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Abstract: Background: Acute kidney injury (AKI) is a common complication encountered in an
intensive care unit (ICU). In 2020, the AKI prediction score was developed specifically for critically ill
surgical patients who underwent major non-cardiothoracic surgeries. This study aimed to externally
validate the AKI prediction score in terms of performance and clinical utility. Methods: External
validation was carried out in a prospective cohort of patients admitted to the ICU of the Faculty
of Medicine Vajira Hospital between September 2014 and September 2015. The endpoint was AKI
within seven days following ICU admission. Discriminative ability was based on the area under
the receiver operating characteristic curves (AuROC). Calibration and clinical usefulness were
evaluated. Results: A total of 201 patients were included in the analysis. AKI occurred in 37 (18.4%)
patients. The discriminative ability dropped from good in the derivation cohort, to acceptable in
the validation cohort (0.839 (95%CI 0.825–0.852) vs. 0.745 (95%CI 0.652–0.838)). No evidence of
lack-of-fit was identified (p = 0.754). The score had potential clinical usefulness across the range of
threshold probability from 10 to 50%. Conclusions: The AKI prediction score showed an acceptable
discriminative performance and calibration with potential clinical usefulness for predicting AKI risk
in surgical patients who underwent major non-cardiothoracic surgery.

Keywords: acute kidney injury; prediction; critical care; surgery; validation study

1. Introduction

Acute kidney injury (AKI) has been increasingly reported globally [1,2]. The preva-
lence of AKI was reported to be much greater in patients who were admitted to an intensive
care unit (ICU) [3–6], and was associated with significant morbidities [7,8] and mortali-
ties [4,6,9]. Critically ill surgical patients are particularly vulnerable to AKI [6,9]. The stress
induced by surgical procedures and anesthetic drugs may cause acute deterioration of
kidney function [10]. Many factors besides fluid depletion and consequences of operations
presumably play an important role in the pathogenesis of AKI in surgical patients during
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peri-operative events, such as neurohormonal compensatory response to anesthetic agents
inducing vasodilation [11], peri-operative blood loss [12], and intra-operative hypoten-
sion [13]. As the etiologic mechanism of AKI in surgical patients is markedly different from
those of the medical patients, specific approaches and management of AKI are needed.

Early detection of AKI is postulated to be crucial during early AKI management [2,14].
A decision must be made whether the initiation of early aggressive intervention to pre-
vent the deterioration of kidney function is required. Several clinical prediction tools for
prompt AKI detection were developed to aid physicians in early AKI identification and
risk stratification for further management [2]. However, most AKI prediction scores for
surgical patients were derived from a cohort of patients who either underwent cardiotho-
racic surgery [15,16], orthopedic surgery [17], or liver resection and liver transplantation
surgery [18,19]. AKI prediction scores developed specifically for critically ill surgical pa-
tients who underwent other major non-cardiothoracic surgeries are limitedly reported [20]
and seldomly validated [20–22].

In 2020, the clinical score for predicting AKI in surgical patients who underwent
major non-cardiothoracic surgery and were admitted to the ICU was developed from a
large prospective multi-center observational cohort in Thailand [23]. To the best of our
knowledge, this AKI prediction score was the only score that was specifically developed
for this specific domain of surgical patients (i.e., major non-cardiothoracic surgery, other
than orthopedic surgery, liver resection, or liver transplantation). The score exhibited
excellent discriminative performance with good calibration and a minimal degree of
optimism. However, an external validation study is required to provide evidence on the
score performance outside the derivation samples prior to its clinical implementation [24].
This study aimed to validate the recently developed AKI prediction score in an external
dataset in terms of discriminative ability, calibration, and clinical usefulness.

2. Materials and Methods

An external validation study of a recently developed AKI prediction score was per-
formed. Two patient cohorts were used in the analysis of this study, which were the
derivation cohort of the AKI prediction score and the external validation cohort. This
study was conducted and reported in compliance with the Transparent reporting of a
multivariable prediction model for individual prognosis or diagnosis (TRIPOD) [25].

The AKI prediction score was developed based on the multi-center, university-based,
observational cohort study in Thailand, named THAI-SICU Study [26]. Between April 2010
and January 2013, 4652 critically ill surgical patients were included in the cohort. A screen-
ing criterion was used to identify the proper study domain for prediction as follows: adult
patients (age equal to 18 and over) who underwent a major non-cardiothoracic operation
and were admitted to the ICU for more than 24 hours. A total of 3474 critically ill surgical
patients were used during the AKI prediction score derivation [23]. The incidence of AKI
within seven days was 9.6%. In the development study, AKI was defined according to the
Kidney Disease: Improving Global Outcomes (KDIGO) 2012-serum creatinine criteria [27].

The AKI prediction score incorporates pre-operative, peri-operative, and post-operative
characteristics for the prediction of AKI, which were the patient age, emergency of surgery,
peri-operative blood loss, peri-operative urine output, presence of sepsis, and the Sequen-
tial Organ Failure Assessment (SOFA) non-renal score at ICU admission. The summation
of the score was 16.5. The score categorizes patients into four risk groups as follows: low
risk (0.0–2.5), moderate risk (3.0–8.5), high risk (9.0–11.5), and very high risk (12.0–16.5).
The apparent discriminative ability of the score based on the area under the receiver oper-
ating characteristic curve (AuROC) was 0.839 (95%CI 0.825–0.852). The score also showed
acceptable calibration, according to Hosmer–Lemeshow (HL) statistic (p-value = 0.302) [23].

The validation cohort was based on the prospective observational study of critically
ill surgical patients admitted during September 2014 and September 2015 at the Faculty of
Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand [6]. As our
center is one of the centers that participated in the THAI-SICU study, we only selected
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patient records that were not included in the derivation cohort and were admitted at least
three years apart from the data in the derivation cohort.

In the validation cohort, all included patients were followed for a duration of 28 days
after their ICU admission. The study primarily aimed to determine the prevalence of AKI
and its impacts on mortality, by using KDIGO-2012 serum creatinine and modified urine
output as diagnostic criteria. Originally, 400 cases were enrolled. The prevalence of AKI
was 47.3% (189 patients). For external validation, we selected only adult patients admitted
to the surgical ICU because of high-risk operations (decision authorization based on
surgeon and anesthesiologist preferences, without any manipulations by the researchers).
ICU admissions due to acute medical reasons rather than immediate post-operation (e.g.,
acute myocardial infarction, congestive heart failure, and stroke) were excluded. Patient
records with incomplete data on predictors and outcomes were also excluded.

The endpoint for prediction was the occurrence of AKI, which was defined according
to the KDIGO-2012 serum creatinine criteria only (i.e., an increase in serum creatinine of at
least 0.3 mg/dL within 48 hours, or an increase in serum creatinine more than 1.5 times
the baseline serum creatinine) [27]. The point of prediction was within the first day of ICU
admission, or as soon as all predictors were available. The predicted endpoint was the
occurrence of AKI within seven days after ICU admission.

Baseline characteristics of the patients were collected, including: (1) the pre-operative
demographics data (age, gender, body weight, and body mass index), (2) the pre-existing
comorbidities (diabetes mellitus, hypertension, cardiovascular diseases, respiratory dis-
eases, chronic kidney disease, malignancy, and others), (3) the information provided from
peri-operative period (the American Society of Anesthesiologists (ASA) classification, emer-
gency operation, type and duration of operation, peri-operative blood loss, fluid balance,
and urine output), (4) the severity of illness upon ICU admissions (Acute Physiology and
Chronic Health Evaluation-II (APACHE-II) score, the Sequential Organ Failure Assessment
(SOFA) score, and SOFA non-renal score), (5) the presence of sepsis at the ICU admission,
(6) the initial laboratory investigations upon ICU admissions (hemoglobin, albumin, blood
sugar, PF ratio, chest imaging, electrocardiography, and serum creatinine and its reference
level), (7) the endpoints of interest from each cohort (AKI within seven days of the ICU
admission, ICU mortality, day-28 mortality, ICU length of stay, and hospital length of stay),
and (8) calculated AKI prediction score.

Continuous data were described with mean and standard deviation (SD). Categorical
data were reported as frequency and percentages. Standardized difference (STD) was used
to compare differences in baseline characteristics between the derivation and validation
cohorts. An STD value beyond the ranges of −0.200 to 0.200 was considered as a significant
difference [28]. Stata 16 (StataCorp, College Station, TX, USA) was used for all statistical
analyses.

We assess the predictive performance of the AKI prediction score in terms of dis-
crimination and calibration. Discrimination determines how well the prediction score can
differentiate patients with the outcome (AKI) from patients without (non-AKI). To assess
discrimination, AuROC was used [29]. Calibration indicates the agreement between the
score predicted probabilities and the observed proportion of outcome occurrence. The score
calibration was statistically assessed by the HL goodness-of-fit test and graphically plotted
by the predicted probability of AKI and the observed risk of AKI for each score. Positive
predictive values (PPV) were estimated for each score category to represent the predicted
risk of AKI. We also used the STD to compare the AuROC and the PPV between the
derivation and the validation cohort.

We also measured the clinical usefulness of the AKI prediction score as a directive tool
for suggesting an early aggressive treatment for AKI with the use of decision curve analysis
(DCA) to estimate the net benefit (NB) [30]. DCA depicts the NB gained from applying the
prediction score in practice, based on the threshold probability compared to two default
strategies, including providing early aggressive treatment to all (treat all) and not providing
early aggressive treatment to any patients (treat none). The NB of the prediction score
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should be higher than those two default strategies; otherwise, no additional benefit is
gained. We also calculated the NB of the AKI prediction score based on a weighted sum
of true-positive minus false-positive classification according to the threshold probability.
The formula of NB was calculated from ((TP−w x FP)/N), where TP was the number of
true-positive classifications, FP was the number of false-positive classifications, w was
the weight that equaled the odds of the threshold probability, and N was the total sample
size [31]. A step-by-step guide for interpretation of decision-curve analysis was recently
published to help readers understand the DCA concept [32].

Additional analysis was performed to examine the differences in the effect of all the
predictors within the AKI prediction score on the occurrence of AKI between the derivation
cohort and the external validation cohort.

3. Results

Four hundred patients in the validation cohort were screened for eligibility. One
hundred and eighteen patients were excluded due to acute medical reasons for the ICU ad-
mission not related to surgical operation, and 81 patients were excluded due to incomplete
data. The remaining 201 patients were included in the score validation. Of the patients, 37
(18.4%) experienced AKI within seven days following their ICU admission (Figure 1).
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Table 1 compares the patient profiles between the derivation and the validation
cohort. Most of the patients’ demographics, pre-existing comorbidities, and type of surgical
operation were similar. However, a larger proportion of patients with chronic kidney
disease, malignancy, and others were identified in the validation cohort. For peri-operative
characteristics, ASA physical status (STD = 0.259), orthopedic surgery (STD = 0.215),
and peri-operative fluid balance (STD = 0.263) were significantly different. Overall, the
patients in the validation cohort were clinically more severe than the patients in the
derivation cohort, according to the severity scores (APACHE-II (STD = −0.470), SOFA
(STD = −0.371), and SOFA non-renal scores (STD = −0.524)). Although the proportion
of patients with sepsis was not significantly higher in the validation cohort than in the
derivation cohort, the patients had lower hemoglobin (STD = −0.351) and serum albumin
levels (STD = −0.322). The incidence of AKI was almost doubled in the validation cohort
(9.8% vs. 18.4%, STD = 0.198). A significantly longer ICU length of stay was also identified
in the validation cohort (STD = −0.341).

Table 1. Baseline characteristics and clinical endpoints of the derivation cohort and the validation cohort.

Characteristics Derivation
(n = 3029)

Validation
(n = 201)

Standardized
Difference

Pre-operative
Age (year, mean ± SD) 61.8 ± 16.7 62.5 ± 17.6 −0.042

Female, n (%) 1312 (43.4) 106 (52.7) 0.092
Body weight (kg, mean ± SD) 60.3 ± 15.9 61.6 ± 16.9 −0.081

Body mass index (kg/m2, mean ± SD) 23.3 ± 5.6 24.0 ± 5.9 −0.125
Pre-existing comorbidities

Diabetes mellitus, n (%) 645 (21.3) 51 (25.4) 0.057
Hypertension, n (%) 1512 (49.9) 108 (53.7) 0.037

Cardiovascular diseases, n (%) 634 (20.9) 28 (13.9) 0.110
Respiratory diseases, n (%) 246 (8.1) N/A N/A

Chronic kidney disease, n (%) 267 (8.8) 38 (18.9) 0.242
Malignancy, n (%) 437 (14.4) 77 (38.3) 0.356

Others, n (%) 235 (7.8) 35 (17.4) 0.255
Peri-operative

ASA classification, n (%) 0.259
I 193 (6.4) 12 (6.0)

II–III 2470 (81.5) 179 (89.1)
IV–V 366 (12.1) 10 (5.0)

Emergency operation, n (%) 956 (31.6) 61 (30.4) 0.014
Operative sites, n (%)

Neuro, head and neck surgery 344 (11.4) 22 (11.0) 0.010
Gastrointestinal surgery 1857 (61.3) 116 (42.3) 0.186

Orthopedics surgery 435 (14.4) 55 (27.4) 0.215
Others 494 (16.3) 39 (19.4) 0.053

Operative duration (min, mean ± SD) 280 ± 175 281 ± 147 −0.006
Peri-operative blood loss (mL, mean ± SD) 1026 ± 1787 728 ± 1077 0.170

Peri-operative fluid balance (mL, mean ± SD) 2112 ± 1852 1604 ± 1455 0.231
Peri-operative urine output (mL, mean ± SD) 505 ± 574 584 ± 537 −0.138

Post-operative (at ICU admission)
APACHE - II score (mean ± SD) 10.6 ± 6.2 13.5 ± 5.8 −0.470

SOFA score (mean ± SD) 2.8 ± 3.0 3.9 ± 2.3 −0.371
SOFA non-renal score (mean ± SD) 2.2 ± 2.7 3.6 ± 2.2 −0.524

Sepsis 283 (9.3) 28 (13.9%) 0.117
Laboratory investigations

Hemoglobin (gm/dL, mean ± SD) 10.7 ± 2.0 11.4 ± 1.9 −0.351
Albumin (gm/dL, mean ± SD) 2.78 ± 0.81 3.04 ± 0.75 −0.322

Blood glucose (mg/dL, mean ± SD) 166.8 ± 55.9 N/A N/A
PaO2/FiO2 ratio (mean ± SD) 339 ± 129 N/A N/A

Abnormal chest film, n (%) 436 (14.9) N/A N/A
Abnormal ECG, n (%) 678 (23.6) N/A N/A
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Table 1. Cont.

Characteristics Derivation
(n = 3029)

Validation
(n = 201)

Standardized
Difference

Serum creatinine at ICU (mg/dL, mean ± SD) 1.19 ± 1.36 0.94 ± 0.59 0.189
Reference serum creatinine, n (%) 0.340

Renal dysfunction value 570 (18.8) 42 (20.9)
MDRD recalculated value 943 (31.1) 34 (16.8)

Lowest value during admission 1516 (50.1) 125 (62.2)
Clinical endpoints

AKI in 7 days of ICU admission, n (%) 296 (9.8) 37 (18.4) 0.198
ICU mortality, n (%) 159 (5.3) 10 (5.0) 0.014

Day-28 mortality, n (%) 251 (8.3) 12 (6.0) 0.080
ICU length of stay (day, mean ± SD) 3.2 ± 4.6 4.8 ± 5.8 −0.341

Hospital length of stay (day, mean ± SD) 20.9 ± 18.3 23.4 ± 19.3 −0.136
Average AKI prediction score

AKI (mean ± SD) 8.5 ± 3.2 7.8 ± 3.5 0.216
Non-AKI (mean ± SD) 4.1 ± 2.9 4.9 ± 2.3 −0.279

Abbreviations: AKI, acute kidney injury; APACHE–II, Acute Physiology and Chronic Health Evaluation-II score; ASA, American Society of
Anesthesiologist classification; ICU, intensive care unit; MDRD, the Modified of Diet in Renal Disease equation; PaO2/FiO2, ratio of arterial
oxygen partial pressure to fractional inspired oxygen; SD, standard deviation; SOFA, Sequential Organ Failure Assessment score.

The average AKI prediction score between the derivation and the validation cohorts
were significantly different (8.5 ± 3.2 vs. 7.8 ± 3.5 (STD = 0.216) for patients with AKI, and
4.1 ± 2.9 vs. 4.9 ± 2.3 (STD = −0.279) for patients without AKI, respectively). The detailed
description of the performance of the AKI prediction score during the derivation was
reported in our previous work [23]. In terms of discriminative ability, the AKI prediction
score showed significantly higher discriminative ability in the derivation cohort (Figure 2a)
than in the validation cohort (STD = 0.245) (Figure 2b). However, no evidence of lack-of-fit
had been detected in both cohorts (HL-statistic p-value 0.302 and 0.754, respectively). The
calibration of the AKI prediction score in both cohorts were visualized in the calibration
plots (Figure 3a,b). Visually, the calibration of the score seemed to be better in the derivation
cohort than in the validation cohort.
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and validation cohort (b).

The AKI prediction score categorized patients into four risk groups: low risk, moderate
risk, high risk, and very high risk. The PPVs increased concordantly with the higher risk
category in both cohorts (Table 2). The PPVs were comparable between the development
and the validation cohort in low to high-risk groups; however, the PPV was significantly
lower in the derivation cohort than in the validation cohort in a very high risk group
(STD = 0.375). The predictors and their coefficients for AKI prediction from both cohorts
are reported in the Supplementary Material Table S1.

Table 2. AKI prediction score performance for prediction of acute kidney injury in the derivation cohort and the validation
cohort.

Score
Performances

Derivation Validation Standardized
DifferenceAKI/Total % (95%CI) AKI/Total (95%CI)

AuROC 86.9 (82.5–85.2) 74.5 (65.2–83.8) 0.245
Positive predictive

value
Low (0.0–2.5) 14/1212 1.2 (0.6–1.9) 1/36 2.8 (0.7–1.5) 0.181

Moderate (3.0–8.5) 142/1557 9.1 (7.7–10.7) 21/141 14.9 (9.5–21.9) 0.169
High (9.0–11.5) 95/264 36.0 (30.2–42.1) 9/17 52.9 (27.8–77.0) 0.167

Very high
(12.0–16.5) 45/87 51.7 (40.8–2.6) 6/7 85.7 (42.1–99.6) 0.375

Total 296/3029 9.8 (8.7–10.9) 37/201 18.4 (13.3–24.5) 0.198

Abbreviations: AKI, acute kidney injury; AuROC, area under the receiver operating characteristic curve; CI, confidence interval.

According to the decision curve, the AKI prediction score demonstrated potential
clinical utility in the derivation cohort. The NB of the score was higher than the two default
treatment strategies across the range of threshold probability from 5% to 50% (Figure 4a).
The score could guide clinicians to provide early aggressive treatment to potential patients
with AKI (True Positive), which would reduce the number of overtreatments in patients
without AKI (False Positive). For instance, given the threshold probability was 10%, the
NB of applying the AKI prediction score was 5.1% compared to −0.3% and 0.0% for treat
all and treat none strategies, respectively (Table 3). In other words, an additional 5 per 100
patients were predicted accurately by the AKI prediction score. As the threshold probability
increased, the NB of the AKI prediction score decreased. However, compared to a strategy
to treat all patients to prevent AKI, applying the AKI prediction score in practice could
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reduce the number of overly aggressive treatments up to 30 to 80 per 100 patients admitted
to the ICU (Table 3).
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Table 3. Decision curve analysis of the AKI prediction score in the derivation cohort and the validation cohort.

Threshold
Probability for

AKI (%)

Derivation Validation

Treat All * Net Benefit
Reduced Number
of Overtreatment
per 100 Patients

Treat All * Net Benefit
Reduced Number
of Overtreatment
per 100 Patients

5 0.050 0.067 31.542 0.141 0.143 5.655
10 −0.003 0.051 48.516 0.093 0.094 1.818
15 −0.062 0.041 58.261 0.040 0.078 21.515
20 −0.128 0.031 63.420 −0.020 0.060 31.236
25 −0.203 0.023 67.712 −0.088 0.061 44.238
30 −0.289 0.016 71.199 −0.166 0.048 49.464
35 −0.388 0.009 73.710 −0.255 0.051 55.863
40 −0.504 0.003 76.080 −0.360 0.036 59.480
45 −0.641 −0.001 78.321 −0.483 0.035 63.381
50 −0.805 0.001 80.555 −0.632 0.030 66.169

Abbreviations: AKI, acute kidney injury. * Treat all refers to the treatment strategy to provide early aggressive intervention to prevent acute
kidney injury in all patients.

In the validation cohort, the AKI prediction score did not show potential clinical utility
until after the threshold probability of 10% (Figure 4b). At the threshold probability of
5% and 10%, a few additional patients were determined to be in need of early aggressive
treatment when compared to the strategy to treat all patients (Table 3), and overtreatments
could be avoided in only up to 6 per 100 patients. Only after the threshold probability went
beyond 15% was the potential utility of the AKI prediction score shown. About 22 to 67
per 100 patients could avoid unnecessary early aggressive intervention to prevent AKI.

In the additional analysis, the differences in the effect of each predictor within the
AKI prediction score on the occurrence of AKI between the derivation and the external
validation cohort are presented in Supplementary Table S1.

4. Discussion

In this study, we validated the performance of the AKI prediction score in determining
the occurrence of AKI at seven days after ICU admission in an external dataset. The dis-
criminative ability of the score in terms of AuROC slightly dropped compared to that of
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the derivation cohort. Although the HL-statistics were insignificance, the calibration of the
score in the validation cohort was undeniably poorer than in the derivation cohort. Regard-
less of discriminative ability and calibration, the AKI prediction score was demonstrated
to be potentially useful for guiding early aggressive intervention for critically ill surgical
patients who underwent major non-cardiothoracic surgery in both the derivation and the
validation cohort.

The occurrence of AKI has negative impacts on the overall condition of the surgical pa-
tients admitted to the ICU [4,6,9]. Using AKI prediction scores in practice is recommended
as an option for guiding an early AKI management plan [2,14]. The clinical usefulness of
AKI prediction scores lies within the ability to provide an accurate prediction of patients
who are likely to have AKI postoperatively so that early aggressive intervention to prevent
AKI could be timely initiated (i.e., administration of aggressive fluid resuscitation, continu-
ous central venous pressure monitoring, recording hourly urine output, and assessment of
fluid responsiveness). These interventions might impose a significant burden on health
care workers, especially in settings with limited resources, and it may cause additional
risk to the patients in some circumstances. Ideally, aggressive interventions should only be
given to high-risk patients. Unnecessary overtreatment in patients with low risk should
be avoided.

In the original study of the AKI prediction score, patients with KDIGO AKI stage-
I were included as AKI, which minimizes the differences between patients with and
without AKI. For this reason, the discriminative ability of the AKI prediction score was
only acceptable. Indeed, we still have limited therapeutic choices for AKI, specifically
for KDIGO AKI stage-I. However, KDIGO AKI stage-I and non-AKI patients have to
be managed differently in practice. For non-AKI patients, there is no need for close
monitoring of urine output or frequent blood sampling for serum creatinine, which is
in contrast to patients with KDIGO AKI stage-I. Applying the strategy to monitor all
patients or take frequent blood samples might be burdensome in settings with limited ICU
resources. In this situation, we included patients with KDIGO AKI stage-I as our clinical
endpoint of interest, as we believe that these patients should be managed differently from
patients without AKI and still should be considered high-risk patients. Moreover, patients
with KDIGO AKI stage-I may progress to a higher AKI stage if not timely detected and
appropriately managed.

According to the DCA, it is apparent that the application of the AKI prediction score
would increase the proportion of net true positive AKI cases and decrease the number of
unnecessary overtreatments, compared to the two default treatment strategies. The NB of
our AKI prediction score increased across the range of threshold probability of 10 to 50% in
both the derivation and validation cohort. However, it is difficult to define a reasonable
threshold probability for initiation of early treatment for AKI, and the threshold values
may vary by setting and clinical experience of the attending physicians [31]. For AKI
treatments, if we accept that all interventions are highly effective and carry fewer adverse
effects, the acceptable threshold probability should be low, at 5–10% [33]. Unfortunately,
at lower threshold probability, the use of AKI prediction did not significantly increase the
NB over the strategy to treat all patients in the validation cohort. This could be explained
by the higher prevalence of AKI in the validation cohort than in the derivation cohort. Thus,
it might be safer to suggest that in a setting where AKI prevalence is high, the threshold
probability of treatment initiation should be set even higher.

Several AKI prediction scores were developed and externally validated, especially in
cardiac surgery [15,16,34,35] and orthopedic surgery [17]. For non-cardiothoracic surgery,
the Simple Postoperative AKI Risk (SPARK) classification was developed in 2019 [36]. The
SPARK classification was derived from a large cohort of 51,041 patients and was validated
in a cohort of 39,764 patients from different centers in South Korea. The predictors included
pre- and peri-operative determinants as follows: patients demographics (age and sex),
comorbidity of diabetes mellitus, usage of renin-angiotensin-aldosterone-system blockage,
laboratory investigations (baseline eGFR, hyponatremia, anemia, hypoalbuminemia, and
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albuminuria), and surgical information (expected surgical duration and emergency surgery
status). The endpoints of interest were no-AKI, KDIGO AKI stage-I post-operatively, and
critical AKI post-operatively (defined as KDIGO AKI stage II and III, dialysis in 90 days,
or death). The SPARK score had a good discriminative ability (AuROC 0.80; 95% CI,
0.79–0.81) for forecasting post-operative AKI in the derivation cohort. However, after
validation, a slight drop in discriminative ability to an acceptable range was reported
(AuROC 0.72; 95% CI, 0.71–0.73).

There were several similarities and differences between the SPARK classification and
our recently developed AKI prediction score. Firstly, although both scores were derived
from surgical patients who underwent a major non-cardiothoracic operation, the SPARK
population was not limited to critically ill patients admitted to the ICU post-operatively as
ours was. As no baseline severity of the patients was reported in the SPARK classification
development study, we assumed that our derivation cohort included a more severe domain
of surgical patients. Secondly, common predictors from both scores were patients’ age
and emergency surgery. Moreover, our prediction scores not only included pre- and peri-
operative information, but also included post-operative information. Thirdly, although
the KDIGO-AKI definition was used in both studies, the details of AKI prediction were
differently described. In our previous study, AKI was defined during seven days after
ICU admission, while post-operative AKI, AKI-related dialysis, and death were used in
the SPARK study. Finally, the performance indices from both scoring systems seem to
be similar in terms of generalizability. From the stage of development, both scores had
a good discriminative performance; however, a trivial drop in a score performance to an
acceptable range was identified during validation. This might be explained by a difference
in case-mix, the prevalence of AKI in each cohort, the spectrum of disease severity, and
distribution of predictors [31].

To the best of our knowledge, this was the first study to externally validate the
predictive performance and clinical utility of the AKI prediction score for critically ill
surgical patients who underwent a major non-cardiothoracic operation. As the score was
developed from the THAI-SICU study, which was conducted four years earlier than the
external validation dataset, this study should be considered a temporal validation [31].
The present study showed that our AKI prediction score, somehow, had generalizability
with acceptable performance. Decision making for early aggressive interventions to prevent
AKI guided by the score could be initiated before establishing definite AKI. The major
strength of our study is in its prospective data collection. In addition, unlike most validation
studies, we did not only report the discriminative ability, but we also reported the score
calibration and the evaluation of clinical usefulness with DCA.

Our study had some limitations to be addressed. Firstly, a temporal dataset for
external validation was retrospectively collected from a single center with a limited sample
size and number of AKI events. Moreover, as the dataset used for validation was based
on one of the THAI-SICU centers, the generalizability of the AKI prediction score to an
entirely different group or population was still unknown. Further prospective studies
should be conducted to evaluate the transportability of the AKI prediction score to other
ethnic groups. Secondly, although the same definition for AKI was used in each cohort,
differences in baseline clinical characteristics, the severity of the patients, the prevalence
of AKI, and their outcomes between cohorts were identified. These differences clearly
explained the decrease in the discriminative ability and score calibration. However, as the
baseline characteristics of the patients in both cohorts were different, with higher severity
in the validation cohort, it is likely that our study did not examine the reproducibility
of the score but the transportability of the score to a more severe domain of surgical
patients [37]. Finally, the categorization of continuous variables based on pre-defined fixed
cut-off points of the original study might be another reason to explain the drop in the
predictive performance of the score in the validation cohort. Re-categorization of cut-off
points in a validation study that was much smaller, in terms of study size, might not
be appropriate and may lead to excess optimism [25]. Thus, a totally fully independent
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validation study with a larger population should be conducted to recalibrate the AKI
prediction score to find a more suitable cut-off point for continuous variables. Another
alternative approach might be to apply flexible modeling of continuous predictors with
fractional polynomial procedures or spline function and present the model as an equation,
which can be embedded in a mobile application or a clinical decision support system.

5. Conclusions

In conclusion, the AKI prediction score provides acceptable discriminative ability
and calibration upon external validation. Although the performance index decreased, the
potential clinical utility of the score was shown from DCA. The AKI prediction score should
be used as a clinical decision tool to help physicians decide whether an early aggressive
intervention to prevent AKI should be initiated in each surgical patient admitted to the ICU
following a major non-cardiothoracic operation. To further improve the ability of the score,
an independent validation, score recalibration, or score updating in a larger population
is encouraged.
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