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DNA methylation is a widely researched epigenetic modification. It is associated with the occurrence and development of cancer
and has helped evaluate patients’ prognoses. However, most existing DNAmethylation prognosis models have not simultaneously
considered the changes of the downstream transcriptome.Methods. +e RNA-Sequencing data and DNAmethylation omics data
of ovarian cancer patients were downloaded from +e Cancer Genome Atlas (TCGA) database. +e Consensus Cluster Plus
algorithm was used to construct the methylated molecular subtypes of the ovary. Lasso regression was employed to build a multi-
gene signature. An independent data set was applied to verify the prognostic value of the signature. +e Gene Set Variation
Analysis (GSVA) was used to carry out the enrichment analysis of the pathways linked to the gene signature. +e IMvigor 210
cohort was used to explore the predictive efficacy of the gene signature for immunotherapy response. Results. We distinguished
ovarian cancer samples into two subtypes with different prognosis, based on the omics data of DNA methylation. Differentially
expressed genes and enrichment analysis among subtypes indicated that DNA methylation was related to fatty acid metabolism
and the extracellular matrix (ECM)-receptor. Furthermore, we constructed an 8-gene signature, which proved to be efficient and
stable in predicting prognostics in ovarian cancer patients with different data sets and distinctive pathological characteristics.
Finally, the 8-gene signature could predict patients’ responses to immunotherapy. +e polymerase chain reaction experiment was
further used to verify the expression of 8 genes. Conclusion. We analyzed the prognostic value of the related genes of methylation
in ovarian cancer. +e 8-gene signature predicted the prognosis and immunotherapy response of ovarian cancer patients well and
is expected to be valuable in clinical application.

1. Introduction

Ovarian cancer is the most common and fatal [1] malignant
tumor in the gynecological system and can occur at any age.
+e early clinical symptoms are atypical or inexistent,
making it impossible to diagnose and treat the patient on
time. Consequently, most patients are already at an ad-
vanced stage when diagnosed with the disease and present
obvious clinical symptoms. +erefore, they miss the best
treatment opportunities and lack effective treatment mea-
sures, resulting in an unsatisfactory prognosis [2, 3]. Given
this, we have to seek more accurate and effective prognostic
markers for the stratification of patients and the formulation
of subsequent clinical treatment schemes. With the devel-
opment of bioinformatics and sequencing technology, an

increasing number of researchers studied the potential
prognostic evaluation scheme for ovarian cancer patients
[4–6]. However, most of the analysis parameters in these
studies come from a genome or transcriptome and lack an
analysis of multi-omics. +us, these models cannot effec-
tively display ovarian cancer’s features.

Gene expression is strictly and complexly regulated in
living organisms. Abnormal gene expression occurs when
a tumor develops. +e key role of the epigenetic mechanism
in regulating the genetic transcription expression has drawn
more and more attention. Epigenetics involves the regula-
tion of gene expression without changing the genome se-
quence [7]. DNA methylation is a widely studied epigenetic
modification that regulates gene expression and chromatin
conformation, along with histone modification. DNA
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methylation bears the maintenance of normal cell function,
the stability of genome structure, embryonic development,
and the occurrence and development of tumors [8, 9].
Several studies [10, 11] have constructed prognostic models
of DNA methylation in multiple ovarian cancer patients,
which could revolutionize clinical application. However,
they only analyzed the data of DNA methylation and
omitted the subsequent transcriptomics. Based on multi-
platform data, it is more conducive to integrate and analyze
data from multiple sources—including transcriptome, DNA
methylation, and clinical results—to explore specific events
of carcinogenesis and determine potential prognostic
models related to patients.

In this study, we identified the molecular subtypes of
ovarian cancer and evaluated their relationship with pa-
tients’ prognosis and clinical features by analyzing the DNA
methylation and transcriptome of ovarian cancer patients.
+e 8-gene signature constructed based on Differentially
Methylated Genes (DMEG) genes could efficiently and
stably predict ovarian cancer patients’ prognoses and im-
munotherapy responses.

2. Methodology

2.1. Data Download and Preprocessing. +e expression data,
including methylation data (27K), SNV/Indel data, CNV
data, and clinical follow-up information, of ovarian cancer
(OV) patients were downloaded from TCGA.+e GEO data
were downloaded from Gene Expression Omnibus (GEO)
and GSE17260 with overall survival (OS) was selected.

+e following were performed on methylation data
(27K) gathered from TCGA of OV patients:

(1) +e KNN function in the R package impute was used
to complement the NA values.

(2) +e cross-reactive sites in CpG tagged by the dis-
covery of cross-reactive probes and polymorphic
CpGs in the Illumina Infinium Human Methylation
450 microarray were removed.

(3) Unstable genomic DNA methylation sites were
removed.

(4) Solid tumor samples were retained.

On the RNA-Seq data from TCGA of OV patients:

(1) Using log2 transformation, expression profile FPKM
data were converted to TPM data.

(2) Ensemble was converted to gene symbol.
(3) +e median value was taken in the case of expression

with multiple gene symbols.

+e following steps performed on the data set of
GSE17260 were as follows:

(1) Samples without OS and survival state were
removed.

(2) Probes were converted to gene symbols.
(3) +e probe was removed when it corresponded to

more than one gene.

(4) +e median value was taken in the case of expression
with multiple gene symbols.

(5) Only the expression profile data of OVwere retained.

After preprocessing the three sets of data, a total of 567
samples of methylation data were available in TCGA-
OV-366 samples had expression profile data. +e GSE17260
cohort contained 110 samples.

2.2. Identification of 74Molecular Subtype of Methylation
Data. Univariate cox analysis through coxph function in R
was used to preprocess the TCGA methylation data (beta
values) and the results were used to obtain the methylation
sites that correlated with OV prognosis (P< 0.05). Following
the extraction of data of the methylation sites, the TCGA
samples were clustered consistently using Consensu-
sClusterPlus (V1.48.0; parameters: reps� 100, pItem� 0.8,
pFeature� 1, distance� “euclidean”). D2 and Euclidean
distance were used as clustering algorithms and the distance
metric was used to select and analyze the optimal grouped
subtype, depending on survival prognosis, clinical correla-
tion, and mutation and amplification between different
subtypes.

2.3. Identification of Differentially Methylated Genes (DMGs)
andDifferentially ExpressedGenes (DEGs) betweenMolecular
Subtypes. +eminfi package (V1.30.0) was used to calculate
differentially methylated sites between molecular subtypes.

Match files between CpG sites and genes were first
downloaded from the Illumina website (https://www.
illumina.com/) and the average β-values of genes within
different regions (TSS1500, TSS200, 5′-UTR—5′-
untranslated region, first exon, gene body, 3′-UTR—3′-
untranslated region, and intergenic region, TSS—tran-
scriptional start site) were calculated according to the cor-
respondence. In addition, the R software package
clusterProfiler (v3.14.0) was used to perform KEGG pathway
analysis of Hypermethylation genes and Hypomethylation
genes for OV grouped subtype. +en, the DEGs between
molecular subtypes were calculated using the limma pack-
age, and KEGG pathway analysis was performed on the
upregulated and downregulated genes of OV grouped
subtype by the R package clusterProfiler (v3.14.0). +e Venn
diagrams of DMGs with DEGs were plotted as the last step.

2.4. Construction of a Polygenic Prognostic Model

2.4.1. Random Grouping. +e 366 samples with expression
profiles in the TCGA cohort were first divided into a training
set and a validation set to circumvent the random assign-
ment bias affecting the stability of subsequent modeling. All
samples were randomly grouped 100 times with replacement
in advance, where group sampling was performed in the
ratio of training set: validation set� 1 :1. +e most suitable
training and validation sets were selected based on the
following conditions: (1) +e two groups had similarities in
age distribution, gender, follow-up time, and percentage of
patient deaths. (2) +ere was a close association in the
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number of dichotomous samples after gene expression
profile clustering amongst the two randomly grouped
cohorts.

2.4.2. Univariate and Lasso Regression Analysis in Training
Set. Using the training set data, a univariate cox pro-
portional hazard regression model was constructed for
molecular subtypes of DMGs, where the identified P< 0.05
was selected as a threshold for filtering and
prognosticating genes.

+e Lasso method (a shrinkage estimate) obtains a re-
fined model by constructing a penalty function to shrink
some coefficients while setting some coefficients to zero,
thereby having the advantage of subset shrinkage and biased
estimation dealing with multicollinearity data that can select
variables to better solve the problem of multicollinearity in
regression analysis. +e R package glmnet for Lasso Cox
regression was performed to shrink genes and to reduce the
number of genes in the risk model.

2.5. Gene Set Variation Analysis. Gene Set Variation Anal-
ysis (GSVA) is a nonparametric, unsupervised method for
estimating variation of gene set enrichment through the
samples of an expression data set. GSVA performs a change
in coordinate systems, transforming the data from a gene by
sample matrix to a gene-set by sample matrix, thereby
allowing the evaluation of pathway enrichment for each
sample.

In this research, the relationship between RiskScores and
biological functions of different samples were observed
through the selection of gene expression profiles for single-
sample GSEA (ssGSEA) analysis using the R package GSVA.

2.6. Clinical Tissues and Real-Time PCR. Ovarian cancer
tissues (n= 20) and paired normal ovarian tissues (n= 20)
were obtained from the Shengjing Hospital of ChinaMedical
University. +e ovarian cancer sample information was
presented in Table 1. RNA was extracted from frozen tissues
using TRIzol reagent (15596018, Invitrogen). RNA was
reverse-transcribed into cDNA and quantified to real-time
PCR analyses, and the levels were normalized to GAPDH
levels. +e primers were as follows, the forward primer of
TCF15: 5′-CAGCTGCTTGAAAGTGAGGG-3′; the reverse
primer of TCF15: 5′-TCCTCCGGTCCTTACACAAC-3′;
the forward primer of TCIRG1: 5′-CTGGATGATGAAGAG
GAGGCCGA-3′; the reverse primer of TCIRG1: 5′-CCC
TAGTCATCTGTGGCAGCGAA-3'; the forward primer of
TMPRSS3: 5'-AGTGGGGTAGACGGAGACCT-3′; the re-
verse primer of TMPRSS3: 5′-CACTGAACCCTTCCTGGT
TT-3′; the forward primer of DMC1: 5′-
AATGGCACTTTTTCG AGTGG-3′; the reverse primer of
DMC1: 5′-CAGGCATCTCAGGACTGTCA-3′; the forward
primer of HLADOB: 5′-ATCTGACCCGACTGGATTCCT-
3′; the reverse primer of HLADOB: 5′-GCACCTTTTCTG
TCCCGTTG-3′; the forward primer of NPY: 5′-
TCACCAGGCAGA GATATGGA-3′; the reverse primer of
NPY: 5′-GCAAGTCTCATTTCCCATCA-3′; the forward

primer of ARPC1B: 5′-CAAGGACCGCACCCAGATT-3′;
the reverse primer of ARPC1B: 5′-TGCCGCAGGTCACAA
TACG-3′; the forward primer of ACSS3: 5′-CCGGTCGTG
ACCTTGATTGG-3′; the reverse primer of ACSS3: 5′-CGT
TGTGCCAGATGTGTAAAGA-3′.

2.7. In Vitro Experiments

2.7.1. Cell Culture and Transfection. Ovarian cancer cells,
OVCAR3, CAOV3, and SKOV3 were purchased from the
Chinese Academy of Medical Sciences and the CAMS &
PUMC Medical College (Beijing, China). +e normal
ovarian cell line (IOSE-80) was obtained from Shanghai Yaji
Biotechnology Co., Ltd. +e cell lines were cultured in 1640
medium supplemented with 10% fetal bovine serum and 100
units/ml penicillin at 37°C in a humidified 5% CO2 in-
cubator. Lipofectamine 2000 siRNA (small interfering RNA)
sequence transfection protocol (Invitrogen, Shanghai,
China) was performed in this study.

2.7.2. Cell Viability Assay. Cells (1500/well) were added to
a 96-well culture plate and transfected with NC-siRNA,
TCIRG1-siRNA. After 0, 24, 48, or 72 h, and cultured with
20 μl of CCK8 solution for another 2 h, cell viability is
expressed as an optical density (OD) value at 450 nm.

2.7.3. Colony Formation Assay. To explore the effects of
TCIRG1 expression on cell proliferation, cells (1000/well)
transfected with NC-siRNA or siRNA were added into each
well of 6-well culture plates for two weeks. +e number of
colonies in each well was counted.

2.7.4. Western Blotting. Total protein was extracted from
cells using RIPA buffer. Proteins (30 μg/lane) were separated
via SDS-PAGE and subsequently transferred to PVDF
membranes. Following blocking with 5% skimmed milk at
room temperature, the membranes were incubated at 4°C
overnight with primary antibodies. Subsequently, the
membranes were incubated with HRP-conjugated second-
ary antibodies at room temperature for 30min. Protein
bands were visualized using Pierce™ ECL Western Blotting
Substrate (Pierce; +ermo Fisher Scientific, Inc.).

3. Results

3.1. Identification of Molecular Subtype of Methylation Data.
+e 1053 (S1_Table) methylation data from DNA methyl-
ation sites were extracted through Univariate Cox analysis
and correlated with OV prognosis (P< 0.05). +e TCGA
samples were also clustered using ConsensusClusterPlus.

+e results showed that the samples were clustered into
two major groups at k� 2 (Figures 1(a) and 1(b), S2_Table)
and the prognostic relationship between the two groups
showed a difference between C1 and C2 (Figure 1(c), log
rank P< 0.0001), with the C2 subtype having a worse
prognosis.
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A molecular event, such as TP53 mutation, is a driver of
metabolic reprogramming in OVs. To determine the car-
cinogenic factors among molecular subtypes, the distribu-
tion of genes frequently mutated in OV between SNV/InDel
and CNV affected metabolic subtypes were investigated
(Figure 1(d)). +e difference between C1 and C2 in terms of
MUC16 amplification and deletion, FLG amplification, and
mutation frequency of TP53 was that it was higher in the C2
group than in the C1 group (Figures 1(e)–1(g)).

3.2. Identification of Differentially Methylated Genes (DMGs)
between Molecular Subtypes. +e minfi package (V1.30.0)
was used to calculate the differentially methylated sites
between C2 and C1 molecular subtypes and a total of 2728
differentially methylated sites were found after using the
threshold FDR <0.05 and |FC| >1.2. +e C2 molecular
subtypes were subdivided into 1350 sites in hyper-
methylation state and 1378 in hypomethylation state, as
shown in S3_Table.
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Figure 1: (a)+e cumulative distribution function; (b) sample clustering for consensus cluster plus clustering (k� 2), the red means cluster
1, and the blue means the cluster 2; (c) OS prognostic survival curves for OVmolecular subtypes; (d) distribution of mutations between OV
molecular subtypes; (e) distribution of TP53 molecular mutations between molecular subtypes; (f ) distribution of CNV in MUC16 between
molecular subtypes; (g) distribution of CNV in FLG between molecular subtypes ∗P< 0.05.
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A total of 1877 CpGb were matched to the corre-
sponding genes (S4_Table), where 742 genes were Hyper-
methylated, and 921 genes were Hypomethylated
(S5_Table). +e distribution of CpG sites and methylation
state within different regions were shown in Supplementary
Figures 1(a) and 1(b).

+e regions of differential methylation between C2 and
C1 subtypes concentrated in decreasing order are as follows:
the TSS1500 region, TSS200 region, and Body region. +e
Hypermethylation sites in different regions compared to
Hypomethylation sites were not much different in terms of
number. (+e proportion of Hypomethylation sites in the
TSS1500 region was higher than that of Hypermethylation
sites.)

KEGG pathway analysis was conducted by the R soft-
ware package clusterProfiler (v3.14.0) on 742 Hyper-
methylation genes in the OV subtype group. +e top 10
annotations depicted in Supplementary Figure 1(c), showed
significant pathways: NOD-like receptor signaling pathway,
Rap1 signaling pathway, and other pathways.

+e KEGG pathway analysis was then performed on 921
Hypomethylation genes in the OV subtype group by the R
software package clusterProfiler (v3.14.0). Some of the an-
notation results were significant such as PI3K-Akt signaling
pathway, ECM-receptor interaction, and cAMP signaling
pathway (Supplementary Figure 1(d)).

3.3. Identification of Differentially Expressed Genes (DEGs)
between Molecular Subtypes. +e limma package used to
calculate the DEGs between C2 and C1 molecular subtypes
used filtering according to the threshold FDR <0.05 and |FC|
>1.2 d and obtained a total of 2213 DEGs (S6_Table), 1399 of
which were upregulated and 814 were downregulated. +e
volcano plot illustrates the upregulation and downregulation
of DEGs as shown in Figure 2(a). +e heat map of the 100
most differentially upregulated and downregulated genes
was plotted, as shown in Figure 2(b). Furthermore, the
KEGG pathway analysis of 1399 differentially upregulated
genes in the OV subtype group was performed by the R
software package clusterProfiler (v3.14.0) and annotated 37
significantly enriched pathways (Figure 2(c), P< 0.05), with
genes significantly enriched in MAPK signaling pathway,
Wnt signaling pathway, Notch signaling pathway, and other
pathways. +e KEGG pathway analysis was also conducted
on 814 differentially downregulated genes in OV patients,
and 74 significantly enriched pathways were annotated
(Figure 2(d), P< 0.05), with genes significantly enriched in
the TNF signaling pathway, NOD-like receptor signaling
pathway, and other pathways.

3.4. Identification of Differentially Methylated Expression
Genes (DMEGs) and Functional Analysis. +e relationship
between the degree of gene methylation and gene expression
are inversely proportional where the higher the methylation,
the lower is the gene expression, and vice versa. Venn di-
agrams of DMGs and DEGs in Figure 3(a) showed that 96
genes were hypermethylated and down regulated, 127 genes
were hypomethylated and upregulated, totaling 223 genes

that were defined as DMEGs. +e mapping of these DMEGs
also revealed low expression levels of hypermethylated genes
and high expression levels of hypomethylated genes
(Figures 3(a)–3(c)).

Both the KEGG pathway analysis of the 223 DMEGs in
the OV subtype group showed enrichment of genes in Fatty
acid metabolism, ECM-receptor interaction, Human papil-
lomavirus infection, and other pathways (Figure 3(d)).

3.5. Construction of a Prognostic Hazard Model Based on
Differentially Methylated Expression Genes (DMEGs)

3.5.1. Random Grouping of Training Set Samples. It was
written in the methodology section that 183 samples had
both the final training set data and test set data. Table 2 is the
detailed training set and validation set sample information
that was tested using the chi-square test and results showed
no preference in groupings and no significant difference
between the groups (P> 0.05).

3.5.2. Construction and Evaluation of Risk Model.
Univariate Cox proportional hazard regression models were
constructed using the training set data for each C1 and C2
molecular subtype of DMEGs (223 in total) and survival data
were made using the R package survival coxph function with
a threshold for filtering of P< 0.05 selected. +e results of
univariate cox analysis are shown in S7_Table. A total of 10
prognostic DMEGs were identified, yet many genes make it
nonconductive to clinical testing and therefore there is still
the need to further narrow down the number of genes.

+e R package glmnet was used to perform Lasso Cox
regression. +e first step was the analysis of the trajectory of
each independent variable shown in Figure 4(a), where it is
seen that as the lambda gradually increases, the number of
independent variable coefficients tending to zero also grad-
ually increases. +e model was then constructed using 5-
foldcross-validation, and the confidence intervals under each
lambda were analyzed as shown in Figure 4(b). When the 9
genes are at lambda� 0.01195682, the model has reached
optimum and has become a target gene for further analysis.

+e Akaike Information Criterion (AIC) method in the
MASS package started with the most complex model and
sequentially removed one variable to reduce the AIC. +e
smaller value indicates a better and sufficient model having
fewer parameters. Using this algorithm, the 9 genes were
finally reduced to 8 genes, namely: ARPC1B, DMC1,
TCIRG1, TMPRSS3, HLA-DOB, NPY, TCF15, and ACSS3.
+e formula of the final 8-gene signature is as follows:
RiskScore � 0.207 ∗ ARPC1B − 0.284 ∗ DMC1 + 0.318 ∗
TCIRG1 − 0.271 ∗ TMPRSS3 − 0.180 ∗ (HLA-DOB) +
0.152 ∗ NPY + 0.262 ∗ TCF15 + 0.253 ∗ ACSS3.

+e RiskScore of each sample calculated showed that
samples with high RiskScores have a worse prognosis, while
the RiskScore distributions were plotted and are shown in
Figure 4(c). +e changes in expression of 8 different sig-
nature genes were analyzed, where high expression of
ARPC1B, TCIRG1, NPY, TCF15, and ACSS3 correlated with
a higher risk while high expression of TMPRSS3, HLA-DOB,
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and DMC1 correlated with a lower risk. A ROC analysis of
the prognostic classification of RiskScores was then per-
formed using the R package time ROC, and the prognostic
classification efficiency at one year, three years, and five years
was analyzed, respectively, as shown in Figure 4(d). Finally,
the zscore of RiskScore was done, and samples with Risk-
Scores greater than zero were classified as a high-risk group,
while those with less than zero were classified as a low-risk
group, on the basis of KM curves plotted in Figure 4(e). +e
88 samples classified as a high-risk group and 95 samples
classified as a low-risk group had a significant difference of
P< 0.0001.

3.6. Validation of the Risk Model

3.6.1. Robustness of 8-Gene Signature Verified by Internal
Cohort. +e robustness of the model was determined by the
training set used to calculate the RiskScore for each sample
in the entire TCGA cohort.

+e distribution of RiskScore for the entire TCGA co-
hort in Supplementary Figure 2(a) shows that the samples
with high RiskScores have a worse prognosis than in the low
RiskScore group. +e ROC analysis of RiskScore was per-
formed and the prognostic classification efficiency at one
year, three years, and five years were analyzed, respectively
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(Supplementary Figure 2(b)). Finally, the zscore of RiskScore
was performed and 181 samples with RiskScore greater than
zero were classified as a high-risk group while 185 samples
with less than zero were classified as a low-risk group, based
on the KM curves plotted as shown in Supplementary
Figure 2(c). +ere was a highly significant difference of
P< 0.0001.

3.6.2. Robustness of 8-Gene Signature Verified by External
Cohort. +e same models were used in the external vali-
dation set GSE17260 as in the training set. +e distribution
of RiskScore for the independent validation cohort in
Supplementary Figure 2(d) shows that high RiskScores
samples have a worse prognosis than low RiskScores sam-
ples, which is consistent with the performance on the
training set. +e prognostic classification efficiency at one
year, three years and five years was analyzed respectively, as
shown in Supplementary Figure 2(e) and the KM curves

between high and low RiskScore groups were plotted as
shown in Supplementary Figure 2(f). A significant difference
(P< 0.001) between 50 samples classified as a high-risk
group and 60 samples classified as a low-risk group was
observed.

3.7. Risk Model and Prognostic Analysis of Clinical Features.
+e performance of RiskScore analysis on the 8-gene sig-
nature found that the expression of RiskScore, Age, Stage
III + IV, recurrence, and chemotherapy can be categorized
into two groups either having high-risk prognosis or low-
risk prognosis (Figures 5(a)–5(h), P< 0.05), and is sugges-
tive that our model has good predictive ability across dif-
ferent clinical features.

+e distribution of RiskScores between clinical feature
groups was compared and resulted in a significant difference
(P< 0.05) in terms of Stage, Cluster, and Chemotherapy
group. +e RiskScore was marginally significant (P ≈ 0.05)
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DMEGs in molecular subtypes on methylation data; (d) KEGG annotation map of DMEG in molecular subtypes.
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between Grade 2 + 3 groups proving that the more advanced
the stage is, the higher the RiskScore would be. +e Risk-
Score of the nonchemotherapy sample was significantly
higher than the chemotherapy sample and the higher
RiskScore in the C2 group correlates to a worse prognosis
compared to the C1 cluster group (Figures 5(i)–5(l)).

+e relationship between RiskScores and biological
functions of different samples were observed through the
selection of gene expression profiles for single-sample GSEA
(ssGSEA) analysis using the R package GSVA, thus resulting
in the ssGSEA scores of each sample. +e correlation be-
tween these functions and the RiskScore was further cal-
culated, Figure 5(m) indicates that 25 types of functions have
a positive correlation greater than 0.25 with the RiskScore of
the sample, and only 1 showed a negative correlation with
the RiskScore. +e top 26 most relevant KEGG pathways
were selected and clustered according to their enrichment
scores as shown in Figure 5(n), which had increasing scores.
+e 26 KEGG pathways are KEGG_NON_-
SMALL_CELL_LUNG_CANCER,

KEGG_MAPK_SIGNALING_PATHWAY, KEGG_-
BLADDER_CANCER, KEGG_FOCAL_ADHESION,
KEGG_TGF_BETA_SIGNALING_PATHWAY and other
tumor-related pathways.

3.8.Univariate andMultivariateAnalysis of 8-GeneSignature.
+e independence of the 8-gene signature model in clinical
applications was identified by performing both univariate
and multivariate COX regression analyses on the Risk-
Score and clinical variables. +e data showed that in the
TCGA cohort, both the univariate COX regression
analysis (Figure 6(a)) and multivariate COX regression
analysis found that the RiskType (HR � 2.46, 95%
CI � 1.86–3.24, P< 1e − 5) (Figure 6(b)) were correlated
with survival, thus concluding the independent predictive
performance of the 8-gene signature in terms of clinical
application value.

Nomogram is a visual way to present the results of risk
models and make predictions of outcomes. +e multivariate
significant clinical features, such as Age, Chemotherapy, and
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Figure 5: Continued.
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RiskScore, were combined to construct the nomogram
model (Figure 6(c)).+emodel results showed the RiskScore
feature had the greatest impact on survival prediction and
the risk model based on 8-gene can better predict the
prognosis. Calibration of nomogram data for 1, 3, and
5 years was also done to visualize the good performance of
the nomogram (Figure 6(d)).

3.9. Comparison of Risk Models with Others and Prediction of
Immunotherapy. +e literature review selected five
prognosis-related risk models, namely, the: 10-gene signa-
ture (Figures 7(a) and 7(b)) [12],7-gene signature
(Figures 7(c) and 7(d)) (Sabatier et al. 2011), 5-gene sig-
nature (Figures 7(e) and 7(f)) [13], and 8-gene signature
(Figures 7(g) and 7(h)) [14], and the models were used as
a comparison with our 8-gene model.

To make the models comparable, the RiskScore of each
OV sample in TCGA was calculated according to the cor-
responding genes in these five models using the same
method. +e Zscore method revealed that samples greater
than zero were classified as the high-risk group, while
samples less than zero were classified as the low-risk group,
based on the calculated prognostic difference. +e ROC and
KM curves of the five models in Figures 7(a)–7(h) show that
the AUC values of these five models at 1, 3, and 5 years are
lower than those of our model. +e prognosis of OV in the
high-risk and low-risk groups with 5-gene signature
(Figure 7(f)) and 8-gene signature (Figure 7(h)) in these five
models was not statistically different (log rank P> 0.05).

3.10. Prediction of Immunotherapy by Risk Models.
Effective predictive markers for immunotherapy are cur-
rently limited and the identification of novel predictive
markers is critical to further advance precision in immu-
notherapy. In this research, an immunotherapy cohort
(Imvigor210) containing transcriptomic data was retrieved

to explore whether the 8-gene model could predict the
benefit of immunotherapy. Imvigor 210 recorded expression
data in human mUC samples from patients who responded
or failed to respond to anti-PD-L1 immunotherapy.
Kaplan–Meier curves showed that the higher RiskScore
values, the poorer survival in mUC patients treated with
immunotherapy (Figure 7(i)), and the ROC curves indicated
that RiskScore has a higher AUC value (Figure 7(j)). +ere
was a significant difference between immunotherapy re-
sponse and nonresponse between the high-risk and low-risk
groups, highlighting a smaller proportion of the high-risk
subgroup responding to immunotherapy (Figure 7(k)).

In addition, a comparison of the differences between
RiskScores of different groups was done and showed that
RiskScore was significantly different from the: immuno-
therapy effectiveness group, immune cell group, and im-
mune phenotype group (Figures 7(l)–7(n)), in which
patients in the desert group had higher RiskScore expression
than inflamed immune inflammation group. Patients having
a higher tumor immune infiltration and belonging in the low
RiskScore group would mean a better prognosis than those
in the high RiskScore group.

3.11. Protein and mRNA Expression of 8 Genes in Ovarian
Cancer. To clarify the role of 8-gene signature in the oc-
currence and development of ovarian cancer, we analyzed
the mRNA expression levels of 8 genes in ovarian cancer
tissues and normal ovarian tissues based on the PCR
analysis. In Figures 8(a)–8(h), the expression levels of
TCF15, TCIRG1, NPY, ARPC1B, and ACSS3 in ovarian
cancer tissues are significantly higher than that of normal
ovarian tissues. And the expression levels of TMPRSS3,
DMC1, and HLA-DO in ovarian cancer tissue are signifi-
cantly lower than those in normal ovarian tissue.

Furthermore, the protein expression levels of 8 genes in
ovarian cancer cell lines and normal ovarian cell lines were
analyzed based on the western blot analysis. In Figure 8(i),

KEGG_FC_GAMMA_R_MEDIATED_PHAGOCYTOSIS
KEGG_LEUKOCYTE_TRANSENDOTHELLIAL_MIGRATION
KEGG_BLADDER_CANCER
KEGG_REGULATION_OF_ACTIN_CYTOSKELETON
KEGG_ENDOCYTOSIS
KEGG_MAPK_SIGNALINK_PATHWAY
KEGG_VEGF_SIGNALINK_PATHWAY

KEGG_GLYCOSAMINOGLYCAN_BIOSYNTHESIS_HEPARAN_SULFATE
KEGG_GLYCOSAMINOGLYCAN_BIOSYNTHESIS_CHONDROITIN_SULFATE

KEGG_ECM_RECEPTOR_INTERACTION
KEGG_FOCAL_ADHESION
KEGG_DILATED_CARDIOMYOPATHY

KEGG_MELANOMA

KEGG_PROSTATE_CANCER
KEGG_PATHWAYS_IN_CANCER

KEGG_GLIOMA

KEGG_GAP_JUNCTION
KEGG_AXON_GUIDANCE

KEGG_NEUROTROPHIN_SIGNALING_PATHWAY
KEGG_ERBB_SIGNALING_PATHWAY

KEGG_CALCIUM_SIGNALING_PATHWAY
KEGG_HEDGEHOG_SIGNALING_PATHWAY

KEGG_NON_SMALL_CELL_LUNG_CANCER
KEGG_ACUTE_MYELOID_LEUKEMIA

KEGG_TGF_BETA_SIGNALING_PATHWAY

KEGG_BUTANOATE_METABOLISM

–1 –0.5 0 0.5 1

(n)

Figure 5: Performance of the risk model on different clinical features. (a)–(h) Based on the expression of RiskScore, analyze the overall
survival of different clinical subgroups; (i) comparison of RiskScores between groups in terms of stage; (j) comparison of RiskScores between
groups in terms of grade 2 + 3; (k) comparison of RiskScores between groups in terms of cluster; (l) comparison of RiskScores between
groups in terms of chemotherapy conditions; (m) correlation coefficient clustering between KEGG pathways with correlations greater than
0.25; (n) relationship between ssGSEA scores of KEGG pathways with correlation greater than 0.25 and increasing RiskScores in each
sample, where the horizontal axis represents the samples with increasing RiskScores from left to right.
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Figure 6: (a) Univariate analysis results of clinical features with RiskScore; (b) multivariate analysis results of clinical features with
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Figure 7: (a) (b) ROC and OVKM curves of high-risk and low-risk groups for the 10-gene signature (Wang) risk model; (c) (d) ROC and
OVKM curves of high-risk and low-risk groups for the 7-gene signature (Sabatier) risk model; (e) (f ) ROC and OVKM curves of high-risk
and low-risk groups for the 5-gene signature (Wang) risk model; (g) (h) ROC and OVKM curves of high-risk and low-risk groups for the 8-
gene signature (Yue) risk model. (i) KM curves of IMvigor 210 cohort; (j) ROC curves of IMvigor 210 cohort; (k) corresponding stacked
plots of immunotherapy between different groups of IMvigor 210 cohort; (l) differences in RiskScore between the effectiveness groups of
immunotherapy; (m) differences in RiskScore between immune cell groups; (n) differences in RiskScore between immune phenotype
groups. (IC: immune cell; TC: tumor cell; IP: immune phenotype); ∗P< 0.05.
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Figure 8: +e mRNA expression of 8 genes in ovarian cancer tissues (n� 20) and paired normal ovarian tissues (n� 20). (a) TCF15; (b)
TCIRG1; (c) TMPRSS3; (d) DMC1; (e) HLA-DOB; (f ) NPY; (g) ARPC1B; (h) ACSS3; (i) protein expression of 8 genes in ovarian cancer cell
lines (OVCAR3, CAOV3, and SKOV3) and normal ovarian cell line (IOSE-80) ∗P< 0.05, ∗∗P< 0.01 and ∗∗P< 0.001.
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the protein expression levels of TCF15, TCIRG1, NPY,
ARPC1B, and ACSS3 in OVCAR3, CAOV3, and SKOV3
cells are significantly higher than that of IOSE-80 cells. And
the expression levels of TMPRSS3, DMC1, andHLA-DOB in
OVCAR3, CAOV3, and SKOV3 are significantly lower than
those in IOSE-80 cells.

3.12. Function Analysis of TCIRG1 in Ovarian Cancer.
TCIRG1 was selected as high priority markers for next study
because it showed the higher coefficient in genetic models, and
there are currently few studies in ovarian cancer. SKOV3 cell
line was chosen for experiments as it has the highest TCIRG1
expression. Knockdown of TCIRG1 expression was performed
using siRNA. Transfection efficiency was measured using
qRT–PCR and western blot analyses (Figures 9(a) and 9(b)).
CCK-8 assays revealed that knockdown of TCIRG1 signifi-
cantly decreased the proliferation of SKOV3 cells (Figure 9(c)).
Moreover, the TCIRG1-siRNA-transfected group had signif-
icantly fewer colonies than the NC-siRNA-transfected group
(Figure 9(d)). Transwell assay showed that the TCIRG1-
siRNA-transfected group had significantly fewer migrated cells
than the NC-siRNA-transfected group (Figure 9(e)). +e re-
sults in Figure 5(n) showed that RiskScore is significantly
positively correlated with the KEGG_FOCAL_ADHESION
pathway. +erefore, we tried to explore whether TCIRG1
regulates the expression of FAK. In Figure 9(f), the expression
of p-FAK was significantly deceased after being transfected
with TCIRG1-siRNA. Taken together, these results demon-
strated that TCIRG1 knockdown could decrease the pro-
liferation ability of ovarian cancer cells in vitro.

4. Discussion

Due to the lack of early detection means, 70% of patients
with ovarian cancer (OV) are in advanced stages by the time
they get diagnosed [15]. Distant metastasis is the leading
cause of death in patients with OV [16, 17] and conventional
clinical staging still fails to predict the survival rate of in-
dividual patients. +e rapid development of omics se-
quencing technology has allowed researchers to analyze the
mechanism of OV progression through large-scale gene
expression data and clinical information. Aberrant DNA
methylation is the most widely studied deregulatory epi-
genetic mechanism in tumors [18], making it valuable in
evaluating OV patients’ prognoses.

In this study, we divided OV samples into two subtypes,
C1 and C2, based on methylation data from +e Cancer
Genome Atlas Ovarian Cancer (TCGA-OV). +e subtypes
showed differences in prognosis. We also noticed contrasts
in the mutation and copy number variation (CNV) distri-
bution of molecular subtypes. +e immune score of the C1
subtype was higher than that of C2, which may help explain
the accurate prognosis of C1. Based on the further screening
of 223 DMEG genes, we noted a correlation between these
genes and fatty acid metabolism and ECM-receptor in-
teractions. +e fatty acid metabolism and ECM-receptor
interaction corresponded with the malignant progression of
OV, and the activation of both promoted the proliferation

and invasive capacity of OV cells [19–22]. +ese results
suggest the involvement of a regulated metabolism of DNA
methylation and an extracellular matrix in the progression of
OV. Using these 223 DMEGs, we created an 8-gene sig-
nature that predicted efficiently and consistently across
different platform cohorts (+e International Cancer Ge-
nome Consortium, GSE17260, and +e Cancer Genome
Atlas). More importantly, the constructed gene models
performed well on the immunotherapy cohort, IMvigor 210.
In summary, the fabricated 8-gene signature determines the
prognosis of patients with OV accurately and contributes to
the precise application of immunotherapy.

+e 8-gene signature screened and established in this
paper includes Actin-Related Protein 2/3 Complex Subunit
1B (ARPC1B), Meiotic recombination protein DMC1, TCell
Immune Regulator 1 (TCIRG1), Transmembrane Protease,
Serine 3 (TMPRSS3), HLA-DOB, Neuropeptide Y (NPY),
Transcription Factor 15 (TCF15), and Acyl-CoA Synthetase
Short Chain Family Member 3 (ACSS3). +e protein
encoded by ARPC1B is one of the subunits of the Arp2/3
protein complex, while the deletion and mutation of the
ARPC1B gene disrupt the development of platelets and T-
lymphocytes, [23] and leads to a combined immune de-
ficiency encompassing severe infections, inflammations, and
allergies [24]. In terms of tumors, ARPC1B was identified as
a prognostic marker in oral squamous cell carcinoma [25]
and melanoma [26]. +e protein encoded by DMC1,
a member of the Recombinases superfamily, is essential to
repair double-stranded DNA breaks during mitosis and
meiosis [27, 28]. It is also strongly correlated with the
prognosis of patients with endometrial cancer [29] and is
downregulated in OV tissues [30]. +e protein encoded by
TCIRG1 is a subunit of H+-ATPase, and a prognostic
marker and immune infiltration marker in patients with
glioma [31]. According to hepatocellular carcinoma studies,
however, TCIRG1 promotes the proliferation and epithelial-
mesenchymal transition (EMT) of hepatocellular carcinoma
cells and is a poor prognostic factor for patients with he-
patocellular carcinoma. +e protein encoded by TMPRSS
belongs to the serine protease family, a predominant factor
in cancer progression and metastasis [32]. With regard to
clinical significance, TMPRSS3 acts as a pro-oncogene in
breast cancer [33, 34], pancreatic cancer [35], glioma [36],
gastric cancer [37], and nasopharyngeal cancer [38]. In the
case of OV, initial studies revealed that TMPRSS3 expression
was upregulated in OV tissues compared to normal tissues
[39], while further research indicated that this gene pro-
motes the proliferation, invasion, and metastatic ability of
OV cells through the regulation of the ERK pathway [34].
Recent studies have confirmed the results of our analysis by
showing that the high expression of TMPRSS3 in OV tissues
is caused by a deficiency of methylation in the promoter
region [40]. HLA-DOB was originally identified in the class
II region of the human major histocompatibility complex,
[41] whose polymorphisms are tied with hematologic tu-
morigenesis [42, 43]. Furthermore, bioinformatics studies
focusing on OV have identified HLA-DOB as a prognostic
marker in OV patients [44]. Widely expressed in the central
nervous system, the neuropeptide encoded by NPY affects
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many physiological processes, such as the patient’s cortical
excitability, stress response, food intake, circadian rhythm,
and cardiovascular function through Gprotein-coupled re-
ceptors. +e high expression of NPY matches up with poor
prognosis in patients with neuroblastoma [45] and prostate
cancer [46]. DNA methylation sequencing analysis for
gastric cancer [47] and myelodysplastic syndrome [48]
further showed that NPY is regulated by its DNA methyl-
ation level. Transcription factors encoded by TCF15 are
essential in embryonic development, although their roles in
tumors have not been clarified yet. ACSS3 is a metabolic
enzyme in charge of catalyzing the synthesis of acetyl co-
enzyme A from short-chain fatty acids, which corresponds
with the progression of gastric [49], hepatocellular [50],
bladder [51], and prostate cancers [52]. As far as this re-
search is concerned, ARPC1B, TCIRG1, NPY, TCF15, and
ACSS3 are reported for the first time for their prognostic
value in OV, of which the deeper mechanisms of action still
require further exploration.

+e fabricated 8-gene signature accurately predicted the
training set (TCGA), validation set (International Cancer
Genome Consortium (ICGC) and GSE17260), and prog-
nosis of patients with OV with different subtypes. After
incorporating clinical characteristics, the univariate and
multivariate cox analysis revealed that the 8-gene signature

is an independent prognostic factor for patients with OV.
+is finding further validates the reliability of the model. In
addition, the 8-gene signature performed better than other
published prognostic models for OV [12–14]. +erefore, this
paper further analyzed the mechanism of this 8-gene sig-
nature in OV. Gene Set Variation Analysis (GSVA) found
that the Mitogen-Activated Protein Kinase (MAPK),
FOCAL_ADHESION, and Transforming Growth Factor
Beta (TGF_BETA) pathways all showed increasing Risk-
Score. MAPK pathway is an essential signal transmitter from
the cell surface to the interior of the nucleus. And MAPK
activation, the final step in the intracellular phosphorylation
cascade reaction, is involved in the regulation of various
biological behaviors, such as cell proliferation, differentia-
tion, transformation, and apoptosis [53, 54]. +e MAPK
pathway is determined in the progression of OV [55]. Focal
Adhesion Kinase (FAK) is a class of cytoplasmic non-
receptor protein tyrosine kinases and a hub for intra- and
extracellular signaling in and out, thus mediating multiple
signaling pathways [56, 57]. In OV, the upregulation of FAK
activity promotes the malignant biological behavior of tu-
mor cells [58, 59]. Moreover, VS-6063, a specific inhibitor of
FAK, can reverse taxol resistance in OV, thus exhibiting
great potential for clinical application [60]. +e TGF_BETA
pathway determines the specific outcome of cells during cell
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Figure 9: Function analysis of TCIRG1 in SKOV3 cells. TCIRG1 expression levels were detected by qRT-PCR (a) and western blotting (b)
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proliferation, embryogenesis, differentiation, and death
[61–63]. +e results of this study suggest that methylation-
related genes in OV may function through the MAPK,
FOCAL_ADHESION, and TGF_BETA pathways.

At the time of the initial diagnosis, OV is often advanced
due to its insidious location, a lack of better screening tools, and
obvious symptoms. Worse still, this kind of tumor is primary
or secondary resistant to chemotherapy, giving OV patients
a 5-year survival rate of 30% to 45% [64]. Currently, immu-
notherapy, especially Immune Checkpoint Blockade (ICB), is
very effective in treating melanoma and nonsmall cell lung
cancer, while the therapeutic value of immunotherapy in OV is
still in the research stage. +e approval of monoclonal anti-
bodies to Programmed cell death protein 1 (PD-1) by the U.S.
Food and Drug Administration (FDA) is a notable develop-
ment for the treatment of solid tumors with high microsatellite
instability and mismatch repair defects, including OV [65, 66].
However, the objective response rate of PD-1 monoclonal
antibodies alone is not promising. +erefore, we must in-
vestigate molecular markers that can predict the efficacy of
immunotherapy in OV, so as to screen for appropriate im-
munotherapy populations. An immunotherapy cohort
(IMvigor 210) was retrieved to explore whether the 8-gene
model could predict the benefit of immunotherapy.+e results
showed that higher RiskScore values corresponded with poorer
survival rates in mUC patients treated with immunotherapy,
while the ROC curves indicated that RiskScore predicted
patients’ response to immunotherapy more efficiently. +ese
results suggest that an 8-gene signature can predict patient
response to immunotherapy, demonstrating its potential for
clinical application in predicting the efficacy of PD-1 mono-
clonal antibodies in OV patients.

+e fabricated 8-gene signature shows good prognostic
efficacy across multiple platforms and patient subgroups.
However, the TCGA database is mostly limited to Caucasian
and African populations and lacks data from the Asian
population. In addition, all subjects in the study are ret-
rospective samples, and we still need the validation of
prospective samples.

In conclusion, we analyzed the prognostic value of
methylation-related genes in OV by combining methylation
omics and transcriptomic data. Besides, the constructed 8-gene
signature predicted OV patients’ prognosis and immuno-
therapy response well, and thus, could be applied clinically.
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