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Abstract 

Background:  Cardiovascular health (CVH) was defined by the American Heart Association as an integrative idealness 
of seven clinical or lifestyle factors. Based on populations of European ancestry, recent studies have shown that ideal 
CVH is associated with a slower aging rate. The aging rate is measured by levels of epigenetic age acceleration (EAA), 
usually obtained from the residuals of regressing DNA methylation (DNAm) age on chronological age. However, little 
has been known about the association of CVH with biological aging in Asian populations.

Methods and results:  We here analyzed blood DNAm data and clinical/lifestyle factors of 2474 Taiwan Biobank 
(TWB) participants, to investigate the association of CVH with EAA. CVH was assessed by seven components: 
smoking status, physical activity, dietary habits, body mass index, total cholesterol, fasting glucose, and blood 
pressure levels. Four measures of EAA were applied, among which two were based on the first-generation DNAm 
clocks (HannumEAA and IEAA) and two were based on the second-generation clocks (PhenoEAA and GrimEAA). 
After excluding 276 individuals with cardiovascular diseases, we regressed EAA on the CVH score (ranging from 0 
to 7, integrating the abovementioned seven components) while adjusting for sex, drinking status, and educational 
attainment.

Our results showed that a decrease in one point in the CVH score was associated with a 0.350-year PhenoEAA 
(p = 4.5E−4) and a 0.499-year GrimEAA (p = 4.2E−15). By contrast, HannumEAA and IEAA were not significantly 
associated with the CVH score. We have obtained consistent results within each generation of epigenetic clocks.

Conclusions:  This is one of the first studies to comprehensively investigate the associations of CVH with four 
epigenetic clocks. Our TWB data showed that ideal CVH is associated with lower levels of EAA calculated according to 
the second-generation epigenetic clocks (PhenoEAA and GrimEAA). Having an ideal CVH status can lower EAA and 
reduce the risk of aging-related disorders.
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Introduction
Cardiovascular health (CVH) was defined by the 
American Heart Association (AHA) as an integrative 
idealness of four lifestyle factors (cigarette smoking, 
physical activity, body mass index (BMI), and dietary 

habits) and three clinical factors (fasting glucose, blood 
pressure, and total cholesterol level) [1]. Ideal CVH is 
associated with lower risks of cardiovascular diseases 
(CVDs) and chronic diseases and decreased all-cause 
mortality [1, 2]. Ideal CVH is also associated with more 
extended longevity and a better quality of life [3, 4].

Epigenetic change may reflect the idealness of CVH 
[5, 6]. One of the epigenetic mechanisms is DNA 
methylation (DNAm), which can dynamically express 
human aging-related physiological changes [7–9]. 
Therefore, DNAm has been used to estimate human 
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biological age [9–13]. Epigenetic age (i.e., the so-called 
DNAm age/clock) measures biological age to predict 
people’s healthspan and lifespan. For example, Hannum 
et  al. constructed a DNAm age estimator (i.e., the 
so-called “Hannum’s clock”) from whole-blood samples 
by selecting 71 cytosine-phosphate-guanine (CpG) sites 
that are highly predictive of chronological age [10]. 
Horvath further developed a multi-tissue DNAm clock 
with an average of 96% correlation between the DNAm 
age and chronological age [11]. Horvath used the elastic-
net regularized regression [14] to select 353 CpGs by 
regressing a transformed version of chronological age 
on 21,369 CpG sites. These CpGs were therefore used to 
form a DNAm age (i.e., the so-called “Horvath’s clock”) 
[11]. Horvath showed that an average of 36 years of age 
acceleration was observed in 20 different cancer types 
[11].

Hannum’s clock and Horvath’s clock are regarded as the 
first-generation DNAm clocks because they are predictive 
of chronological age [15, 16]. The second-generation 
DNAm clocks, on the other hand, aim to estimate 
biological age that can better reflect disease morbidity 
and mortality [15–17]. For example, Levine et  al. used 
a two-step approach to develop the “PhenoAge” [12]. 
They first selected 9 biomarkers and chronological age 
by regressing the hazard of aging-related mortality on 43 
candidate markers (including 42 clinical biomarkers and 
chronological age) through a regularized Cox regression 
model. These 9 biomarkers and chronological age were 
then aggregated into a “phenotypic age,” reflecting one’s 
physiological conditions better than chronological age 
[12, 16]. In the second step, Levine et  al. selected 513 
CpGs from 20,169 CpGs as predictors of the phenotypic 
age. A weighted average of these 513 CpGs formed a 
DNAm clock (i.e., the so-called “PhenoAge”) [12].

Another second-generation DNAm clock is “GrimAge” 
[13]. A total of 7 DNAm-based surrogate markers of 
plasma proteins and smoking pack-years were found 
to be associated with time-to-death. These eight sets of 
surrogate markers were based on 1,030 unique CpGs. 
GrimAge was developed by aggregating the information 
of these 1,030 CpGs. Therefore, GrimAge is highly 
predictive of disease mortality and can reflect more 
aging-related physiological conditions [17].

Epigenetic age acceleration (EAA) is a novel measure 
to evaluate human aging rate, usually quantified by the 
residuals of regressing DNAm age on chronological age 
[18–21]. In this way, the EAA calculation will be robust 
to different measurement platforms and normalization 
methods [18–21]. A positive EAA implies that an 
individual is aging faster than the expected aging rate 
regarding his/her chronological age. Recent studies have 
shown that ideal CVH is associated with lower EAA in 

European ancestry populations [5, 6]. However, little 
has been known about the association of CVH with 
biological aging in Asian people.

Here, we investigated the association of ideal CVH 
with four measures of EAA based on the DNAm data 
from 2474 Taiwan Biobank (TWB) participants. Two 
measures of EAA were calculated according to the first-
generation DNAm clocks, among which HannumEAA 
was estimated from Hannum’s clock [11] and IEAA 
was obtained from Horvath’s clock [10]. The other 
two measures of EAA were calculated according to 
the second-generation DNAm clocks, among which 
PhenoEAA was gauged from PhenoAge [12] and 
GrimEAA was calculated from GrimAge [13]. We 
obtained four measures of EAA by uploading the DNAm 
data to the online DNAm Age Calculator created by 
Horvath’s laboratory (https://​dnama​ge.​genet​ics.​ucla.​edu/​
new). Similar to previous studies [5, 6], after excluding 
participants with extreme EAA levels and participants 
diagnosed with CVDs or leukemia, we regressed 
EAA (the response variable) on the CVH score (the 
explanatory variable) [1] while adjusting for sex, drinking 
status, and educational attainment. We aimed to test the 
associations of the CVH scores with EAA among Asian 
individuals without CVDs.

Both the 7-point and 14-point scales of the CVH score 
were applied according to the definition from the AHA 
[1]. However, the scoring criteria of BMI and ideal diet 
behaviors were adjusted to accommodate the standards 
of Asians (will be described in “Methods” section). 
Because only ~ 60% of the 2474 TWB participants 
provided their dietary habits, we also calculated 6-point 
and 12-point CVH scores by excluding the component of 
“ideal diet” (will be described in “Methods” section).

Results
Table  1 presents the basic characteristics of the 2,474 
TWB participants stratified by tertiles of GrimEAA. 
The results stratified by tertiles of PhenoEAA, IEAA, 
and HannumEAA were shown in Additional file  1: 
Tables S1–S3, respectively. Participants were aged from 
30 to 70 years. All seven components of the CVH score 
demonstrated significantly different distributions across 
the three GrimEAA tertile groups (p < 0.05, Table 1).

The percentage of “ideal BMI” was larger in the lowest 
tertile (T1) than in the second (T2) or the highest tertile 
(T3) of GrimEAA (p < 0.001, Table 1). Similar results were 
also observed in PhenoEAA (p < 0.001, Additional file 1: 
Table S1), IEAA (p < 0.01 between T1 and T3, Additional 
file  1: Table  S2), and HannumEAA (p < 0.01 between 
T1 and T2, p < 0.001 between T1 and T3, Additional 
file 1: Table S3). These results showed that an increased 
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BMI value is associated with a faster biological aging 
rate, consistent with previous studies indicating that an 
increased BMI is associated with a shortened telomere 
length [22–24]. Telomere length is another well-known 
biological aging biomarker. A shortened telomere length 
can reflect an acceleration of the aging pace [25, 26].

Regarding the CVH component of “smoking status”, 
fewer never-smoking individuals were in the highest 
tertile than in the lowest tertile of GrimEAA (p < 0.001, 
Table 1), while more current or former smokers in the 
highest tertile than in the lowest tertile of GrimEAA 
(p < 0.001, Table  1). Similar results were also observed 
in the other three measures of EAA (Additional file 1: 
Tables S1–S3).

Table 1  Basic characteristics of the 2474 TWB participants stratified by tertiles of GrimEAA

Ref T1 (tertile 1, the reference group); T2 (or T3) compared with T1 based on the two-sample proportion test
a A former smoker was defined as an individual who has quitted smoking for at least 6 months
b Ideal BMI: body mass index less than 24 kg/m2, according to the criterion proposed by the Ministry of Health and Welfare, Taiwan
c Ideal physical activity was defined as performing 30 min of exercise (including leisure-time activities such as swimming, cycling, jogging, weight training, dancing, 
mountain climbing, etc.) at least 3 times a week
d Ideal cholesterol level was defined as a total cholesterol level less than 200 mg/dL
e Ideal fasting glucose level was defined as a fasting glucose level less than 100 mg/dL
f Ideal blood pressure was defined as a systolic blood pressure less than 120 mmHg and diastolic blood pressure below 80 mmHg
g Ideal diet was assessed according to the consumption of food categories, sodium, and fat intake
* p < 0.05; **p < 0.01; ***p < 0.001

Overall GrimEAA T1 
(< − 1.64 years)Ref

GrimEAA T2 (− 1.64 to 
0.88 years)

GrimEAA T3 (> 0.88 years)

N (male %) 2474 (50.24%) 825 (27.39%) 824 (48.18%)*** 825 (75.15%)***

Chronological age (standard 
deviation, SD)

49.76 (11.08) 50.52 (10.98) 48.63 (11.02)*** 50.12 (11.16)

Education (%)

Illiterate 5 (0.20%) 2 (0.24%) 3 (0.36%) 0 (0.00%)

No formal education but 
literate

2 (0.08%) 1 (0.12%) 1 (0.12%) 0 (0.00%)

Primary school graduate 95 (3.84%) 33 (4.00%) 27 (3.28%) 35 (4.24%)

Junior high school graduate 137 (5.54%) 49 (5.94%) 43 (5.22%) 45 (5.45%)

Senior high school graduate 718 (29.02%) 242 (29.33%) 223 (27.06%) 253 (30.67%)

College graduate 1254 (50.69%) 413 (50.06%) 433 (52.55%) 408 (49.45%)

Master’s or higher degree 261 (10.55%) 84 (10.18%) 94 (11.41%) 83 (10.06%)

7 components of the CVH score (%)

Smoking status—never 1614 (65.24%) 693 (84.00%) 598 (72.48%)*** 323 (39.15%)***

Smoking status—formera 312 (12.61%) 47 (5.70%) 89 (10.79%)*** 176 (21.33%)***

Smoking status—current 283 (11.44%) 16 (1.94%) 29 (3.52%) 238 (28.85%)***

Ideal BMIb 1240 (50.12%) 508 (61.58%) 420 (50.91%)*** 312 (37.82%)***

Ideal physical activityc 1092 (44.14%) 389 (47.15%) 347 (42.06%)* 356 (43.15%)

Ideal cholesterol leveld 1444 (58.37%) 441 (53.45%) 503 (60.97%)** 500 (60.61%)**

Ideal fasting glucose levele 1951 (78.86%) 713 (86.42%) 667 (80.85%)** 571 (69.21%)***

Ideal blood pressuref 1315 (53.15%) 490 (59.39%) 447 (54.18%)* 378 (45.82%)***

Ideal dietg 456 (31.78% out of 1435) 185 (39.03% out of 474) 162 (32.40% out of 500)* 109 (23.64% out of 461)***

6-point CVH score (%)

N 127 (5.13%) 824 824 823

 0–1 329 (13.30%) 15 (1.82%) 24 (2.91%) 88 (10.67%)***

 2 554 (22.39%) 76 (9.21%) 105 (12.73%)* 148 (17.94%)***

 3 716 (28.94%) 151 (18.30%) 172 (20.85%) 231 (28.00%)***

 4 586 (23.69%) 256 (31.03%) 257 (31.15%) 203 (24.61%)**

 5 159 (6.43%) 258 (31.27%) 206 (24.97%)** 122 (14.79%)***

 6 127 (5.13%) 68 (8.25%) 60 (7.28%) 31 (3.77%)***
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For the ideal fasting glucose level, more individuals 
were in the lowest tertile than in both the second 
(p < 0.01) and the highest tertile of GrimEAA 
(p < 0.001, Table  1). Significant differences between 
the lowest tertile and the second or highest tertile of 
GrimEAA were also observed in ideal blood pressure 
and ideal diet (p < 0.001, Table 1).

After excluding participants with CVDs (n = 276) 
or with extreme EAA values (n = 7 for HannumEAA; 
n = 1 for IEAA; n = 2 for PhenoEAA; n = 5 for 
GrimEAA; Methods), we performed multiple linear 
regression analysis to investigate the association 
between the CVH score and the four measures of EAA 
(HannumEAA, IEAA, PhenoEAA, and GrimEAA), 
respectively. Because our study sample contained no 
leukemia cases, no participants were excluded due to 
leukemia.

Table  2 shows the results of regressing the four 
measures of EAA on four different definitions of the 
CVH score while adjusting for sex, drinking status, 
and educational attainment (coefficients of covariates 
are presented in Additional file  1: Table  S5). All 
models consistently demonstrated inverse associations 
between the CVH scores and the levels of EAA, as we 
can see from the negative regression coefficients of 
the CVH scores (Beta in Table 2). However, only EAA 
derived from the second-generation DNAm clocks 
(i.e., PhenoEAA and GrimEAA) led to significant 
inverse associations with all four definitions of the 
CVH score (p ≤ 4.5E−4).

For the 7-point CVH score, a decrease in one point 
in the CVH score was associated with a 0.350-year 
PhenoEAA (p = 4.5E−4, 95% CI: 0.1550–0.5459; 
Table 2) and a 0.499-year GrimEAA (p = 4.2E−15, 95% 
CI: 0.3758–0.6222; Table  2). For the 14-point CVH 
score, a decrease in one point in the CVH score was 
associated with a 0.268-year PhenoEAA (p = 2.4E−5, 
95% CI: 0.1439–0.3919; Table  2) and a 0.364-year 
GrimEAA (p = 1.5E−19, 95% CI: 0.2865–0.4419; 
Table 2).

By contrast, IEAA (p = 0.177 for 7-point; p = 0.120 
for 14-point) and HannumEAA (p = 0.108 for 7-point; 
p = 0.087 for 14-point) were not significantly associated 
with the CVH scores (Table  2). We obtained similar 
results even when the CVH score was defined by six 
components (i.e., excluding diet information largely 
missing in the TWB data), as shown in the bottom two 
rows of Table 2. For the 6-point CVH score, a decrease 
in one point in the CVH score was associated with a 
0.388-year PhenoEAA (p = 3.9E−6, 95% CI: 0.2238–
0.5528) and a 0.526-year GrimEAA (p = 6.1E−23, 
95% CI: 0.4222–0.6289). For the 12-point CVH 
score, a decrease in one point in the CVH score was 

associated with a 0.278-year PhenoEAA (p = 9.6E−8, 
95% CI: 0.1761–0.3798) and a 0.377-year GrimEAA 
(p = 2.1E−30, 95% CI: 0.3136–0.4407). Again, IEAA 
and HannumEAA were not significantly associated 
with the six-component CVH scores (Table 2).

Discussion
In this study, we evaluated the associations of CVH 
with four measures of EAA through DNAm, clinical, 
and lifestyle data of 2,474 TWB participants. We found 
that, among the participants free of CVD, higher CVH 
scores were associated with lower EAA calculated 
based on PhenoEAA [12] and GrimEAA [13] (second-
generation epigenetic age). In contrast, the associations 
were not significant between the CVH scores and EAA 
calculated based on Horvath’s [11] and Hannum’s [10] 
clocks (first-generation epigenetic age). This result 
was robust to various definitions of the CVH scores 
(7-point, 14-point, 6-point, and 12-point scales).

The lack of significance of the association when 
shifting the EAA measurement from the second-
generation epigenetic clocks to the first-generation 
clocks may result from the different purposes of the 
two generations of clocks. The second-generation 
epigenetic clocks were trained to reflect aging-related 
physiological conditions, whereas the first-generation 
clocks aimed to predict human chronological age 
[16]. Increased chronological age is an important risk 
factor for many diseases and cancers. However, it does 
not account for the heterogeneity of physiological 
complexity among individuals of the same age. The 
EAA calculated based on the first-generation clocks 
would tend to “inherit” this “ignorance of physiological 
conditions.” By contrast, the second-generation clocks-
based EAA is more sensitive to the impacts of CVH 
[13].

This is one of the first studies to investigate the 
association of CVH with EAA in Asian populations 
(specifically, the Taiwanese population). As most 
studies of DNAm age were focused on European 
ancestry populations [10–13, 15, 17, 27], our DNAm 
data from the 2,474 TWB participants were unique as 
far as the ethnicity is concerned.

Recently, Pottinger et  al. [5] investigated the 
associations of the CVH score with the first-generation 
clocks-based EAA [10, 11] in 2,170 postmenopausal 
women (aged from 50 to 79  years) from the Women’s 
Health Initiative (WHI) cohort [28]. Unlike our results, 
Pottinger et al. [5] showed that ideal CVH was associated 
with the first-generation clocks-based EAA [10, 11]. The 
differences between the two data sets (WHI [28] and 
TWB) may result in these inconsistent results. First, 
among the 2,170 individuals analyzed by Pottinger et al. 
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[5], 50% were non-Hispanic white, 25% were African 
Americans, and 15% were Hispanics. In contrast, 
most TWB individuals were of Han Chinese ancestry 
[29]. Second, the 2,170 individuals in Pottinger et  al.’s 
study were all postmenopausal women aging from 50 
to 79  years [5], whereas our data included 2,474 men 
(50.24%) or women (49.76%) aging from 30 to 70 years. 
The TWB data presented a broader spectrum of sex and 
age than the WHI cohort [28].

Joyce et  al. also investigated the associations of the 
CVH score with GrimEAA at 3,224 participants from 
two cohort studies [6]. DNAm data were measured 
from 2,106 offspring participants of the Framingham 
Heart Study (FHS) at exam 8 (2005–2008) and 1,118 
randomly-selected individuals of Coronary Artery Risk 
Development in Young Adults (CARDIA) study at Y15 
(2000–2001) and Y20 (2005–2006), respectively. Their 
cross-sectional and longitudinal analyses both showed 
significant associations between the CVH score and 
GrimEAA (p < 0.01). Our results were in line with their 
study, indicating that the association of CVH with 
GrimEAA can be replicated in the Taiwanese population. 
Moreover, we here investigated the other three epigenetic 
clocks as well (Hannum et al.’s clock [10], Horvath’s clock 
[11], and Levine et  al.’s PhenoAge [12]), and we have 
obtained consistent results within each generation of 
epigenetic clocks. Our study demonstrates that, for even 
CVD-free individuals, ideal CVH is important with its 
link to a slower aging rate in an Asian population.

Conclusions
This is one of the first studies to comprehensively 
investigate the associations of CVH with four epigenetic 
clocks. Ideal CVH is associated with lower levels of EAA 
calculated according to the second-generation epigenetic 
clocks in an Asian population. Having an ideal CVH 
status can lower EAA and reduce the risk of aging-related 
disorders.

Methods
Taiwan Biobank
The TWB has recruited ~ 153,543 community-based 
volunteers living in Taiwan since October 2012. The 
written informed consent of each participant was 
obtained before joining the study. Participants provided 
blood and urine samples and then underwent physical 
examinations. Clinical factors of participants were 
examined and recorded by the TWB. For example, serum 
glucose was measured with a Hitachi LST008 analyzer 
(Hitachi High-Technologies, Tokyo, Japan) after a fast for 
at least 6 h. Participants’ lifestyle factors such as dietary 
habits, cigarette smoking, physical exercise, educational 

attainment, and alcohol consumption were collected 
through a face-to-face interview with TWB researchers.

Because responding to all items in the original TWB 
questionnaire was time-consuming, a simplified version 
of the questionnaire was developed to speed up the 
interview process. Diet-related questions were not 
included in this simplified version of the questionnaire. 
As a result, the diet information of 42% of the 2474 
individuals was missing because 1039 participants chose 
the simplified questionnaire.

From 2016 to 2021, the TWB randomly selected 2474 
participants for DNAm quantification analysis. The 
Illumina Infinium MethylationEPIC BeadChip (Illumina, 
Inc., San Diego, CA) was used to analyze their blood 
DNAm levels.

The TWB was approved by the Ethics and Governance 
Council of Taiwan Biobank and the Institutional Review 
Board on Biomedical Science Research/IRB-BM at 
Academia Sinica. The TWB approved our access to the 
data on February 18, 2020, with an application number 
of TWBR10810-07. Our study was also approved by 
the Research Ethics Committee of National Taiwan 
University Hospital (NTUH-REC no. 201805050RINB). 
Written informed consent was obtained from each 
individual, following the principles of the Declaration of 
Helsinki and the institutional requirements.

Epigenetic age acceleration
The quality control and normalization of the DNAm 
data can be found in our previous works [20, 21]. Briefly 
speaking, the quality of all 2474 samples was satisfactory 
according to the quality control process of DNAm 
data [30]. Our intensity data were normalized with the 
normal-exponential out-of-band (noob) method [31] 
implemented by the preprocessNoob function in the R 
package minfi v1.36 [32].

To calculate epigenetic age, we uploaded the DNAm 
data quantified through the blood samples of the 2474 
TWB participants to the online DNAm Age Calculator 
developed by Horvath’s laboratory (https://​dnama​ge.​
genet​ics.​ucla.​edu/​new). Four epigenetic clocks were 
applied, including Hannum et  al.’s clock [10], Horvath’s 
clock [11], Levine et  al.’s PhenoAge [12], and Lu et  al.’s 
GrimAge [13]. Once the epigenetic age was calculated, 
four measures of EAA (HannumEAA, IEAA, PhenoEAA, 
and GrimEAA, respectively) were then obtained by the 
residuals of regressing the corresponding DNAm age on 
chronological age.

According to the definition of residuals, EAA is the 
difference between one’s DNAm age and the predicted 
DNAm age of individuals at the same chronological 
age. Positive EAA levels indicate that individuals are 
aging faster than the expected aging rate at the same 

https://dnamage.genetics.ucla.edu/new
https://dnamage.genetics.ucla.edu/new
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chronological age. Contrarily, negative EAA levels imply 
that individuals are aging slower than the expected aging 
rate at the same chronological age.

Cardiovascular health score
CVH scores were calculated according to AHA’s “Life’s 
simple seven” CVH metrics [1]. The seven components 
include smoking status, physical activity, dietary habits, 
BMI, total cholesterol, blood pressure, and fasting 
glucose (Table  3). The CVH score integrates the seven 
components mentioned above, representing individuals’ 
health in cardiovascular conditions. Two different 
scales were used to evaluate the idealness of each CVH 
component. Each component was scored as 0–1 on 
a 2-level scale (ideal vs. not ideal) or 0–2 on a 3-level 
scale (poor, intermediate, or ideal) (Table  3). Therefore, 
a 7-point CVH score and a 14-point CVH score were 
obtained by summing up all scores from the seven 
components.

A higher CVH score reflects a better overall CVH 
condition, associated with a lower incidence of CVD-
related mortality and morbidity [33–35]. Generally, an 
individual’s CVH was categorized as favorable given 
at least 5 CVH components achieving the ideal criteria 
(i.e., CVH score ≥ 5 points on the 7-point scale, or CVH 
score ≥ 10 points on the 14-point scale); moderate given 
3–4 components fulfilling the ideal criteria; unfavorable 
given ≤ 2 components achieving the ideal standards 
(i.e., CVH score ≤ 2 points on the 7-point scale, or CVH 
score ≤ 4 points on the 14-point scale) [36–38].

Some studies have suggested more stringent BMI 
cutoff levels for East Asians [39–41]. BMI > 24 has been 
found to be a risk factor for CVD, type 2 diabetes, and 
metabolic syndromes in Taiwanese populations [42, 43]. 

Therefore, according to the definition by the Ministry of 
Health and Welfare of Taiwan, BMI over 24 was defined 
as overweight, and BMI over 27 was regarded as obesity 
(Table 3).

To let “smoking status” be consistent with the TWB 
questionnaire, we adjusted the definition of a former 
smoker from quitting smoking for at least 12–6 months. 
Moreover, regarding “ideal diet,” because TWB did not 
survey the amount of various foods consumed every 
day, the scoring of ideal diet was modified according 
to 17 diet-related questions in the TWB questionnaire 
(Additional file  1: Table  S4). Furthermore, 42% of the 
2474 participants chose the simplified version of the 
TWB questionnaire, and therefore the diet-related 
information was only available for 58% of the individuals 
in our study. To not compromise the statistical power 
by only analyzing 58% of the data, we also calculated a 
6-component CVH score while removing the “ideal 
diet” component. Therefore, we had a 6-point scale and 
a 12-point scale of the CVH score, following the 2-level 
and 3-level scoring rules, respectively.

Exclusion criteria
Similar to the previous study linking CVH with EAA 
(focusing on the WHI data) [5], we excluded participants 
diagnosed with leukemia or CVDs and participants 
with extreme EAA levels. Including leukemia cases into 
DNAm data analysis may introduce bias [5] and reduce 
the precision of DNAm clock models [44]. Therefore, 
participants with leukemia diagnoses were excluded from 
our research. However, because no individuals have been 
diagnosed with leukemia in our study sample, we did not 
exclude any participants due to this criterion.

Table 3  Ideal CVH criterion (the 14-point CVH score)

a For the 7-point CVH score, each component was scored as 1 if ideal, 0 if intermediate or poor
b According to the TWB questionnaire, former smokers were defined as individuals who have quitted smoking for at least 6 months
c Regular exercise was defined as performing exercise for 30 min at least 3 times a week. The exercise included leisure-time activities such as swimming, cycling, 
jogging, weight training, dancing, and mountain climbing, etc.
d SBP Systolic blood pressure, DBP Diastolic blood pressure

Poor: 0 pointa Intermediate: 1 pointa Ideal: 2 pointsa

Lifestyle factors

Smoking status Current Former (quit < 6 months) Never or formerb (quit ≥ 6 month)

Physical activity (regular exercise)c Never Between never and regular 30 min 3 times a week (Regular exercise)

Ideal diet (Ideal diet score summed 
from Table S4)

0–5 6–11 12–17

Clinical factors

BMI (kg/m2) BMI ≥ 27 24 ≤ BMI < 27 BMI < 24

Total cholesterol (mg/dL) TC ≥ 240 200 ≤ TC < 240 TC < 200

Blood pressure leveld (mmHg) SBP ≥ 140 or DBP ≥ 90 120 ≤ SBP < 140 or 80 ≤ DBP < 90 SBP < 120 and DBP < 80

Fasting glucose (mg/dL) Fasting glucose ≥ 126 100 ≤ Fasting glucose < 126 Fasting glucose < 100
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Following the World Health Organization (WHO) 
definition, CVDs included the diagnosis of valvular 
heart disease, coronary artery disease, arrhythmia, 
cardiomyopathy, congenital heart disease, apoplexy or 
any other diseases involving blood vessels or the heart. 
We removed 276 participants with CVDs because we 
aimed to test the associations of the CVH scores with 
EAA among Asian individuals without CVDs.

Moreover, extreme outliers were defined if EAA 
> Q3 + 3× IQR or EAA < Q1 − 3× IQR , where 
Q1 and Q3 were the 25th and 75th percentiles and 
IQR = Q3 − Q1 (i.e., interquartile range). Among the 
2474 TWB participants, 7, 1, 2, and 5 extreme outliers 
were excluded from our analyses for HannumEAA, 
IEAA, PhenoEAA, and GrimEAA, respectively.

Statistical analysis
To investigate the association of CVH with EAA, 
we regressed each of the four measures of EAA 
(HannumEAA [10], IEAA [11], PhenoEAA [12], and 
GrimEAA [13]) on the CVH score after excluding 276 
participants with CVDs and participants with extreme 
EAA levels.

For the regression analysis, we considered the following 
model:

where EAA was served as the response variable, the CVH 
score was the primary explanatory variable, and ε was 
the random error term. Four different calculations of the 
CVH scores (7-point, 14-point, 6-point, and 12-point) 
were included in our analyses to evaluate whether our 
main conclusions may be sensitive to the CVH scoring 
scales or the exclusion of diet information. A total of 16 
regression models were therefore fitted according to four 
measures of EAA (IEAA, HannumEAA, PhenoEAA, and 
GrimEAA) and four definitions of the CVH score (6-, 7-, 
12-, and 14-point scales).

Similar to the two previous studies linking CVH with 
EAA [5, 6], all our models were adjusted for sex (SEX), 
alcohol drinking status (yes vs. no), and educational 
attainment (an integer ranging from 1 to 7). Drinking 
(DRK) was defined as an individual having more than 
150 mL intake of alcohol per week for at least 6 months. 
Educational attainment (EDU) was classified into seven 
categories (1: Illiterate; 2: No formal education but 
literate; …; 7: Master’s or higher degree), as listed in 
Table 1.

We considered EDU a covariate because it was 
associated with EAA based on various DNAm clocks 
[45, 46]. Moreover, EDU was also adjusted in the models 
of the two previous studies linking CVH with EAA 

(1)
EAA = β0 + β1CVHscore + β2SEX+ β3DRK+ β4EDU+ ε,

[5, 6]. In our analyses, EDU was inversely associated 
with GrimEAA in the 6-point and 12-point CVH score 
models (both p = 0.002, Additional file  1: Table  S5) and 
PhenoEAA in all models (p < 0.05, Additional file  1: 
Table S5).

Variance inflation factor (VIF) values were calculated 
(Additional file  1: Table  S6) to check multicollinearity. 
All VIF values were controlled under 1.2 (the largest 
VIF value was 1.1842). No multicollinearity among the 
explanatory variables was detected in all our models.

Regarding the model evaluation, we performed 
residual analyses (Additional file 1: Figs. S1–S4) to check 
the assumptions of normality and constant variance. 
No substantial violation of these two assumptions 
was observed in regression models based on IEAA 
(Additional file  1: Fig. S1), HannumEAA (Additional 
file 1: Fig. S2), and PhenoEAA (Additional file 1: Fig. S3). 
However, the quantile–quantile plots of the models based 
on GrimEAA (Additional file 1: Fig. S4) showed that the 
residuals followed distributions with heavier tails than 
the normal distribution.

Deviations from normality usually do not bias the 
regression coefficients (Beta in Table  2) [47, 48]. To 
evaluate whether our statistical significance (p-values) 
may be sensitive to the violation of the normality 
assumption, we further performed the rank-based inverse 
normal transformation (rank-based INT) on GrimEAA 
(Additional file 1: Fig. S8). Through this transformation, 
no substantial violation of the assumption of normality 
or constant variance was observed for any model 
(Additional file  1: Fig. S8). Results of using the rank-
based INT on the four measures of EAA as the response 
variable in model (1) were shown in Additional file  1: 
Table  S7. The statistical significance was similar to our 
original results (Table 2).
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