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Abstract
Glycated hemoglobin (HbA1c) is the main biomarker of diabetes drug develop-
ment. However, because of its delayed turnover, trial duration is rarely shorter 
than 12 weeks, and being able to predict long- term HbA1c with precision using 
data from shorter studies would be beneficial. The feasibility of reducing study 
duration was therefore investigated in this study, assuming a model- based analy-
sis. The aim was to investigate the predictive performance of 24-  and 52- week 
extrapolations using data from up to 4, 6, 8 or 12 weeks, with six previously pub-
lished pharmacometric models of HbA1c. Predictive performance was assessed 
through simulation- based dose– response predictions and model averaging (MA) 
with two hypothetical drugs. Results were consistent across the methods of as-
sessment, with MA supporting the results derived from the model- based frame-
work. The models using mean plasma glucose (MPG) or nonlinear fasting plasma 
glucose (FPG) effect, driving the HbA1c formation, showed good predictive per-
formance despite a reduced study duration. The models, using the linear effect of 
FPG to drive the HbA1c formation, were sensitive to the limited amount of data in 
the shorter studies. The MA with bootstrap demonstrated strongly that a 4- week 
study duration is insufficient for precise predictions of all models. Our findings 
suggest that if data are analyzed with a pharmacometric model with MPG or FPG 
with a nonlinear effect to drive HbA1c formation, a study duration of 8 weeks is 
sufficient with maintained accuracy and precision of dose– response predictions.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
In diabetes drug development, the study duration in phase II is typically 12 weeks 
and related to achieving a steady state of the biomarker glycated hemoglobin 
(HbA1c). Several pharmacometric HbA1c models have been published that can 
predict steady- state HbA1c from studies in which HbA1c has not yet achieved 
steady state, for example, from phase I or early proof- of- concept studies.
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INTRODUCTION

The approval of sodium- glucose cotransporter 2 inhibi-
tors and glucagon- like peptide 1 analogs signifies a major 
breakthrough in diabetes drug development.1,2 However, 
maintaining recommended glycemic goals over time is chal-
lenging, which necessitates continued research to identify 
novel antidiabetic drugs and hence diabetes drug develop-
ment. A search in May 2021 of industry- funded, diabetes 
interventional studies in clini caltr ials.gov revealed that 
19%, 36%, and 65% of the studies listed glycated hemoglobin 
(HbA1c) as the primary outcome measure, in phase I, phase 
II, and phase III, respectively,3 and that HbA1c was also in-
cluded as a secondary outcome in almost all studies. Most 
of the studies with HbA1c as the primary outcome were de-
signed to compare baseline- corrected HbA1c (ΔHbA1c) be-
tween two or more arms after 12/16 weeks or 24/52 weeks of 
treatment for phase II and phase III, respectively. The rela-
tively long study duration in phase II is associated with the 
slow turnover of red blood cells (RBC), consequently a slow 
effect onset of HbA1c with changes in glucose exposure.

HbA1c is formed as glucose binds to hemoglobin (Hb) 
in RBC and is measured as the fraction of glycated to total 
Hb. Considering that the RBC life span is approximately 
120 days, HbA1c reflects the glucose exposure during that 
time period, providing a reliable long- term assessment.4,5 
Consequently, it takes roughly 12– 16 weeks for treatment, 
with an immediate effect on glucose, to achieve steady 
state of HbA1c. With such a delayed pharmacodynamic 
effect, models may be useful for earlier assessment of the 
achievable HbA1c steady state.

Several models of HbA1c have been published using 
various drivers of HbA1c formation (fasting plasma glucose 
[FPG], daily mean plasma glucose [MPG], fasting serum in-
sulin [FSI]).6 Nathan et al.7 presented an empirical, steady- 
state regression between MPG and HbA1c useful to predict 

HbA1c from steady- state MPG. However, this regression 
cannot handle dynamic predictions of HbA1c or differences 
in variability between glucose and HbA1c.

Pharmacometric models handle variability well and can 
predict HbA1c dynamically. Among the pharmacometric 
models, there is the empirical A Dynamic HbA1c Endpoint 
Prediction Tool (ADOPT) model8 and the semiphysiologi-
cal Integrated Glucose- RBC- HbA1c (IGRH) model,9 which 
are driven by MPG; the semiphysiological FPG- Hb- HbA1c 
(FHH) model,10 driven by FPG; and the FSI- FPG- HbA1c 
with a steady- state solution (FFHss)

11 and FSI- FPG- HbA1c 
(FFH2) models,12 which mechanistically handle FPG and 
FSI, however, with a more empirical HbA1c model.

Wellhagen et al.13 compared four of the aforemen-
tioned models (ADOPT, IGRH, FHH, and FFHss), looking 
at power, prognostic, and extrapolation predictive perfor-
mance in relation to hypothetical drug effects. The authors 
of that work concluded that the best model depends on the 
intended use and the hypothetical drug effect. However, 
the extrapolation properties beyond 24 weeks of treatment 
remain unexplored, as does the benefit of using data from 
shorter trials, with or without a delayed onset of drug ef-
fect on glucose. Thus, this study aimed to investigate the 
predictive performance of previously published models of 
HbA1c with a focus on extrapolation properties from stud-
ies of 12 weeks or shorter to studies of 24 or 52 weeks with 
a direct and a delayed drug effect on glucose.

METHODS

Data

The data analyzed herein were created through simula-
tions with the integrated glucose- insulin (IGI) model14 
connected to the IGRH model.9 The collected biomarkers 

WHAT QUESTION DID THIS STUDY ADDRESS?
We investigated and compared the predictive performance of previously pub-
lished HbA1c models, with a key focus on their extrapolation properties with 
study durations ranging from 4 to 12 weeks.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
In the investigated scenarios, a study duration of 8 weeks is in general sufficient 
for accurate and precise long- term HbA1c predictions when using pharmacomet-
ric models, which dynamically predict HbA1c using mean plasma glucose or fast-
ing plasma glucose nonlinearly as the driver of HbA1c formation.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
The results of the current study may guide the model choice based on the avail-
able biomarkers and study duration as well as suggest the opportunity for reduc-
tion of clinical study duration leveraging a model- based approach.

http://clinicaltrials.gov
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were MPG (average from continuous glucose monitoring 
over 24 h), FPG, HbA1c, and fasting plasma insulin (FPI) 
extracted every second week up to 8 weeks and at 12, 24, 
and 52 weeks. The data from 24 and 52 weeks were only 
used as a reference for the “true” HbA1c.

Inclusion criteria for baseline HbA1c and FPG 
were 7.5%– 9.8% (58.5– 83.6 mmol/mol; HbA1c (mmol/
mol) = 10.93 ⋅ HbA1c (%) –  23.5 mmol/mol)15 and 7.0– 
13.3 mmol/L,13 respectively. In addition, patients with 
glucose <4.5 mmol/L were excluded. These criteria 
were applied in a postprocessing step of the simula-
tions and to the corresponding “true” underlying glu-
cose concentrations without residual error. Thus, with 
the addition of residual error, the glucose could range 
outside the inclusion criteria, and the model used for 
simulations (i.e., IGRH model) would not necessarily 
provide the best fit.

A standardized meal plan was used with three large 
meals (62.5 g glucose) and three snacks (12.5 g glucose) 
per day, consumed at 8:00, 12:00, and 18:00 and at 10:00, 
15:00, and 21:00, respectively. The baseline sample was 
taken before treatment initiation. Parallel, placebo- 
controlled studies were simulated, each with the follow-
ing five arms: placebo, 500 and 1000 mg twice daily of a 
metformin- similar drug, and 1.2 and 1.8  mg once daily 
of a liraglutide- similar drug. The metformin- similar drug 
was simulated with the delayed inhibition of endogenous 
glucose production (EGP),16 and the liraglutide- similar 
drug was simulated with direct stimulation of the incre-
tin effect.17 The incretin analog was titrated to the desired 
dose with 0.6 mg/week.18 Both placebo effect and disease 
progression acted on glucose at steady state, a param-
eter of the IGI model. Placebo effect was implemented 
as an instantaneous decrease of 0.1 mmol/L,19 whereas 
disease progression was time related with an increase 
of 0.2 mmol/L/year.20 The pharmacokinetics (PK) and 
effects on glucose of the liraglutide- similar drug were 
simulated using a previously published model,17 with a 
linear stimulation of insulin secretion by liraglutide con-
centrations. To align the HbA1c observations created by 
the simulation with the published outcome,17 the vari-
ability of clearance and volume of distribution were 
halved. Metformin PK was simulated using a previously 
published model.21 The effect of metformin on glucose 
was implemented with a maximal fractional inhibition 
(Imax) function on EGP, and the delayed onset was han-
dled with an effect- compartment model. The parameters 
of the delayed effect on EGP were adjusted to capture the 
magnitude and shape of the metformin response reported 
by Williams- Herman et al.22 and were the following: Imax 
= 0.8, concentration giving half of Imax (IC50) = 0.1 mg/L, 
and rate constant of delayed effect (ke0) = 0.0003 h−1 (cor-
responding to a turnover of 20 weeks). Each study was 

simulated with 100 individuals per arm, and in total 100 
studies were simulated and analyzed.

Investigated models

Figure 1 summarizes all investigated models.

Nathan regression

The Nathan regression is a linear regression between 
MPG and HbA1c at steady state7:

where β1 = 0.629 L/mol and β2 = 1.629% (8.226 mmol/mol)2 
and are slope and intercept, respectively. In this model, MPG 
could be observed or modeled.

ADOPT model

The ADOPT model consists of two linked indirect re-
sponse models, a model for the MPG and a model for 
HbA1c, where formation is driven by MPG and the inter-
cept between MPG and HbA1c at steady state (β), where 
kin,MPG and kin,HbA1c are input rate of MPG and HbA1c, 
respectively, while kout,MPG and kout,HbA1c are output rate 
constants, for MPG and HbA1c, respectively.8

IGRH model

The IGRH model describes HbA1c formation through 
the life span of RBC using 12 nonglycated (RBC1…12) and 
12 glycated (RBCg,1…12) compartments of RBC. Each pair 
(i.e., RBCx and RBCg,x) represents various ages of RBCs.9 
The life span of RBC is inversely correlated with MPG, 
such that the life span is shorter with high glucose. In ad-
dition, a fraction of the precursors of RBCs are glycated at 
the release into the central circulation. Glycation is driven 
by MPG, and MPG could be modeled with an indirect re-
sponse model (as ADOPT, Equation 2).

(1)HbA1c = �1 ⋅MPGSS,mmol∕L + �2

dMPG

dt
=kin,MPG−kout,MPG ⋅MPGmmol∕L

(2)dHbA1c
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=
(
MPGmmol∕L(t)+�

)
kin,HbA1c−kout,HbA1c ⋅HbA1c

(3)

HbA1c
(
MPGmg∕dL(t)

)

=
RBCg,1

(
MPGmg∕dL(t)

)
+ ⋅ ⋅ ⋅ +RBCg,12

(
MPGmg∕dL(t)

)
Total RBC
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FHH model

In the FHH model, HbA1c is formed by FPG in a nonlinear 
manner, related to the shape factor (γ).10 FPG is modeled with 
an indirect response model, and glycation is driven through 
the life span of RBCs, similar to the IGRH model, with four 
nonglycated (RBG1…4) and four glycated (RBCg,1…4) compart-
ments of RBCs of varying age. The life span of RBC is constant 
in this model, and no glycation of precursors is assumed.

FFH2 model

The FFH2 model consists of three linked indirect response 
models for FSI, FPG, and HbA1c.12 The IGI model gen-
erates FPI measurements, whereas the FFH2 model was 

developed for FSI measurements. For simplicity, FSI was 
assumed to be equal to FPI.23 FPG stimulates production 
of FSI, and FSI inhibits production of FPG. Baseline con-
ditions of FPG and FSI are parameters in the model, from 
which β- cell function (BCF) and insulin sensitivity (IS) 
are derived using the homeostatic assessment (HOMA) 
model.24 HbA1c is formed by FPG.

FFHSS model

The FFHSS model is similar to the FFH2 model except that 
(1) BCF and IS are parameters of the model from which 

dFPG

dt
=kin,FPG−kout,FPG ⋅FPGmmol∕L

(4)

HbA1c
(
FPGmmol∕L(t)

�
)

=
RBCg,1

(
FPGmmol∕L(t)

�
)
+ ⋅ ⋅ ⋅ +RBCg,4

(
FPGmmol∕L(t)

�
)

Total RBC

dFSI

dt
=BCF ⋅

(
FPGmmol∕L−3.5

)
⋅kin,FSI−kout,FSI ⋅FSI�U∕mL

dFPG

dt
=

kin,FPG

IS ⋅FSI�U∕mL
−kout,FPG ⋅FPGmmol∕L

(5)dHbA1c

dt
=FPGmmol∕L ⋅kin,HbA1c−kout,HbA1c ⋅HbA1c

F I G U R E  1  Schematic representation of the models. In the developed Nathan model, the MPG from the ADOPT model was used. Red 
indicates inhibition, and green indicates stimulation. ADOPT, A Dynamic HbA1c Endpoint Prediction Tool; BCF, β cell function; f(G), 
indicates where glucose has an effect; f(IN), glycation of precursors of hemoglobin; FFH2, FSI- FPG- HbA1c; FFHSS, FSI- FPG- HbA1c with 
steady- state solution; FHH, FPG- Hb- HbA1c; FPG, fasting plasma glucose; FSI, fasting serum insulin; Hb, hemoglobin; HbA1c, glycated 
hemoglobin; IGRH, Integrated Glucose- RBC- HbA1c; IS, insulin sensitivity effect; KG, glucose turnover; Kin, input rate constant; Kout, output 
rate constant; Ktr, transit rate constant; L1, liraglutide- similar drug effect on MPG/FPG; L2, liraglutide- similar drug effect on postprandial 
glucose; LS, lifespan; M, metformin- similar drug effect; MPG, mean plasma glucose; RBC, red blood cells.
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baseline FPG and FSI are derived using the HOMA model 
and (2) a steady- state solution is used instead of differen-
tial equations for FPG and FSI.11 The steady- state solution 
is implemented to satisfy:

in which kI and kG are kin,FSI/kout,FSI and kin,FPG/kout,FPG, re-
spectively. Solving the quadratic equation, keeping the posi-
tive solution, gives the following:

 FSI was assumed to be equal to FPI.23

Model building

The workflow of the study is presented in supplementary 
material Figure S1.

For the Nathan regression, two approaches were inves-
tigated to extrapolate 24-  and 52- week HbA1c (HbA1c24/52). 
In Approach i, HbA1c24/52 was calculated from the ob-
served MPG at Weeks 12, 8, 6, or 4, and in Approach ii, 
HbA1c24/52 was calculated from the model predictions of 
MPG at 24/52 weeks. Approach i used only observed glu-
cose data at a particular study week (12, 8, 6, or 4), whereas 
Approach ii used all glucose data up to and including a 
particular study week in a model that predicted the MPG 
at 24/52 weeks. An indirect response model was used to 
model MPG data (the MPG part of Equation 2).

For the dynamic models (i.e., ADOPT, IGRH, FHH, 
FFHSS, and FFH2), the following two approaches to extrap-
olate HbA1c24/52 were investigated: (1) use a model where 
full model building was performed, assessing the need for 
structural changes between glucose and HbA1c, and (2) use 
the published model with priors from the original publica-
tions for all parameters unrelated to drug effect,25 not allow-
ing changes of the relationship between glucose and HbA1c. 
Model development was performed simultaneously for all 
studies. In Approach 1, model development of IGRH and 
FHH included investigations of the number of transit com-
partments. Full model development was performed indepen-
dent of the approach for the drug effects, and the associated 
parameters were estimated without priors. Both approaches 
used biomarker data, that is, glucose, insulin (FFHSS and 
FFH2), and HbA1c, up to and including 12, 8, 6, or 4 weeks.

Drug effects were explored on the glucose (and insulin, 
when applicable) with various shapes, such as linear, Emax, 

and sigmoidal Emax models. In ADOPT, IGRH, and FHH, 
the drug effect was implemented multiplicative to glucose 
kin and kout. Delay of metformin concentrations for the effect 
was explored, as was drug- specific glucose kout. In FFHSS 
and FFH2, drug effect was investigated on BCF, IS, and the 
turnover of FPG (kG) for both drug arms. In addition, for 
FHH and FFHSS, an additional FPG- dependent effect of the 
liraglutide- similar drug was investigated on HbA1c.

The final parameters were determined simultane-
ously for all studies and later used to provide extrapola-
tions of ΔHbA1c at 24 weeks (ΔHbA1c24) and 52 weeks 
(ΔHbA1c52) from the point estimates without uncertainty.

Model discrimination, result evaluations,  
and software

Model development was guided by objective function 
value (OFV), goodness- of- fit graphs, predictive perfor-
mance and changes in interindividual variability (IIV), 
and relative standard error. The likelihood ratio test with a 
p value = 0.05 and the Akaike information criterion (AIC) 
were used for hierarchical models and non- hierarchical 
models, respectively. Predictive performance was assessed 
using visual predictive checks (VPCs) with 1000 samples, 
assessing the 2.5th, 50th, and 97.5th percentiles of simu-
lated data compared with the corresponding percentiles 
of observed data.

Extrapolation performance of the dynamic models was 
assessed both graphically and statistically by comparing the 
“true” ΔHbA1c24/52 to model extrapolations. Graphically, 
the median of the observed ΔHbA1c24/52 and the median 
and the 95% confidence interval (CI) of the model- predicted 
ΔHbA1c24/52 per dose were displayed. In addition, the ob-
served and model- predicted ΔHbA1c24 were tested with an 
unpaired, two- sided t- test for each model, study duration, 
and dose to assess the statistical significance between model 
predictions and observations. To assess whether predictions 
at 24 and 52 weeks differed, the model- predicted ΔHbA1c24 
and ΔHbA1c52 were tested with a paired, two- sided t- test 
for each model, study duration, and dose. The p- value was 
assessed as the median of all p values of all t- tests performed 
for each study (N  =  100). The Nathan regression was as-
sessed as the median response (i.e., ΔHbA1c24/52) and 90% 
range of all individuals in the study, comparing the “true” 
response to extrapolations.

To assess the overall predictive performance of 
Approach 1 for both drugs simultaneously, model av-
eraging (MA) with three different MA approaches was 
performed: AIC (focusing on descriptive performance), 
cross- validation (CV; focusing on predictive performance26 
[E. Salomonsson, 2019, unpublished data]), and bootstrap 
(BS; focusing on parameter uncertainty).27 As the models 

0 = FPG2 + 3.5FPG −
kG

kI ⋅ IS ⋅ BCF

FPG= −
3.5

2
+

√(
3.5

2

)2
+

kG

kI ⋅ IS ⋅BCF

(6)FSI = kI ⋅ BCF ⋅ (FPG − 3.5)
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used different biomarkers, the MA assessments were per-
formed in the following two steps: (1) parameter esti-
mation with the required biomarkers and (2) prediction 
of HbA1c with fixed parameters from Step 1 to generate 
HbA1c- specific OFV. These HbA1c- specific OFVs for both 
drugs were then used to calculate the MA weights28:

where ΔIm is the difference in OFV between the model 
with the lowest OFV (Im,min), that is, the best model and all 
other models; M is the number of compared models; and n 
is the number of individuals. Predictions of ΔHbA1c were 
generated using the MA weights to scale the predictions of 
ΔHbA1c from each model. The stepwise workflow of all 
three MA approaches is presented in the Supplementary 
Text.

Data management, statistical calculations, and graph-
ical evaluation were performed using R Version 4.0.3 (R 
Foundation for Statistical Computing, Vienna, Austria).29 
The simulation, estimation, and extrapolation steps 
were performed using NONMEM Version 7.4.4 with 
PsN Version 5.2.0 (Icon Development Solutions)30 using 
Perl- speaks- NONMEM.31

RESULTS

Model development

With full model building, all parameters of the models 
were estimated except for three physiological parame-
ters of the IGRH model, which were fixed to published 
values: life span of RBCs, life span of precursors, and IIV 
in precursor life span. Changing the number of transit 
compartments (IGRH and FHH models) did not improve 
the fit. A statistically significant improvement was seen 
when including a correlation between the IIV of base-
line glucose and the life span of RBC (∆OFV = −1212). 
All models showed good predictive performance within 
the study (assessed by VPCs) and satisfactory goodness 
of fit. Although the developed models showed overall 
slightly better fits than the corresponding models re-
lying on priors (data/figures not shown), estimations 
showed no signs of misfit in comparison with the data 
used to estimate parameters.

Independent of approach, the same structural models 
were identified for the drug effects, that is, the descrip-
tion of metformin and liraglutide effects on glucose/

insulin were unaffected by assumptions about the rela-
tionship between glucose and HbA1c. Metformin was best 
described with an Imax function inhibiting kin,MPG/FPG for 
Nathan, ADOPT, IGRH, and FHH and the FPG turnover 
for FFHSS and FFH2. An additional delay was estimated 
when metformin drug effects were implemented on the 
turnover in the FFHSS and FFH2. Liraglutide was best de-
scribed with an Emax function stimulating kout,MPG/FPG for 
Nathan, ADOPT, IGRH, and FHH and a linear stimula-
tion of BCF for FFHSS and FFH2. For FHH and FFHSS, the 
liraglutide was significantly improved when estimating an 
additional, FPG- dependent drug effect on HbA1c (FHH 
and FFHSS: ∆OFV = −5118 and ∆OFV = −3668, respec-
tively, Approach 1).

The additional FPG- dependent liraglutide dose– effect re-
lationship (L2) was implemented as the Emax model. Due 
to long runtimes, an additional FPG- dependent liraglutide 
effect was not investigated for FFH2. Estimating a drug- 
specific MPG/FPG kout significantly improved the fits for 
ADOPT and FFH2.

Prediction performance

The main results are shown in Figures  2, 3, and 4 (ex-
trapolations for 52 weeks in supplementary material, 
Figures  S2 and S3). Model- predicted ΔHbA1c24 and 
ΔHbA1c52 differed for FFHSS and FFH2 according to the 
t- tests performed, and ΔHbA1c52 provided worse predic-
tions than ΔHbA1c24. All other models showed no statis-
tical difference between predictions. Thus, for simplicity, 
only the best results (i.e., ΔHbA1c24) are discussed in the 
following sections.

Nathan regression

For the Nathan regression, ΔHbA1c extrapolations 
using model- predicted MPG were more precise than ex-
trapolations using observed MPG (Figure  2). The dose 
response was similar and overpredicted for most sce-
narios. It is clear from the variability of predictions that 
the model- predicted MPG did not propagate the glucose 
variability into HbA1c predictions, which the observed 
MPG did.

For the drug with delayed effect (i.e., metformin- 
similar), the best prediction was seen after 4 weeks of 
data. This may seem surprising at first, however, as this 
method overpredicted ΔHbA1c24 with a good prediction 

(7)ΔIm = Im − Im,min

(8)Wm =
1

n

⎛⎜⎜⎝
e
−ΔIm
2

∑M
m�=1 e

ΔIm�

2

⎞⎟⎟⎠

(9)dHbA1c

dt
=FPGmmol∕L ⋅L2 ⋅kin,HbA1c−kout,HbA1c ⋅HbA1c
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of glucose, an underprediction of glucose from 4 weeks 
of data resulted in an apparent better extrapolation. The 
Nathan regression with model- predicted MPG was insen-
sitive to study duration reduction and showed the same 
overprediction for shorter studies as was observed for 
12 weeks, indicating a robust model for MPG despite the 
data reduction.

Dynamic models

As shown in Figures 3 and 4, the ΔHbA1c24 extrapola-
tions using 12- week data were similar between devel-
oped models and models relying on priors; however, 
as study duration shortened, the differences became 

more pronounced. In general, the developed models 
performed equal to or better than the models relying on 
priors. Notably, the IGRH model, used for data creation, 
showed the largest difference between the approaches, 
with the better performance of the developed model. 
Also, the FHH model showed some difference for the 
shorter study durations (4 and 6 weeks), with the prior 
model overpredicting the dose response, in particular 
for liraglutide (i.e., the direct drug effect on the secre-
tion of insulin). Notable, for 4 weeks of metformin data, 
the prior model of FHH was better at extrapolating 
ΔHbA1c24 than the developed model. Also, the FFH2 
with priors outperformed the developed model for  
the 4- week study duration with metformin treatment. 
The glucose predictions of metformin treatment with the 

F I G U R E  2  The 24- week individual extrapolations of change in HbA1c from the Nathan regression7 for the liraglutide-  (top panels) 
and metformin- similar drugs (bottom panels). The figure displays observed response (black) compared with extrapolated response using 
observed MPG (Approach i, gray) and model- predicted MPG (Approach ii, blue) for different study durations (from left to right): 12, 8, 6, 
and 4 weeks. The lines represent medians, whereas the shaded areas (extrapolations) and error bars (observed) display the 90% range of 
individuals’ responses in the study. HbA1c, glycated hemoglobin; MPG, mean plasma glucose.
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prior models are similar across study durations for these 
models (supplementary material Figure  S5) and thus  
the difference must be in the estimate of turnover of 
Hb/HbA1c, which appeared sensitive to the study dura-
tion reduction.

Using 12 weeks of data, most models performed well in 
predicting ΔHbA1c24 (Figures 3 and 4). The ADOPT and 
FHH models overpredicted the liraglutide- similar drug, 
dose = 1.2 mg (p = 0.018 and p = 0.032, respectively), but 
other arms with these models and all arms of the IGRH 
model performed well. The worst performance was seen 
by the FFHSS model (both drugs). Wellhagen et al. re-
ported similar results.13 The second- worst model was 
FFH2, which showed misprediction in particular for lira-
glutide, although smaller than FFHSS.

In general, changes in extrapolations of ΔHbA1c24 
were surprisingly small as the study duration was reduced. 
The dynamic models displayed two different distinct be-
haviors: a gradual overprediction of the dose response 
for the liraglutide- similar drug with a shorter study du-
ration (IGRH and FFHSS) and a gradual deterioration of 
the dose response for the metformin- similar drug with a 
shorter study duration, where ADOPT and FHH gradually 
underpredicted dose response and FFH2 overpredicted. 
These gradual changes for metformin appear to be linked 
to changes in glucose extrapolations (supplementary ma-
terial Figure S5); however, the glucose data of liraglutide 
(supplementary material Figure S4) do not indicate a rea-
son for the gradual deterioration of the IGRH model with 
reduced study duration, and thus the reason must be in 
the estimates of turnover of Hb/HbA1c.

The MA weights were similar across all approaches 
(AIC, CV, and BS) and in line with the results of the sta-
tistical testing and the graphical assessment (Figure  5). 
The FFHSS model was assigned the lowest MA weight 
for all approaches and study durations. The MA weights 
were similar for all other models, with generally slightly 
lower weights for FFH2 compared with ADOPT, IGRH, 
and FHH. The ADOPT model was weighted considerably 
lower for the shortest study duration, transferring weight 
to the IGRH model. This considerable deterioration of the 
ADOPT model for the shortest study duration may seem 
surprising as the ADOPT model appeared rather insensi-
tive to study duration reductions for the liraglutide- similar 

drug. However, as the MA weight represents the average 
weight for both treatments, the low MA weight for the 
ADOPT model with a study duration of 4 weeks originates 
from the model's poor extrapolation of the metformin- 
similar drug.

Using the MA weights for extrapolations of ΔHbA1c 
showed that the differences between the MA- based ex-
trapolations were similar to the best model (Figure 6; the 
ADOPT model for 12, 8, and 6 weeks and the IGRH model 
for 4 weeks of study duration) and that the predictions 
were better captured with the MA extrapolations, com-
pared with the best single model, in the short- duration 
studies (4 weeks with both drugs, and 6 weeks with 
metformin).

DISCUSSION

In this work, the predictive performance for the 24-  and 
52- week dose response of six models of HbA1c was inves-
tigated in relation to reduced study durations and drugs 
with different mechanisms of action. A natural extension 
of our work would be to investigate the findings on study 
duration with clinical data from another compound in de-
velopment to validate the study duration exploration.

All pharmacometric models performed reasonably 
well in predicting the long- term HbA1c for different 
drugs and doses except for the FFH models. The FFH2 
had a slightly better performance than the FFHSS; how-
ever, neither of them performed on par with ADOPT, 
IGRH, or FHH. The FFH models use an indirect re-
sponse model driven by FPG for HbA1c. The IGRH 
model uses a transit model driven by MPG, the ADOPT 
model uses an indirect response model driven by MPG, 
and the FHH model uses a transit model driven by FPG 
in a nonlinear relationship. Thus, it appears as if MPG 
or a nonlinear FPG driving HbA1c is crucial for a good 
predictive performance. In addition, the FFH models 
are the only models that use insulin in the assessment. 
Thus, alternatively, the poor extrapolation properties 
may be related to insulin. This explanation is, however, 
less likely than the earlier hypothesis because the glucose 
extrapolations of these models were good (Figure S4 and 
S5) and the main driver for the relationship with HbA1c 

F I G U R E  3  The 24- week study extrapolations of change in HbA1c for different doses of the liraglutide- similar drug with the dynamic 
models (top to bottom): ADOPT,8 IGRH,9 FHH,10 FFHSS,11 FFH2,12 and Nathan.7 The figure displays the observed response (black) compared 
with the extrapolated response from models relying on priors (red) and developed models (blue) for the study durations (left to right): 12, 
8, 6, and 4 weeks. Statistically significant differences in responses between extrapolations from the developed models and observations 
are indicated with asterisks (* <0.05, ** <0.01, *** <0.001). The lines represent medians, whereas the shaded areas correspond to the 95% 
confidence intervals of the extrapolated responses in 100 studies. ADOPT, A Dynamic HbA1c Endpoint Prediction Tool; FFH2, FSI- FPG- 
HbA1c; FFHSS, FSI- FPG- HbA1c With Steady State; FHH, FPG- Hb- HbA1c; FPG, fasting plasma glucose; FSI, fasting serum insulin; Hb, 
hemoglobin; HbA1c, glycated hemoglobin; IGRH, Integrated Glucose- RBC- HbA1c; ns, not significant; RBC, red blood cells.
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is glucose. Similar studies have provided support for the 
superiority of MPG over FPG in predicting HbA1c.32 A 
nonlinearity factor of FPG in the FFH models may im-
prove predictive performance; however, this was not in-
vestigated in the current work.

We showed in this study that, despite ignoring 
the disease progression, models with reasonable ex-
trapolations of ΔHbA1c24 provided equally good ex-
trapolations of ΔHbA1c52, also for shorter study 
durations. In the current work, simulations to create 
data were performed with a linear disease progression 
of 0.2 mmol/L/year in fasting glucose, corresponding 
to ~0.15%/year (0.76 mmol/mol/year; HbA1c (mmol/
mol) =  10.93 ⋅ HbA1c (%)  –   23.5 mmol/mol) in HbA1c. 
This small progression originates from the placebo arm 
in the study by Pratley et al.20 In a study population 

with a faster progression, the validity of the conclusions 
would be affected and the estimation model would have 
to include disease progression to perform equally well. 
A disease progression, as was used in the current work, 
on fasting glucose is a simplification of diabetic disease 
progression, which would also impact the postprandial 
glucose response. This simplification may have implica-
tions for the conclusions of the extrapolations, in par-
ticular for the liraglutide- similar drug, which has an 
additional effect on postprandial glucose.

Among the models that performed well with 12 weeks 
of data (ADOPT, IGRH, and FHH), shortening the study 
duration only marginally affected the extrapolations. The 
deterioration from 12 to 8 weeks of data was within ac-
ceptable limits. Changes in ΔHbA1c24 between 12 and 
8 weeks were 0%, 0.15%, and 0.08% for the highest dose 

F I G U R E  4  The 24- week study extrapolations of change in HbA1c for different doses of the metformin- similar drug with the dynamic 
models (top to bottom): ADOPT,8 IGRH,9 FHH,10 FFHSS,11 FFH2,12 and Nathan.7 The figure displays the observed response (black) compared 
with the extrapolated response from models relying on priors (red) and developed models (blue) for the study durations (left to right): 12, 
8, 6, and 4 weeks. Statistically significant differences in responses between extrapolations from developed models and observations are 
indicated with asterisks (* <0.05, ** <0.01, *** <0.001). The lines represent medians while the shaded areas correspond to the 95% confidence 
intervals of the extrapolated responses in 100 studies. ADOPT, A Dynamic HbA1c Endpoint Prediction Tool; FFH2, FSI- FPG- HbA1c; 
FFHSS, FSI- FPG- HbA1c With Steady State; FHH, FPG- Hb- HbA1c; FPG, fasting plasma glucose; FSI, fasting serum insulin; Hb, hemoglobin; 
HbA1c, glycated hemoglobin; IGRH, Integrated Glucose- RBC- HbA1c; ns, not significant; RBC, red blood cells.

F I G U R E  5  Model- averaging weights 
(in percentages) per model (from left to 
right: ADOPT,8 IGRH,9 FHH,10 FHHSS,11 
FFH212) from the model- averaging 
approaches (from top to bottom: AIC, 
BS, CV) for different study durations 
(12, 8, 6, and 4 weeks of data). ADOPT, 
A Dynamic HbA1c Endpoint Prediction 
Tool; AIC, Akaike information criterion; 
BS, bootstrap; CV, cross- validation; FFH2, 
FSI- FPG- HbA1c; FFHSS, FSI- FPG- HbA1c 
With Steady State; FHH, FPG- Hb- HbA1c; 
FPG, fasting plasma glucose; FSI, fasting 
serum insulin; Hb, hemoglobin; HbA1c, 
glycated hemoglobin; IGRH, Integrated 
Glucose- RBC- HbA1c; RBC, red blood 
cells.

ADOPT IGRH FHH FFHSS FFH2

A
IC

C
V

B
S

10

15

20

25

30

10

15

20

25

30

10

15

20

25

30

Pe
rc

en
ta

ge
 [%

]

Study duration 12 weeks 8 weeks 6 weeks 4 weeks

Model Averaging Weights



1454 |   KUNINA et al.

F I G U R E  6  The 24- week study extrapolation of change in HbA1c for different doses of the (a) liraglutide-  and (b) metformin- similar drugs 
comparing observed responses (black) to MA (red) and the corresponding best model (blue), that is, ADOPT8 for 12, 8, and 6 weeks and IGRH9 
for 4 weeks. The lines correspond to the medians, whereas the shaded areas correspond to the 95% confidence intervals of the extrapolated 
responses in 100 studies. ADOPT, A Dynamic HbA1c Endpoint Prediction Tool; AIC, Akaike information criterion; BS, bootstrap; CV, cross- 
validation; HbA1c, glycated hemoglobin; IGRH, Integrated Glucose- RBC- HbA1c; MA, model averaging; RBC, red blood cells.
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of the liraglutide- similar drug and 0%, 0.08%, and 0.04% 
for the highest dose of the metformin- similar drug for 
ADOPT, IGRH, and FHH, respectively. Reducing the du-
ration further to 6 weeks resulted in considerable deteri-
oration for the IGRH model with the liraglutide- similar 
drug and some deterioration for the ADOPT model with 
the metformin- similar drug. Thus, as general advice based 
on the results in this study, reducing the study duration to 
8 weeks would only marginally affect the predictive per-
formance of the good- performing models (ADOPT, IGRH, 
and FHH) with the investigated types of drugs.

The ADOPT model performed the best overall. This 
was supported by both the statistical and graphical assess-
ments of extrapolation as well as the MA approaches. The 
combination of a flexible model structure and MPG- driven 
HbA1c seems beneficial. Møller et al.32 reported that the 
ADOPT model had good predictive performance for var-
ious phase III studies, however, without comparisons 
with other models. Wellhagen et al.13 concluded that the 
ADOPT model, despite a simple structure, performed well 
in comparison with other, more complex models with var-
ious hypothetical drug effects, however, only for the usage 
of 12- week data. We showed in the current work that the 
ADOPT model was rather insensitive to the reduction of 
study duration, except with study duration much shorter 
than the drug effect onset for delayed effects (4- week 
metformin). Thus, this model appears to be an overall 
good choice for predicting HbA1c from MPG. The poten-
tial challenge using MPG is that 24- h glucose sampling is 
commonly not done in early- phase drug development for 
noninsulin therapeutics, thus the appropriate biomarker is 
often missing.

The next best models were the IGRH and the FHH. A 
good performance of the IGRH model was expected, as the 
model was used for data creation, although the data were 
postprocessed with the inclusion criteria. Surprisingly 
though, the IGRH model relying on priors, identical to the 
model used for data creation, had a worse performance 
than the developed IGRH model. The observed misfit 
between prediction and “true” likely originated from the 
inflexibility of the IGRH model with priors, in particu-
lar, the lack of correlations between estimates of IIV. It 
is possible that although the simulations were performed 
without these correlations, they were introduced by the 
inclusion criteria applied.

The MA approaches provided an overall assessment 
for both drugs simultaneously. Based on those results, the 
IGRH and the FHH models were weighted equally in all 
but the shortest study duration. Unsurprisingly, the FHH 
model was struggling with extrapolating liraglutide, where 
the drug effect is related to postprandial glucose. The model 
performance of the FPG- driven models was improved with 
an additional FPG- dependent effect, allowing an additional 

degree of freedom for the relationship between FPG and 
HbA1c. However, despite this addition, the model could not 
fully capture the glucose- HbA1c relationship.

In the IGRH, FHH, and Nathan models, the rela-
tionship between MPG and HbA1c is less flexible than 
in the ADOPT model. In the IGRH and FHH models, 
the life span of RBC is less flexible than the turnover of 
HbA1c in the ADOPT model, as it is kept at physiolog-
ically reasonable estimates. Thus, the misfits of glucose 
cannot be compensated with changes in the relationship 
between MPG and HbA1c, with these less- flexible mod-
els. The 12- week data provide an excellent fit of glucose 
(see Figures S4 and S5), whereas the change in HbA1c 
is slightly overpredicted for these inflexible models. 
Consequently, when the drug effect is delayed, the glu-
cose is naturally underpredicted with a reduced study 
duration, and thus, the apparent predictions of HbA1c 
improve with a shorter study duration.

The Nathan regression overpredicted the extrapola-
tion of dose response, although with a better representa-
tion of variability when using model- predicted MPG. As 
the Nathan regression propagates the measurement error 
of MPG to HbA1c predictions, we recommend that when 
using the Nathan regression, MPG should be modeled. In 
addition, although model- based MPG improved the pre-
dictions, this approach assumes a relationship between 
steady- state MPG and HbA1c without IIV, an issue that 
has been discussed previously.33 As such, the predictions 
of HbA1c using pharmacometric models are preferred as 
they account more accurately for IIV in the relationship 
between glucose and HbA1c. In addition, some of the 
dynamic models provide better extrapolation than the 
Nathan regression.

Supporting the parameter estimation using information 
from prior analyses may be beneficial, especially when in-
formation in the current analysis is sparse.22,34 However, in 
the current study, the performance of these prior models 
was worse than for the developed models, sometimes even 
with the sparsest information (i.e., 4- week study duration). 
As the dose– response relationship was the same between 
the prior and developed models, the differences (Figures 3 
and 4) originate from parameter estimates. If the estima-
tions had been initialized at values further away from the 
priors, the results might have been different.

In addition to the dose– response extrapolation, we 
used MA to quantify the differences between the per-
formance of the models. Standard MA could not be 
performed with these models as they use different 
biomarkers to predict HbA1c. Thus, we developed an 
approach enabling MA for models using different bio-
markers. Further investigations of this approach are 
needed to explore the general applicability; however, 
for the current application, it was feasible and provided 
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consistent support for the results of the extrapolations 
through the MA weights (Figure  5). The trends of the 
MA weight seem to be unaffected by the approach used 
to derive them (i.e., AIC, XV and BS). Thus the ranking 
of models was similar independent if derived based on 
overall fit (i.e., AIC), predictive performance (i.e., XV) 
or uncertainty assessment (i.e., BS); the ADOPT model 
was weighted the highest, except with 4- week study du-
ration, where the IGRH model was the best model. For a 
short study duration (4 and 6 weeks), the MA approaches 
(any of the investigated) seem to provide an alternative 
in terms of more accurate extrapolations (Figure 6).

CONCLUSION

In conclusion, the prediction performance of previously pub-
lished models of HbA1c with the key focus on their extrapo-
lation properties was analyzed and compared. Overall, the 
ADOPT model showed the best prediction performance for 
drugs with direct or delayed drug effects with the short study 
duration, closely followed by the IGRH and FHH models. 
The Nathan regression can be used for a quick assessment 
but does result in a bias. In addition, if the Nathan regression 
is used, the MPG should be predicted with a model. Overall, 
a study duration of at least 8 weeks is needed for accurate 
long- term HbA1c predictions with the investigated models. 
For shorter study durations, weighting the model extrapola-
tions with MA provides a better prediction. Thus, there ap-
pears to be room for a reduction in study duration in trials 
of HbA1c.
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