significant resource investment in order to analyze a large
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number of samples. Therefore, the classic assay for corn
stover digestibility is time-consuming, labor intensive, and
chemically expensive and appears to be unsuitable for screen-
ing of large population samples [11]. Therefore, development
of a rapid prediction of corn stover digestibility based on
cell-wall features became more imperative. Understanding
lignocellulosic features and their effects on corn stover
saccharification is scientifically important for the prediction
model development. This study exploited the relationship
between the key determinants of plant walls and corn stover
enzymatic digestion. In this paper, an artificial neural net-
work (ANN) has been developed and successfully predicted
the corn stover saccharification based on the corn stover fea-
tures without enzymatic hydrolysis. This was accomplished
by supplying the networks with both inputs (i.e., biomass
structural features) and outputs (i.e., experimental measured
saccharification from 62 corn stover samples). Successfully
predicting biomass digestibility from structural features is
highly valuable for the rapid assessment corn stovers, thus
reducing the saccharification cost. This work will provide a
way for the pricing of corn stover purchasing and storage in
the future of biomass energy industry.

2. Material and Method

2.1. Plant Materials. The corn stover samples were typically
selected fromaccessions collected inChina.The sampleswere
harvested from an experimental field in Jinan. The mature
stem tissues were collected and dried tissues were ground
through a 60-mesh screen and stored in a dry container until
use.

2.2. Plant Cell-Wall Components Analysis. The cellulose and
hemicelluloses contents of corn stover were quantitatively
analyzed according to the NREL Laboratory Analytical Pro-
cedures (NREL, 2006) for biomass using a two-step acid
method [12]. Glucan and xylan contents were calculated
according to (1) and (2), where factors of 0.9 and 0.88
reflect the weight loss in converting glucose into glucan and
xylose into xylan, respectively [13]. Acid-soluble lignin and
acid-insoluble lignin were determined according to Chinese
standard methods [13].

Glucan content (%)

=
Glucose released from acid hydrolysis (mg) × 0.9

Samples weight (mg)

× 100%.

(1)

Xylan content (%)

=
Xylose released from acid hydrolysis (mg) × 0.88

Samples weight (mg)

× 100%

(2)

2.3. FT-IR Spectroscopy and X-Ray Diffraction (XRD) Analy-
sis. The sample was dried at -20∘C at 24 h by vacuum dryer

(FD-IC-50, Beijing). Infrared spectra were determined using
an FT-IR 710 infrared spectrophotometer (Nicolet, Madison,
WI). A total of 100 scans with a 2 cm−1 resolution were
signal-averaged and stored; the wave number range scanned
was 4000-400 cm−1.The ratio of absorbance at 4000-2995
cm−1 to those at 1337 cm−1 of C-OH in-plane stretching was
introduced as empirical criterion of hydrogen-bond intensity
(HBI) [13].

HBI = Absorbance (4000 - 2995 cm-1)
Absorbance (1337cm-1)

. (3)

The crystallinity of samples was examined by XRD
measurements performed on a Bruker D8 Advance Diffrac-
tometer usingCuK𝛼 radiation (𝜆=0.1541 nm) at 30 kV and 30
mA.The sample was scanned, and the intensity was recorded
in 2𝜃 range from 10 to 80∘.

To compare the intensity difference and determine the
pretreatment effect, the CrI of the corn stover was calculated
by referring to the diffraction intensities of the crystalline area
and amorphous region using the following:

CrI = I002 − Iam
I
002

. (4)

2.4. Fourier Transform Raman (FT-Raman) Spectroscopy. To
evaluate S/G ratios by FT-Raman spectroscopy, a recently
developed spectral deconvolution method was used [14].
Raman spectra were collected from samples using a Bruker
MultiRAM FT-Raman spectrometer with 1064 nm excitation
(Bruker Optics, Inc., Billerica, MA). Laser power of 50 mW
and scan number of 256 were used at a spectral resolution of
4 cm−1. The acquired spectra were mildly smoothed and the
spectral range of 1220–1530 cm−1 was selected and baseline
corrected using OPUS software (Bruker Optics, Inc.). The
spectra were then deconvoluted at medium sensitivity using
OMNIC software (Thermo Fisher Scientific, Inc., Waltham,
MA). For each spectrum, S/G andH/G ratios were calculated
as intensity ratio of the resolved target peaks (1331 cm−1 for S,
1270 cm−1 for G, and 1215 cm−1 for H) [14, 15].

2.5. Analysis of Biomass Enzymatic Digestibility. The biomass
was subjected to the enzymatic hydrolysis by cellulase at 50∘C
for 72 h in triplicate. Hydrolysis experiments were conducted
in 50 mL Erlenmeyer flasks with a total working volume of
20 mL while maintaining the substrate concentration of 5%
(w/v). The enzyme loading was 20 FPU/g substrate. 0.5%
NaN
3
was added To the reaction mixtures to prevent micro-

bial contamination. The samples were removed at regular
intervals, and the supernatants were boiled to denature the
enzyme activity and filtered through a 0.22 𝜇m filter for
glucose content analysis. After hydrolysis was completed,
the residues were separated from liquid by centrifugation,
decantation, and filtration. Glucose in enzymatic-hydrolysis
liquor was measured by high performance liquid chromatog-
raphy (HPLC) (Shimadzu, Kyoto, Japan) with a refractive
index detector (Shimadzu) on an Aminex HPX-87H column
(Bio-Rad, Hercules, CA, USA) run at a flow rate of 0.6
mL/min at 60∘C, with 5 mMH

2
SO
4
as mobile phase [13].
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Figure 1: General framework of the model-based approach used
in neural network model and to optimize the enzymatic-hydrolysis
results of corn stover.

2.6. Statistical Calculation of Correlation Coefficients. Corre-
lation coefficients were generated by performing regression
analysis for all pairs of measured traits across the whole
population. The analysis used average values calculated from
all original determinations for a given traits pair.

2.7. Artificial Neural Network. An artificial neural network,
analogous to the behavior of biological neural structure, is an
effective empirical modeling tool in approximating nonlinear
functions, pattern recognition, and classification problems
[16].Neural networks perform the correlationwithout requir-
ing a mathematical description of how the output depends
on the input, which gives neural networks a key advantage
over traditional approaches to function estimation. Instead,
neural networks learn from examples of input-output data
sets supplied to them [17].

The fitting of the experimental data was performed
in MATLAB using the neural network toolbox available
in MATLAB (MathWorks, Natick, MA, USA). A multi-
layer feed-forward backpropagation neural network was the
framework chosen for 18 networks. A neural network is an
array of nodes linked by connections. The neural network
model in this paper was the general regression neural net-
work (GRNN). GRNN was a form of ANN. This GRNN cre-
ates a multilayer network. The first layer has radbas neurons
and calculates weighted inputs with dist and net input with
netprod.The second layer has purelin neurons and calculates
weighted input with normprod and net inputs with netsum.
There are six neurons in the input layer, namely, cellulose
content, lignin content, CrI, HBI, S/G, and H/G. Hidden
layers are employed to perform complex and nonlinear
functions on the network (Figure 1). The neurons number in
the hidden layer was the sample number. The relative weight
of each input factor was the transposition of each input value.
Lower values of MSE indicate better suitability of the model.
After correct simulation on test points based on the MSE
and correlation coefficient (R2), training was then performed
on all data. After training the ANN using the training data
set, validation data was used to evaluate the performance of

the training based on the ability to correctly predict/simulate
the validation data. The total sugar yield released from corn
stover was used in the output layer. The data set used for
training the GRNNmodel contains 62 input/output patterns.
We simplified the modeling process. 76% of all samples are
taken up for training and 24% of all samples for testing the
model.The goal of training a network is tominimize the error
between the actual outputs and the network outputs, called a
training algorithm.The network outputs are compared to the
actual target values until the square error is satisfied.

The mean square error (MSE) was minimized by making
adjustments to the network parameters, namely, error goal,
maximum number of iterations, validation checks, etc. In
order to further evaluate the prediction performance, mean
square error (MSE) coefficient of determination (R2) and
average relative deviation (ARD) were utilized as the index
of the prediction error of a batch:

𝑀𝑆𝐸 = 1
𝑛

⋅
𝑛

∑
𝑖=1

(𝑎𝑐𝑡𝑢𝑎𝑙 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 V𝑎𝑙𝑢𝑒
𝑖
− 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 V𝑎𝑙𝑢𝑒

𝑖
)2 .

𝐴𝑅𝐷 = 100
𝑛

×
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∑
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2

(5)

Lower values of MSE indicate better suitability of the model.
Figure 1 shows the general framework of the neural network
model used in this study. The cellulose content, lignin
content, CrI, HBI, S/G, and H/G were taken as the input
vectors to the model, whereas the total sugar yield released
from corn stover were the output vectors. The purpose of
developing such amodel is to obtain the optimum sugar yield
upon varying input parameters.

3. Results and Discussion

3.1. Analysis of Cell-Wall Composition in Corn Stover. Con-
sidering natural corn stover accessions include various eco-
logical types and genetic germplasms, 62 representative
corn stover samples that showed a large variation of plant
cell-wall composition were selected. The cell-wall polymer
composition of corn stover was analyzed (Figure 2). A diverse
cell-wall composition (cellulose, hemicellulose, and lignin)
was observed between different corn stover samples. The
coefficient of variation (CV) values for cellulose, hemicellu-
lose, and lignin were 21.67%, 11.47%, and 8.53%, respectively.
The cellulose content of 62 corn stover samples were ranging
from 23.50% to 45.17% (% drymatter), hemicellulose ranging
from 19.86% to 31.33%, lignin ranging from 6.29% to 14.82%.
The contents of cellulose, hemicellulose, and lignin also were
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Figure 2: Variation of cell-wall composition of corn stover samples
(n=62). The line and square in the box presented the median and
mean values of all data; the bottom and top edges of the box
indicated 25 and 75 percentiles of all data, respectively; and the
bottom and top bars presented maximum and minimum values of
all data, respectively.

significantly different. The large variation on cell-wall poly-
mer composition offers a possibility of analyzing correlation
of cell-wall compositionwith biomass saccharification.Apre-
viously described [18] biomass saccharification was defined
by accounting the total sugar yield (hexose and pentose
/ dry weight) from enzymatic hydrolysis. In this current
study, we determined the total sugar yield released from
enzymatic hydrolysis in the total 62 corn stover accessions.
The selected corn stover samples showed a great variation
of biomass saccharification. The diversity of corn stover and
saccharification can provide the possibility for analysis of the
effects of cellulose features on biomass saccharification.

3.2. Effects of Cell-Wall Composition on Corn Stover Enzymatic
Digestibility. Due to the diverse compositions of plant cell
walls, the 62 corn stover samples exhibited largely varied
biomass digestibility. Correlation analysis was performed
between cellulose and lignin content from 62 corn stover
samples and enzymatic saccharification rate (Figure 3). As
a result, the cellulose level showed positive correlation with
the glucose yield from 62 corn stovers. The correlation
R2 value between the cellulose content and corn stover
saccharification was 0.4219, while the correlation R2 value
between the lignin content and corn stover saccharification
was 0.4068.

3.3. Effects of Wall Polymers on Corn Stover Enzymatic
Digestibility. The cellulose microfibrils have both crystalline
and amorphous regions, and the crystallinity is given by the
relative amounts of these two regions. The major part of
cellulose (around 2/3 of the total cellulose) is in the crystalline
form. It was shown that cellulase readily hydrolyzes the
more accessible amorphous portion of cellulose, while the
enzyme is not so effective in degrading the less accessible
crystalline portion. The 62 corn stover samples exhibited
largely varied crystalline. A correlation analysis was per-
formed to ascertain the distinct impacts of biomass features
on biomass saccharification. CrI is customarily detected
using rawbiomassmaterials andhas briefly been reported as a
negative factor on biomass digestibility [19]. The correlation

R2 values between the CrI and corn stover saccharification
was 0.7072, which suggested that CrI showed a significantly
negative correlation (Figure 3). Decreasing the crystallinity
of corn stover could result in the increase of digestibility
of lignocelluloses. Lower CrI would offer favorable access
of cellulase to the substrate and higher biomass digestibility
(Pei et al., 2016). This finding is consistent with several
reports [20]. However, there has been also opposite results on
correlation between crystallinity and enzymatic hydrolysis.
Grethlein [21] pretreated hardwood and softwood by mild
acid hydrolysis and determined their pore size distribution. It
was shown that the crystallinity index has no relationship to
the rate of hydrolysis. Kim andHoltzapple [22] found that the
degree of crystallinity of corn stover slightly increased from
43% to 60% through delignification with calcium hydroxide,
which was related to removal of amorphous components
(lignin and hemicellulose). However, an increase in crys-
tallinity of pretreated materials did not negatively affect the
yield of enzymatic hydrolysis. Fan et al. [23] studied the effect
of ball milling on surface area and crystallinity of cellulose.
They observed an increase in crystallinity of cellulose by
reducing the size of cellulose by milling. It is believed that
recrystallization during water swelling may increase the
crystallinity of highly ball-milled cellulose. There are two
conflicting opinions that are caused by analytical methods for
crystallinity.The crystallinity of pretreated biomass increased
relatively by decrease in amorphous portion, e.g., lignin and
hemicellulose. Maybe the most significant limitation is that
they did not address the potential cross effects between
structural features that may have occurred during pretreat-
ment. Most pretreatments alter several structural features
simultaneously. Studies that alter targeted structural features
while ignoring the effect on nontargeted features may result
inmisleading information.Therefore the correlation between
crystallinity and enzymatic hydrolysis could not be explained
just by relative crystalline index. In this paper, it may be more
correct to analyze the correlation between crystallinity and
corn stover saccharification which was analyzed for raw corn
stover.

The hydrogen-bond intensity (HBI) is a property specific
to cellulose, considering the chain mobility and bond dis-
tance; the HBI of cellulose is closely related to the crystal
system and degree of intermolecular regularity, i.e., crys-
tallinity [24]. The correlation R2 values between the HBI
and corn stover CrI was 0.55. Therefore, the correlation R2
values between the HBI and corn stover saccharification was
0.6969, which suggested that HBI, like the CrI, showed a
significantly negative correlation (Figure 3). Decreasing the
HBI of corn stover could result in the increase of digestibility
of lignocelluloses.

3.4. Correlation of Monolignin with Corn Stover Saccharifica-
tion. Given the structural diversity and chemical heterogene-
ity of lignin, evaluation lignin effect on biomass digestibility
could be difficult [25]. The efficiency of corn stover saccha-
rification is strongly affected not only by the total amount
of lignin but also by the lignin monomer composition in
plants. Determination of the relative abundance of the lignin
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Figure 3: Correlation analysis between cell-wall composition (cellulose content, lignin content) / cell-wall features (CrI, HBI, S/G, H/G) of
corn stover and enzymatic saccharification (n=62).

monomers, particularly the S/G ratio and H/G ratio, is very
important to fundamentally elucidate lignin structure [11].
The S/G and H/G have been determined by FT-Raman spec-
troscopy. The corn stover samples with high saccharification
displayed relatively higher H/G values. The correlation R2
values between the H/G and corn stover saccharification was
0.5327, which suggested that H/G ratio had a possible positive
correlation with corn stover saccharification (Figure 3). This
result was consistent with the previous report that is the
first time report of H/G as a positive factor in biomass
enzymatic saccharification inwheat and rice [3]. On the other
hand, although S/G has been reported as a negative factor
in Miscanthus and other plants [18], the corn stover samples
in this paper exhibited different result. The correlation R2
value between the S/G and corn stover saccharification was
0.6023, which suggested that S/G showed a possible positive
correlation in corn stover saccharification. To understand
the positive effect of S/G on corn stover saccharification,
we further performed correlation analyses between S/G and

CrI in the 62 corn stover accessions. Surprisingly, the corn
stovers with high S/G ratios were found to have relatively
higher cellulose CrI values. The possible negative correlation
R2 value between the S/G and corn stover CrI was 0.4623. It
suggested that S monomer may have a different interlinking
with wall polymers. The exact crossing network between
cellulose, hemicellulose, and lignin is far from clear [26].
With the knowledge now we could only tentatively speculate
that the lignin monomers might be more important for
cellulose-hemicellulose-lignin network and secondary cell-
wall recalcitrance. The S monomer may have a different
interlinking with wall polymers [18], which could reduce
cellulose network.

3.5. Building the Neutral Network Model for Predicting. The
62 corn stover samples contained the following structural
features: cellulose content, lignin content, crystallinity, HBI,
S/G ratio, and H/G ratio, respectively. The wide spectrum of
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Figure 5: Experimental validation of model predicted total sugar
yields. Comparison of neural network model predicted and experi-
mental total sugar yields.

structural features made it possible to develop reliable empir-
ical models to predict biomass digestibility from structural
features. The neutral network model has been trained and
built on the features of 62 corn stover samples through rolling
learning-prediction approach. The selection of the most
appropriate parameters for ANN modeling is considered
of paramount importance for prediction of the hydrolysis
process [27]. In the present work, to test the prediction
capabilities of the neural networkmodel, the predicted values
obtained from themodel are comparedwith the experimental
values. The coefficient of determination (R2) and the average
relative deviation (ARD) were 0.942 and 3.95, respectively
(Table 1). The average of MSE of the net-simulated outputs of
glucose released from corn stover samples features is 1.80E-
05, which lies near zero. The R2 value of testing set was
found to approach unity which confirms the reliability of
the model in predicting the total sugar yield. Net-simulated
outputs of total sugars released from 15 corn stover samples

Table 1: Performance of neural network model.

Statistical parameter Value
R2 0.942
MSE 1.80E-05
ARD 3.95

features were compared with measured values as shown
in Figure 4. It is evident that the relative error between
experimentally observed and model predicted values is very
low. Performance of the model in describing the correlation
between experimental and predicted total sugar yield are
shown in Figure 5.The results showed that the neural network
model has predictions that are closer to the line of perfect pre-
diction.The agreement inmeasured and net-simulated slopes
and intercepts indicated the trained networks satisfactorily
predicted the saccharification results based on the features of
corn stover. It has been reported in literature that ANNs are
flexible as new data can be added anytime giving fitting [27].

4. Conclusions

Based on the structural features and saccharification of a large
number of corn stover samples, a neural networks model
has been developed and was demonstrated applicable for the
prediction of the corn stover saccharification based on the
features without enzymatic hydrolysis.The predicted value of
corn stover digestibility via this model was very similar with
the actual determined value of corn stover saccharification.
This neural network model could offer the fast approach for
bioenergy crops selection. In the future, the neural network
model will have good application for corn stover storage and
evaluation, which will be cost-effective and time-saving.
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