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ABSTRACT

Objective: Advancements in human genomics have generated a surge of available data, fueling the growth and

accessibility of databases for more comprehensive, in-depth genetic studies.

Methods: We provide a straightforward and innovative methodology to optimize cloud configuration in order

to conduct genome-wide association studies. We utilized Spark clusters on both Google Cloud Platform and

Amazon Web Services, as well as Hail (http://doi.org/10.5281/zenodo.2646680) for analysis and exploration of

genomic variants dataset.

Results: Comparative evaluation of numerous cloud-based cluster configurations demonstrate a successful and

unprecedented compromise between speed and cost for performing genome-wide association studies on 4 dis-

tinct whole-genome sequencing datasets. Results are consistent across the 2 cloud providers and could be

highly useful for accelerating research in genetics.

Conclusions: We present a timely piece for one of the most frequently asked questions when moving to the

cloud: what is the trade-off between speed and cost?
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INTRODUCTION

As datasets become increasingly larger and more abundant, science

faces a new challenge: how to overcome the economic and techno-

logical barriers that arise when trying to store and analyze the data

generated by large sample sizes. Every year, the scale of available ge-

nomic variant datasets nearly doubles.1–3 This has led to a recent

broad interest in genomics analyses using cloud computing.4–6 For

example, investigators have launched a new large-scale initiative,

called the Trans-Omics for Precision Medicine (TOPMed) program,

as part of the Precision Medicine Initiative. TOPMed focuses on the

integration of thousands of whole genomes7,8 gathered across sev-

eral studies. The processing of such large amounts of data9,10 is un-

precedented and requires significant funding for both storage and

computation.

A solution, perhaps the only sustainable one currently available,

is cloud-distributed computing systems.11–14 Because the costs of

such a solution remain obscure for common genomic operations,

many investigators remain tentative or unsure of the suitability of

cloud computing for their purpose; therefore, we undertook this

study to clarify those costs.

We present an adaptable and reproducible method to deploy

Spark clusters using Hail, an open-source, scalable framework for
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exploring and analyzing genetic data, as well as variant storage. We

also utilized the cloud service Google Dataproc in the Google Cloud

Platform (GCP) and the cloud platform Amazon Elastic MapReduce

(EMR) in Amazon Web Services (AWS) for performing genomic var-

iant analysis with whole-genome sequencing (WGS) data. Therefore,

we offer a promising strategy to accelerate functional interpretation

of genetic variants15,16 and discover their association with human

disease in particular for genome-wide association study (GWAS)

analysis.17–19

In order to estimate the required computational infrastructure

needed, we performed cost analyses of GWAS20 using 4 different

datasets from the 1000 Genomes Project21,22 and the TOPMed WGS

program. Our goal was to optimize and customize cloud resources to

fit computation and storage needs. We further offered appropriate

strategies for using cloud resources by assessing the best cluster config-

uration for a GWAS analysis based on total cost23 and runtime.

MATERIALS AND METHODS

Study sample and variant calling format
For this study, we used 4 different WGS datasets from the 1000

Genomes Project and TOPMed project, as well as the COPDGene

Study and Jackson Heart Study. First, phases 1 and 3 of the 1000

Genomes Project were publicly and readily available in Google

cloud buckets (gs://1000-genomes on Google Cloud Storage and

s3://1000genomes/in Amazon S3). Freeze 4 (COPDGene Study) and

freeze 5 (Jackson Heart Study) obtained variant data in variant call

format (VCF) files for every sample in a specific freeze. These corre-

sponded to aggregate single nucleotide polymorphisms (SNPs) for

each study. We combined VCF files using the function merge in

bcftools24 of the dbGap database (see Table 1 and Supplementary

Appendix File 1). We imported VCF files and transformed them into

a Hail Matrix Table object (.mt). We note that we found it advanta-

geous to use .mt files in Hail, as they are written and read faster

than VCF files (see Supplementary Appendix 1).

GWAS analysis
We chose the variable gender present in all 4 GWAS datasets: female

vs male as case and control group. Though both Python and Jupyter

notebook scripts applied to the 4 datasets, we executed the necessary

steps one would use to perform a GWAS (see Figure 1). Specifically,

we utilized genotype information (GT) for many genetic markers, di-

vided upon chromosomes. We deployed the standard quality proce-

dures for genomics data.25 Then, we filtered the results based upon

minor allele frequency of the most common SNPs representing more

than 1%. We further checked for missing values. We then corrected

for population structure by performing a principal component analy-

Table 1. Whole-genome sequencing datasets description used to

conduct the genome-wide association study

Project releases VCF file

size in GB

MT file

size in GB

SNPs Samples

1KG Phase 1 1231 250 38 248 779 1092

1KG Phase 3 853 12 77 253 690 2535

COPD Freeze 4 52a 102 69 023 355 1886

Jackson Freeze 5 29a 34 74 623 050 3406

1KG: 1000 Genomes Project; GB: gigabytes; MT: Matrix Table; SNP: sin-

gle nucleotide polymorphism; VCF: variant call format.
aCompressed VCF file size.

Figure 1. Overview of a genome-wide association study using Hail variant store us-

ing 1000 Genome Project dataset Phase 3. EUR, EAS, AMR, SAS and AFR designed

the European, East Asian, American, South Asian and African populations.
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sis from the Hardy-Weinberg normalized genotype call matrix26

method. We conducted a logistic regression using as a covariate the 2

first principal components obtained previously to predict the gender

(see Supplementary Appendix 1, part 1) with the genotype call (GT):

ProbðGenderÞ ¼ sigmoidðb0þ b1gtþ b2pca½0� þ b3pca½1� þ eÞ;
e � Nð0;r2Þ

Results are plotted in a Manhattan plot (Figure 1), showing the

significant SNPs (Wald test per variant). The horizontal line repre-

sents the significance threshold after Bonferroni correction (P value

�5.0�10–8).

Cloud deployment
In GCP, we executed a shell script to automate the process of deploy-

ment and deletion of our clusters (cluster creation code supported by

the Hail team [https://github.com/Nealelab/cloudtools]). For AWS,

we used an in-house script to manage EMR cluster generation. We

used 2 cloud formation tools to create Spark cloud clusters with mas-

ter node and several worker nodes: (1) Google Dataproc with the im-

age 1.2-deb9 and Spark version 2.2.1 and (2) Amazon EMR 5.13

with Spark version 2.3.0. The use of 2 different cloud providers cre-

ated only minor variation, in terms of hardware (instance character-

istics), cluster configurations, and network connection.

However, as shown in the Results, the outcome and results are

very consistent for both platforms. Both providers have similarities

in terms of the computing environment, including number of central

processing units (CPUs) per instance, storage, memory (random ac-

cess memory [RAM]), networking, and operating systems. For the

worker nodes, we performed GWAS with preemptible instances pro-

vided in the GCP and spot instances in AWS. These represented sig-

nificant cost reduction, while at the same time meeting performance

requirements (see Supplementary Appendix 1, part 4).

Hail cloud testing and workflow
For the sake of reproducibility, we decided to use standard instance

types—preferably the most common and accessible—rather than

customizing our own. In GCP, we varied only 2 parameters: the typ-

ical instance for worker nodes and the number of nodes. These di-

rectly impacted the total number of CPU and memory (in gigabytes

[GB]) of the cluster. We tested 2 instance types: n1-standard and n1-

highmem among those possible for a total of 6 different Google

Cloud Engine (GCE) virtual instance machines. We used clusters, in-

cluding 16 to 64 CPUs and 60 to 416 GB of RAM per worker nodes

in GCP. For AWS, we used a cluster with worker nodes with 16

CPUs and 64 GB of RAM. We calculated the total cost of each clus-

ter during end-to-end processing (from the instantiation to deletion).

The total cost was calculated based on the prices applied by Google

Cloud. These include the price per instance and product Google

Cloud Dataproc. These rates were applicable to the North Virginia

zone (January 31, 2019). The process described in Figure 2 was per-

formed using a bash script that parallels the creation of all clusters

and automates their deletion after the Hail operation finished. The

code is available online (https://github.com/hms-dbmi/Hail-on-Goo-

gle-Cloud/tree/master/Bash_script).

Availability and implementation
The workflows to deploy Hail cloud clusters are available online

(https://github.com/hms-dbmi/Hail-on-Google-Cloud and https://

github.com/hms-dbmi/hail-on-AWS-spot-instances) and the Jupyter

notebook to launch analyses with the 1000 Genomes Project can be

accessed online (https://github.com/hms-dbmi/Hail-on-Google-

Cloud/blob/master/Analysis/GWAS_Gender_Phase1.ipynb).

RESULTS

Large-scale genomic data analyses on GCP
Focusing first on clusters generated in GCP, we analyzed the total

cost and the runtime necessary to perform GWAS analyses for each

cluster, from creation to deletion. We instantiated more than 100

clusters (see Supplementary Appendix 3 and Figure 3), resulting in

high variability for both total time and cost necessary to conduct a

GWAS analysis. Overall, total time for GWAS analysis of each data-

set was <2 hours, evidencing the high-performance capacity of

cloud parallel processing at scale (see Supplementary Appendices 2

and 3). When trying to optimize our method, we tested the current

mindset around cloud-based resources: that to be the most efficient,

one should group data into the largest-size clusters. However, our

Figure 2. A distributed computational framework for large genomics analysis. Cloud computing setup for executing Hail jobs on Google Cloud Platform and Ama-

zon Web Services with Spark and Hadoop-distributed systems. CPU: central processing unit; MT: Matrix Table; RAM: random access memory.
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results (Figure 3) showed that each instance type had a breaking

point, after which increasing the size of a cluster yielded no further

benefit. When facing limitation in terms of cost, we demonstrated

that it was advantageous to sample larger clusters (ie, those with a

high number of nodes). This reduced the time and consequently, the

total cost. However, we also noted a trade-off. Once a particular

number of nodes (a large enough cluster) was reached, performance

plateaued or even decreased. This manifested as a significant inflex-

ion point across all 4 datasets (Figure 3), where one gives up speed

for cost. We determined the best configuration for the 4 distinct

Figure 3. Total cost and performance (from cluster instantiation to deletion) of a Google Cloud, DataProc computing cluster. Master node was instance type: n1-

standard-4. Worker nodes had 2 different instance types: n1-highmem-16 and n1-highmem-64. Analysis of genome-wide association studies were performed on

4 different datasets. The numbers near each point indicate the number of worker nodes per cluster. Lines link clusters with the same instance, with increasing

numbers of instances per cluster. 1000G: 1000 Genomes Project; CPU: central processing unit; TOPMed: Trans-Omics for Precision Medicine.

Table 2. Best cluster configuration based on the total cost to conduct

the genome-wide association study across 4 different datasets

Project releases Instance type Nodes

Total

runtime (min)

Total

cost ($)

1KG Phase 1 n1-standard-16 10 14 1.1

1KG Phase 3 n1-standard-16 10 32 2.6

COPD Freeze 4 n1-highmem-16 10 30 2.9

Jackson Freeze 5 n1-highmem-16 10 23 2.2

1KG: 1000 Genomes Project.

1428 Journal of the American Medical Informatics Association, 2020, Vol. 27, No. 9



datasets (Table 2) based on our primary goal: achieving the lowest

total cost (see Supplementary Appendix 2).

Validation with AWS
As described previously, cluster setup required more time in Amazon

Web Services. Therefore, we compared the performance obtained with

GCP by running the same GWAS script in Jupyter notebook, without

considering cluster preparation time and cluster deletion. When choos-

ing the same configuration for both cloud services, we obtained identi-

cal execution runtimes for all GWAS (see Supplementary Appendix 3).

Our approach worked on both cloud services and with identical com-

putational runtimes and cost (not factoring the cluster setup).

DISCUSSION

Although using distributed computing in research is becoming in-

creasingly common, information concerning cost and the computa-

tional power required to perform any specific study (from storage

and loading data through computation) is lacking. Moreover, dis-

tributed system tools like Spark and Hadoop require specific knowl-

edge that is not yet not widely utilized by bioinformaticians. In this

study, Hail, a cloud-compatible analytic tool can be harnessed to ad-

dress scalability challenges arising from large genomic data analyt-

ics. We described a simple and relatively effortless way (with line of

command) to set up a Spark cluster via Hail on both GCP and AWS.

Using this framework, we facilitated the downloading and pre-

processing of data via an optimized pipeline for large scale genomic

variant analytics. The method is highly scalable and shows that

cloud-based distributed systems are, indeed, an effective and novel

way to perform cost-effective computational analysis with data sizes

higher than several terabytes. The cost of cloud commercial services

alone can deter many researchers from transitioning to a cloud infra-

structure. We showed that this cost can be reduced by deploying an

optimized strategy of cluster size choice, aligned with submission of

Hail jobs to the cloud.

We acknowledge that cloud computing still needs to overcome

many challenges (ie, cost that is subject to abrupt change and prob-

lems with network speed between components). Given these reali-

ties, future work might focus on finding ways to estimate the best

upstream cluster configuration before launch, specifically optimizing

both cost and time. Future studies might delve more deeply into the

complex mechanisms of cloud computation, thus further enhancing

optimization and driving down cost.

Looking toward the future of precision medicine, a daunting chal-

lenge lies in the handling of the massive genomics datasets being gener-

ated, as well as the ability to perform extensive interrogation of whole-

genome sequences.27 With an eye toward enabling new biological dis-

covery, we champion the performance benefits provided by the cloud,

while emphasizing the boundaries of cluster size and utilization of com-

putational resources. We anticipate that researchers will increasingly

utilize cloud computing, especially as the challenges mount around

prominent initiatives, such as the 100 000 Genomes Project, the Cancer

Genomics Cloud,28 and the Precision Medicine Initiative.29 We pro-

pose that our method and framework will be an applicable and a pow-

erful addition to these and other future large-scale genomic datasets.
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