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Objective: The purpose of this paper was to perform a narrative review of current research evidence on 
conventional computed tomography (CT) imaging features and CT image-based radiomic features for 
predicting gene mutations in lung adenocarcinoma and discuss how to translate the research findings to 
guide future practice.
Background: Lung cancer, especially lung adenocarcinoma, is the leading cause of cancer-related 
deaths. With advances in the diagnosis and treatment of lung adenocarcinoma with the emergence of 
molecular testing, the prediction of oncogenes and even drug resistance gene mutations have become key 
to individualized and precise clinical treatment in order to prolong survival and improve quality of life. 
The progress of  imageological examination includes the development of CT and radiomics are promising 
quantitative methods for predicting different gene mutations in lung adenocarcinoma, especially common 
mutations, such as epidermal growth factor receptor (EGFR) mutation, anaplastic lymphoma kinase (ALK) 
mutation and Kirsten rat sarcoma viral oncogene (KRAS) mutation.
Methods: The PubMed electronic database was searched along with a set of terms specific to lung 
adenocarcinoma, radiomics (including texture analysis), CT, computed tomography, EGFR, ALK, KRAS, 
rearranging transfection (RET) rearrangement and c-ros oncogene 1 (ROS-1), v-raf murine sarcoma viral 
oncogene homolog B1 (BRAF), and human epidermal growth factor receptor 2 (HER2) mutations et al. This 
review has been reported in compliance with the Narrative Review checklist guidelines. From each full-text 
article, information was extracted regarding a set of terms above.
Conclusions: Research on the application of conventional CT features and CT image-based radiomic 
features for predicting the gene mutation status of lung adenocarcinoma is still in a preliminary stage. 
Noninvasively determination of mutation status in lung adenocarcinoma before targeted therapy with 
conventional CT features and CT image-based radiomic features remains both hopes and challenges. Before 
radiomics could be applied in clinical practice, more work needs to be done.
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Introduction

Lung cancer remains the leading cause of cancer-related 
mortality worldwide (1,2). Many studies have shown 
that the incidence rate of lung cancer in non-smoking 
women and the detection rate of lung cancer, especially 
lung adenocarcinoma, after the implementation of lung 
cancer screening program are both increasing year by year, 
and lung adenocarcinoma has become the most common 
subtype of lung cancer and has the highest gene mutation 
rate (3-8). In recent decades, the discovery of cancer 
driver genes and their functions in predicting targeted 
therapy effects have led to great success in developing 
methods for the diagnosis and treatment of advanced lung 
adenocarcinoma. Alterations in driver genes are closely 
related to the prognosis of patients (9-18), and the accurate 
identification of oncogenic gene mutations is essential for 
patients with lung adenocarcinoma. Therefore, research on 
the molecular mechanism of lung adenocarcinoma at the 
micro level is further increased. The driver genes of lung 
adenocarcinoma mainly include epidermal growth factor 
receptor (EGFR), anaplastic lymphoma kinase (ALK), 
and Kirsten rat sarcoma viral oncogene (KRAS). Rare 
gene alterations include rearranging transfection (RET) 
rearrangement and c-ros oncogene 1 (ROS-1), v-raf murine 
sarcoma viral oncogene homolog B1 (BRAF), and human 
epidermal growth factor receptor 2 (HER2) mutations. To 
detect these mutations, pathological biopsy is still the “gold 
standard”. Of note, biopsy cannot assess all cancer lesions; 
repetitive biopsies increase the risk of local metastasis of 
tumours (19,20), the economic burden of patients and the 
tolerance of patients. In view of these limitations, there 
is an urgent need for a noninvasive, repeatable, and cost-
effective technique for detecting driver gene mutations in 
lung adenocarcinoma.

Imaging examination, especially CT, is the most 
important noninvasive examination of lung cancer. There 
are many imaging features used to describe the conventional 
CT findings of lung adenocarcinoma. Ground glass opacity 
(GGO) is used to depict lung lesions that appear as hazy 
regions of increased opacity in the lung with preservation 
of bronchial and vascular margins, which is an important 
feature of lung adenocarcinoma (21,22). There are still some 
other features, such as bubble-like lucency (23,24), pleural 
retraction (25), and air bronchogram (22), which are also 
the common imaging descriptions for lung adenocarcinoma. 
However, conventional imaging features are subjective and 
lack quantitative objective basis, and some features overlap 

and lack specificity. 
Radiomics, as a new detection technique used to 

predict gene mutations, combines conventional imaging 
technology with an advanced computer algorithm and 
changes the conventional reading method that extracts 
imaging information in a subjective and semiquantitative 
way, directly translating visual image information into 
quantitative characteristics (26). Radiomics has revealed 
that the macroscopic imaging characteristics of tumours 
are closely related to microscopic genetic changes (27,28), 
which provides opportunities for molecular gene prediction 
in lung adenocarcinoma. The process of radiomics for 
molecular typing of lung adenocarcinomas includes six steps: 
(I) acquiring the images, (II) identifying the volumes of 
interest, (III) segmenting the volumes (i.e., delineating the 
borders of the volume with computer-assisted contouring), 
(IV) extracting and qualifying descriptive features from the 
volume, (V) using these to populate a searchable database, 
and (VI) mining these data to develop classifier models 
to predict outcomes either alone or in combination with 
additional information, such as clinical and conventional 
CT features (Figure 1). Radiomic features are divided into 
two categories: semantic features and agnostic features (29). 
Semantic features are those commonly used by radiologists 
to describe lesions, such as size, shape, location, and 
necrosis, while agnostic features are those that attempt 
to capture lesion heterogeneity through quantitative 
descriptors, such as histogram (skewness, kurtosis), Haralick 
textures, laws textures, wavelets, Laplacian transforms, 
Minkowski functionals, and fractal dimensions (29) (Table 1).

In recent years, there are many studies on predicting 
gene mutation phenotype of lung adenocarcinoma with 
conventional CT imaging features and CT image-based 
radiomic features. Therefore, in this article, we review 
the current research evidence on conventional CT 
imaging features and CT image-based radiomic features 
for predicting gene mutations in lung adenocarcinoma 
and discuss how to translate the research evidence to 
guide future practice. We present the following article in 
accordance with the Narrative Review reporting checklist 
(available at https://dx.doi.org/10.21037/tcr-21-1037).

Conventional CT imaging features and CT 
image-based radiomic features predict EGFR, its 
subtypes, and drug resistance gene mutations 
in lung adenocarcinoma

As the most common and most concerning oncogenic gene 

https://dx.doi.org/10.21037/tcr-21-1037
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mutation, EGFR mutation has the highest mutation rate 
in lung adenocarcinoma and is common in Asian patients, 
female patients, and nonsmokers (25,30-32). Globally, 
EGFR is considered the most effective predictive biomarker 
for treatment outcomes with first-line epidermal growth 
factor receptor tyrosine kinase inhibitors (EGFR-TKIs). 
The prognosis of lung adenocarcinoma patients with 
EGFR mutations is better than that of those without EGFR 
mutations (10,33). The common EGFR mutation subtypes 
often occur within the EGFR exons 18 to 21, among 
which deletion in exon 19 and substitution of leucine for 

arginine (L858R) in exon 21 account for approximately 
90% of EGFR oncogenic mutation subtypes (34), both of 
which are sensitive to EGFR-TKI treatment (35-38). In 
the treatment, exon 19 deletion was associated with better 
outcomes than exon 21 L858R substitution (35,36). 

In lung adenocarcinoma, conventional CT imaging 
features ground-glass opacity (GGO), and a small tumour 
size indicate better survival (39-45). Most have shown 
that GGOs and smaller tumour volumes are the most 
prominent imaging features of lung adenocarcinoma 
with EGFR mutations than wild-type EGFR mutations 
(25,46-55). In lung adenocarcinoma with different 
EGFR mutation substyles, lesions with exon 19 deletion 
and exon 21 L858R substitution are related to a higher 
GGO proport ion than other mutat ion substyles , 
and the viewpoints that which of the two has higher 
GGO proportion are inconsistent in different studies  
(47,50,56-59). In our index, the Area under curve (AUC) 
values of conventional CT images for predicting EGFR 
mutation status were mostly lower than 0.8 (46,51,59). 
Moreover, studies have showed that conventional CT 
imaging features of lung adenocarcinoma combined with 
clinical variables could better classify EGFR mutation status 
than clinical variables alone (25,53,59). In Liu et al.’s study, 
the use of clinical variables combined with conventional 

Figure 1 The flowchart shows the prediction process of radiomics. The first step is to obtain high-quality conventional CT images. The 
second step is to outline the lesion area from the high-quality images. The third step is to segment the region of interest (ROI) which 
is eventually rendered in three dimensions (3D) with specific software. The fourth step is to extract the quantitative features from these 
rendered volumes. The fifth step is to place the radiomic features in a database along with other data, such as clinical data. These data will 
been integrated, statistically analyzed, and finally mined into the optimal prediction model.

Table 1 Examples of Semantic and Agnostic Features of Radiomics (29)

Semantic Agnostic

Size Histogram (skewness, kurtosis)

Shape Haralick textures

Location Laws textures

Vascularity Wavelets

Spiculation Laplacian transforms

Necrosis Minkowski functionals

Attachments or lepidics Fractal dimensions
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CT imaging features (AUC =0.778) was superior to the 
use of clinical variables alone (AUC =0.690) (25). In Han  
et al.’s study, AUC values of 0.647 and 0.712 for clinical-
only or combined CT imaging features, respectively, 
for the prediction of EGFR mutations, led to a similar 
conclusion and revealed a significant difference between 
them (P=0.0344) (53). However, there are still some studies 
showing no significant correlation between GGO status 
and EGFR mutations (60,61). The reason the above results 
are different may be that the reading of conventional CT 
imaging features is easily affected by subjective factors, 
different methods of analysing GGO, a small sample size, 
and different grouping methods among studies.

CT image-based radiomic features can sensitively 
distinguish between EGFR-positive and EGFR-negative 
mutations in lung adenocarcinomas (62-71). Moreover, 
CT image-based radiomics has the capacity to distinguish 
EGFR subtype mutation exon 19 deletion and exon 21 
L858R substitution (64,68). In some studies, the predictive 
performance of CT image-based radiomics in the 
identification of EGFR mutations in lung adenocarcinoma 
was better than that for EGFR subtype mutations (64,72), 
which may be due to the inclusion of clinical variables 
in the EGFR mutation groups. In another study, after 
deep learning of CT image-based radiomic features, the 
prediction model recognized EGFR mutation status with 
AUCs of 0.910 and 0.841 for the internal and external test 
cohorts, respectively (73), with outstanding performance. 
In addition, most studies show that the combination of 
CT image-based radiomic features and clinical variables 
has a better prediction effect than either approach alone 
(62,64-70,74,75), and moreover, CT image-based radiomic 
features combined with clinical and conventional CT 
features or pathological types can better identify EGFR 
mutations (63,67-70,76). In most studies, clinical features 
generally include mean age, sex and smoking history. Lu 
et al. (67) combined CT image-based radiomic features 
with clinicopathological features to predict EGFR, with 
an AUC of 0.894 for the test cohort, which had the 
best distinguishing ability compared with the combined 
clinicopathological and conventional CT imaging features 
(AUC for the test dataset =0.768) and CT image-based 
radiomic features (AUC for the test dataset =0.837) alone. 
To date, their study had the best prediction result to 
predict EGFR mutation status in lung adenocarcinoma 
with a radiomic model (AUC =0.90±0.02 for the training, 
0.88±0.11 for the verification, 0.894 for the test dataset). 
Moreover, we note that in the prediction of EGFR 

mutation status and its subtypes in patients with lung 
adenocarcinoma, CT image-based radiomic features are 
better than conventional CT imaging features alone and the 
combined clinical and conventional CT imaging features 
(66-68,70). In Digumarthy et al.’s study (70), the AUC 
values for radiomic features and conventional CT imaging 
features for predicting EGFR mutations were 0.725 and 
0.553, respectively. In Zhang et al.’s study (76), the AUC 
values for radiomic features and the combined clinical and 
conventional CT imaging features for predicting EGFR 
mutation were 0.81 and 0.796, respectively.

Of note, drug resistance can occur along with treatment, 
leading to treatment failure. Substitution of threonine 
790 with methionine (T790M) is a main drug resistance 
mutation in non-small cell lung cancer. The T790M 
mutation accounts for approximately half of all resistance 
to EGFR inhibitors such as gefitinib and erlotinib (77,78). 
A limited number of studies suggest that CT image-based 
radiomics can be used to predict EGFR T790M mutation 
(79,80). Cucchiara et al. measured the copy number of 
EGFR mutations in body fluid and analysed the correlation 
between EGFR mutations and CT image-based radiomic 
features. The results showed that CT image-based radiomic 
signatures could detect the appearance of the T790M 
mutation with an AUC of 0.84 (79). In a recent study (80), 
one hundred and nine patients fit the inclusion criteria 
(including three aspects: histological diagnosis, suitability 
for segmentation of CT images before treatment, and 
clinical and radiological follow-up of EGFR-mutant 
patients), among whom, 21 patients were positive for 
EGFR mutations. Among the EGFR-mutant patients, 
19 patients were evaluated for the T790M mutation. In 
this study, compared with those patients who did not 
develop the T790M mutation, patients who developed the 
T790M resistance mutation during TKI treatment showed 
statistically significant differences in 17 CT image-based 
radiomic features.

The prediction of EGFR mutation and its mutation 
subtypes in lung adenocarcinoma by conventional CT 
imaging features and CT image-based radiomics is a 
hot topic. The conventional CT imaging features are 
low-dimensional, and the prediction effect is limited. 
Radiomics provides a new quantitative analysis method 
for the prediction of EGFR gene mutations in lung 
adenocarcinoma, showing positive predictive value 
and the potential to become an alternative biomarker 
for identifying EGFR mutation, its subtypes and drug 
resistance gene mutations. However, it is worth noting that 
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not all prediction signature models of CT image-based 
radiomics show particularly good performance. In some 
studies, the prediction performance of EGFR mutation 
status is not ideal with CT image-based radiomics alone 
(66,69,74) and the AUC values of some articles are lower 
than 0.8 (64,69,72,75), which may be related to the fact that 
the images were not preprocessed before data extraction. 
It is consistent that the predictive efficiency for EGFR 
mutation of the radiomic features combined with the 
clinical features has been improved in lung adenocarcinoma. 
Some studies have compared the predictive performance 
of radiomic features for EGFR mutation genes with that 
of conventional CT imaging features. According to these 
studies, the predictive performance of radiomic predictive 
models is better than that of conventional CT imaging 
features (67,70,76). Even if clinical features are integrated 
into conventional CT features, their predictive performance 
is stil l  inferior to that of the radiomic prediction  
model (67,76).

Conventional CT imaging features and CT 
image-based radiomic features predict ALK 
rearrangement genes in lung adenocarcinoma 

ALK rearrangement is another important molecular 
mutation (81), and it is also an important target for therapy 
(82,83). Compared with chemotherapy, TKIs improved the 
prognosis of ALK-positive NSCLC patients (84,85). Studies 
have shown that ALK rearrangement is common in young 
patients with lung adenocarcinoma, and lesions with ALK 
rearrangement are shown as solid nodules on CT images 
(51-53,60,86-89). The use of clinical variables combined 
with CT imaging features was superior to the use of clinical 
variables alone (51,53,59) in predicting the ALK mutation 
status in lung adenocarcinoma. Conventional CT fimaging 
eatures can identify ALK-positive lung adenocarcinoma 
with reasonably strong accuracy (88). Moreover, studies 
revealed that lesions with ALK rearrangement were prone 
to lymph node, pleural, and pericardial metastasis (51,52,87). 

Some studies also indicate that CT image-based 
radiomic features have good performance in predicting 
ALK mutation (74,90). The research results showed 
that CT image-based radiomic features combined with 
clinical features can better identify ALK mutations in lung 
adenocarcinoma (74,91,92). Moreover, the standard post-
contrast CT classifier had better performance in predicting 
ALK mutations than the pre-contrast CT classifier (92). 
The ALK and EGFR mutation statuses in patients with 

lung adenocarcinoma can be discriminated by the combined 
model incorporating CT image-based radiomic and clinical 
features or CT image-based radiomics alone (74,90). 

Owing to the low prevalence of ALK-positive lung 
tumours (93), their imaging characteristics and their 
relationship to molecular phenotypes are less known than 
those of EGFR-positive tumours. In terms of imaging 
methods with positive prediction of ALK rearrangement, 
there are relatively small studies on conventional CT 
imaging features and CT image-based radiomic features, 
but they still show good application prospects. Further 
studies with big data and prospective research are needed.

Conventional CT imaging features and CT image-
based radiomic features predict KRAS mutation 
in lung adenocarcinoma

KRAS mutation is another common mutation in lung 
adenocarcinoma and more common in smokers and the 
Western population (10,94). For many years, targeted drugs 
for KRAS gene mutations have been a research hotspot, 
but no effective clinical drugs have been developed, and 
KRAS is considered a type of mutation with no response 
to targeted therapy; it is associated with TKI resistance 
(95) and often indicates poor prognosis (96). However, 
it has been reported recently that sotorasib showed 
encouraging anticancer activity in patients with heavily 
pretreated advanced solid tumours harbouring the KRAS 
p.G12C mutation (97). On conventional CT images, solid 
and rounded masses are the main features (51,52,61). 
Intrapulmonary and pleural metastases are rare in cases with 
KRAS mutation (52).

Studies predicting the KRAS mutation of lung 
adenocarcinoma by CT image-based radiomics are very 
limited. We found that the only study was guided by Rios 
Velazquez et al. (66). They conducted a multicentric study 
with four independent, large-scale cohorts to predict KRAS 
mutations by CT image-based radiomics. The results 
showed that CT image-based radiomic features were not 
effective in predicting KRAS mutations, and the AUC was 
0.63. In this experiment, the combination of CT image-
based radiomic and clinical features (AUC =0.69) to predict 
KRAS mutation status had higher predictive power than CT 
image-based radiomics (AUC =0.63) but lower predictive 
power than clinical features (AUC =0.75), which is different 
from the situation of EGFR and ALK mutation status. It is 
worth mentioning that the combination of clinical features 
and radiomic features effectively distinguished EGFR and 
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KRAS mutations, with an AUC of 0.86 (66).
There are only a few studies on the prediction of 

KRAS mutation by CT image-based radiomics, which 
may be related to the lack of corresponding targeted 
drugs. However, existing studies show that conventional 
CT imaging and CT image-based radiomic features 
still have value in predicting KRAS mutations in lung 
adenocarcinoma. Conventional CT imaging features of 
the above three relatively common gene mutations in lung 
adenocarcinoma are summarized in Table 2. Predicting the 
above three relatively common gene mutations with CT 
image-based radiomic features are summarized in Table 3.

Conventional CT imaging features and CT image-
based radiomic features predict other rare 
mutations in adenocarcinoma

There are also some rare types of mutations in lung 
adenocarcinoma, such as RET rearrangement and ROS-
1, BRAF, and HER2 mutations. Targeted therapy aimed 
at these rare mutations is still being studied. In terms of 
conventional CT imaging features, these rare mutations 
are characterized by solid nodules (89,98-102), and each 
mutation has its own detailed CT characteristics in lung 
adenocarcinoma. ROS1-rearranged adenocarcinoma 
appeared as solid tumours and was associated with young 
age (89), pericardial metastases, and advanced nodal 
metastases (102). Masses with RET rearrangement have 
a rounded or lobulated margin and are less likely to have 
lymph node metastasis and commonly have pleural, lung, 
bone, and brain metastases (98,99). BRAF mutation are 
often located in the peripheral lung field with burrs (100). 
In the peripheral lung field, pleural traction, and lymph 
node metastasis are common in lung adenocarcinoma of 
HER2 mutation, which indicates that this kind of mutation 
type has higher invasive potential (101). We have not found 
studies of CT image-based radiomic features to predict 
these rare mutations in lung adenocarcinoma.

Shortcomings and challenges in radiomics

In the past five years, there have been more studies 
predicting mutated genes with CT image-based radiomics 
than with conventional CT images. The high-dimensional 
CT image-based radiomic features produced superior 
identifying performance compared with that of low-
dimensional conventional CT images for distinguishing 
the gene mutation status in lung adenocarcinoma (76). 

However, the predicted results of CT image-based 
radiomics are partly not satisfactory (74,75) and are even 
worse than the predicted results of clinical features alone 
(66,70). The reasons for the instability of CT image-based 
radiomic performance come from many aspects of the 
whole process of radiomics which are also the shortcomings 
and challenges in radiomics. (I) Image acquisition and 
reconstruction protocols lack standardization. The 
differences of parameters of acquisition and image 
reconstruction algorithm can introduce changes that are 
not due to underlying biological effects when images 
are analysed numerically, where the heterogeneity of 
radiomic study design mainly lies in studies. To achieve 
reproducibility, the same or similar scanning parameters, 
including layer thickness, tube voltage and tube current, 
are needed, and the reconstruction algorithm should be 
standardized and generalized. However, there is still no 
unified CT scanning protocol or image reconstruction 
standard. We need further study to establish image 
acquisition and reconstruction protocol standardization. (II) 
There is no unif﻿ied method for the accurate segmentation of 
regions of interest (ROIs). Segmenting the nodule from the 
adjacent region accurately is the most critical, challenging, 
and contentious component of radiomics, so an accurate 
and repeatable nodule segmentation method is needed. 
Some scholars believe that the combination of computer-
aided edge detection and manual segmentation can achieve 
the best results, but there is no consensus on which method 
is better (29,103). (III) In application, the specific algorithm 
of radiomics cannot be explained. The feature extraction 
part is not transparent. How to make clinicians trust this 
tool is another problem. (IV) Most of the studies based on 
radiomics are retrospective studies with small sample sizes, 
which is another reason for the heterogeneity of study 
design in studies. There is a lack of multiple-site, large-
cohort, prospective studies. Ideally, current studies should 
be combined to provide a meta-analysis, which is what our 
research team intends to do next.

Summary and prospect

In general, conventional CT images provide some 
information for predict ing lung adenocarcinoma 
gene mutations, however, some features overlap and 
lack specificity, and it is subjective and lacks objective 
basis. CT image-based radiomics provides a potential 
noninvasive method for the prediction of different gene 
mutations in lung adenocarcinoma when surgery and 
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Table 2 Conventional CT features of different mutated genes in lung adenocarcinoma

Study Patient selection Mutation genes CT features

Liu, et al. Radiology 2016 (25) 385 surgically resected 
patients

EGFR Smaller tumour

GGO

Bubblelike lucency 

Homogeneous enhancement

Pleural retraction

Hong, et al. Eur Radiol 2016 (50) 250 consecutive patients EGFR High proportion of GGO

GGO in exon 19 or 20 mutation

Rizzo, et al. Eur Radiol 2016 (51) 285 patients EGFR EGFR-air bronchogram

Pleural retraction

Small lesion size

Absence of fibrosis

ALK ALK-pleural effusion 

KRAS KRAS-Round lesion shape

Han, et al. Sci Rep  
2021 (59)

827 surgically resected 
patients

EGFR EGFR-GGO

Air bronchograms

Pleural retraction

GGO in exon 21 mutation higher than in the exon 
19 mutation

ALK ALK-Solid tumours

Zhang, et al. Transl Oncol 2021 (46) 302 patients EGFR Bubble-like lucency 
Pleural attachment 
Thickened adjacent bronchovascular bundles

Suh, et al. Lung Cancer 2018 (47) 864 surgically resected 
patients

EGFR Smaller tumour 
GGO (in exon 21 mutation higher than in the exon 
19 mutation)

Zou, et al. Thorac cancer 2017 (48) 209 surgically resected 
patients

EGFR GGO (similar between the exon 21 and 19 
mutations) 

Usuda, et al. Asian Pac J Cancer 
Prev 2014 (54)

148 patients EGFR GGO

Yano, et al. J Thorac Oncol 2006 (55) 135 surgically resected 
patients

EGFR GGO 
Small peripheral adenocarcinoma

Han, et al. Cancer Imaging 2020 (53) 137 lung 
adenocarcinomas

EGFR 
 

ALK

EGFR-GGO 
Less lymph node metastasis 
ALK-Solid nodule

Zheng, et al. Oncol Lett 2020 (89) 1,120 patients ALK/ROS-1 Solid nodule

Table 2 (continued)
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Table 2 (continued)

Study Patient selection Mutation genes CT features

Park, et al. PLoS One 2016 (52) 265 patients EGFR EGFR-GGO

Lung metastasis

ALK ALK-Lymphadenopathy

Extranodal invasion

Lymphangitis

KRAS KRAS- Solid nodule

Less likely lung and pleura metastasis

Kim, et al. Ann Thorac Surg 2016 (86) 497 surgically resected 
patients

ALK Solid nodule 
Lobulated margin 
Hypoattenuation at contrast-enhanced CT scan 
AUCALK =0.832

Choi, et al. Radiology 2015 (87) 198 patients ALK Solid nodule 
Lobulated margin 
Lymphangitic metastasis  
Advanced lymph node metastasis 
Pleural or pericardial metastasis 
AUCALK =0.855

Kim, et al. Ann Thorac Surg 2016 (86) 497 surgically resected 
patients

ALK Solid lesion 
Lobulated margin 
Hypoattenuation at contrast-enhanced CT scan 
AUC =0.832

Yamamoto, et al. Radiology 2014 (88) 172 patients ALK Central tumour location 
Absence of pleural tail 
Large pleural effusion

Sugano, et al. Oncol Rep 2011 (61) 136 surgically resected 
patients

KRAS Tumour diameter ≥3 mm

Zhou, et al. Eur Radiol 2015 (60) 346 patients ALK Solid nodule

CT, computed tomography; EGFR, epidermal growth factor receptor; GGO, ground glass opacity; ALK, anaplastic lymphoma 
kinase; KRAS, Kirsten rat sarcoma viral oncogene; AUC, Area Under the Curve.

biopsy are not available and radiomics models comparing 
clinical features could help to make treatment decisions. 
Artificial intelligence is an irreversible trend of medical 
development. As a primary part of artificial intelligence, 
in recent years, radiomics studies have been repeated 
without new breakthroughs. The author believes that the 
precise automatic recognition of artificial intelligence will 
replace the manual sketch of radiomics, the process that the 
sketched region of interest submitted to radiomics company 

for processing will be replaced by one click analysis 
software, and deep learning, such as the neural network, 
will replace simple machine learning in the classification 
of gene mutation in lung adenocarcinoma. Research on 
the application of conventional CT imaging features and 
CT image-based radiomic features for predicting the 
gene mutation status of lung adenocarcinoma is still in 
a preliminary stage. Although there is some hope that 
radiomics could be applied in clinical practice, more work 
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needs to be done.
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