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The proteolysis targeting chimeras (PROTACs), which are composed of a target protein
binding moiety, a linker, and an E3 ubiquitin ligase binder, have been a promising strategy
for drug design and discovery. Given the advantages of potency, selectivity, and drug
resistance over inhibitors, several PROTACs have been reported in literature, which mostly
focus on noncovalent or irreversible covalent binding to the target proteins. However, it
must be noted that noncovalent or irreversible PROTACs have several drawbacks such as
weak binding affinity and unpredictable off-target effects. Reversible covalent PROTACs,
with properties of enhanced potency, selectivity, and long duration of action, have
attracted an increasing amount of attention. Here, we propose a comparison between
these three patterns and highlight that reversible covalent PROTACs could pave the way
for a wide variety of challenging target degradations.
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Recently, proteolysis targeting chimeras (PROTACs) have been an exciting strategy for modulating a
protein of interest by degradation, which was first reported by Crew and Deshaies in 2001 (Sakamoto
et al., 2001). It is a bifunctional molecule consisting of three parts: One end is the ligand that binds to
the target protein, one end is another ligand that binds to the E3 ubiquitin ligase, and the middle
section is the linker (Gadd et al., 2017a). PROTACs recruit a non-native target protein into the
proximity of the E3 ligase so that the target protein can be labeled with ubiquitination, which leads to
degradation induced by the ubiquitin–proteasome system (UPS) (Riching et al., 2018). This drug
design strategy has increasingly attracted attention, especially upon the first PROTAC entering
clinical trials in 2019 (Mullard, 2019).

Even though PROTACs have very large molecular weights, poor permeability, and lack of rational
optimization strategies, they still have many advantages, such as defined degradation mechanisms
(Riching et al., 2018; Bhatt et al., 2019; Xia et al., 2019) and facile modular design (Gadd et al., 2017b).
For degradation, PROTACs must bind target proteins and E3 ubiquitin ligases. However, many
targets such as transcription factors (Brennan et al., 2008; Koehler, 2010) are recalcitrant to ligand
discovery, and efficient recruiters are popular for only a handful of E3 ligases such as CRBN (Lu et al.,
2015), VHL (Gadd et al., 2017a), IAP (Naito et al., 2019), andMDM2 (Hines et al., 2018). This review
introduces binding patterns of E3 ligases consisting of irreversible covalent, reversible noncovalent,
and reversible covalent binding. Irreversible covalent binding to E3 ligases can recruit multiple target
molecules for ubiquitination and degradation without the need for the kinetic process of forming the
E3-PROTAC complexes (Gabizon and London, 2021), which is shown in Figure 1(black). As a
possible mechanism of action, reversible covalent binding offers the potential for sustained target
engagement and avoids permanent protein modification (Tong et al., 2020).
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Currently, most reported PROTACs bind to the target
proteins by the means of reversible noncovalent pattern, and
different kinds of proteins have been successfully degraded by this
strategy, such as TANK-binding kinase 1 (TBK1) (Crew et al.,
2017) and cyclin-dependent kinase 9 (CDK9) (Olson et al., 2017).
Many potent and selective hydroxyproline-based PROTACs have

been recently reported against a wide range of target proteins,
including bromodomain-containing protein 4 (BRD4) (Testa
et al., 2018) and receptor-interacting serine-threonine kinase 2
(RIPK2) (Bondeson et al., 2015). However, some researchers
reported that reversible noncovalent PROTACs have poor
selectivity. Remillard connected the BRD4 inhibitor JQ1 and

FIGURE 1 | PROTACs’ mechanism for irreversible covalent PROTACs (black), reversible covalent PROTACs (blue), and reversible noncovalent PROTACs (red).
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CRBN ligand to design a PROTAC that could simultaneously
degrade multiple proteins of the BRD family, including BRD2,
BRD3, and BRD4 (Lu et al., 2015). Research from the Bondeson
group used foretinib as the target protein binding part and VHL
as the E3 ubiquitin ligase ligand, respectively, to design a
PROTAC that can degrade a total of nine kinases
simultaneously (Bondeson et al., 2017). An explanation is that
reversible noncovalent PROTACs could recruit multiple proteins
and E3 ligases and then form ternary complexes to make protein
ubiquitination and degradation. Due to the strong affinity and
potent occupancy ability, irreversible covalent PROTACs have
also successfully degraded target proteins such as HaloTag-fused
cAMP-responsive element-binding protein 1 (HaloTag-CREB1),
HaloTag-fused c-jun (HaloTag-c-jun) (Tomoshige et al., 2016),
recombinant methionyl aminopeptidase 2 (MetAP-2) (Sakamoto
et al., 2001), and Bruton’s tyrosine kinase (BTK) (Xue et al., 2020).
Nevertheless, as shown in Figure 1, once the irreversible covalent
PROTACs form a ternary complex with the target protein and E3
ubiquitin ligase, they will be directly degraded by the proteasome
and cannot be recycled. Undoubtedly, irreversible covalent
binding may reduce potency by negating the catalytic nature
of the PROTAC’s activity (Bondeson et al., 2015; Lebraud et al.,
2016). Furthermore, some studies reported that irreversible
covalent PROTACs inhibited the degradation of target
proteins and even irreversibly bound to other biomolecules to
cause off-target toxicity (Dahal et al., 2013; Burslem et al., 2017;
Tinworth et al., 2019).

Reversible covalent PROTACs are theorized to combine the
benefits of covalent bond formation with the substoichiometric
target turnover achieved by reversible PROTACs, which is
unattainable for covalent PROTACs (excluding PROTACs
with covalent ligands for the E3 ligase) (KielyCollins et al.,
2021). Compared with the other two types of PROTACs,

reversible covalent PROTACs have better target selectivity and
lower potential toxicity (Gabizon et al., 2020a; Guo W. H. et al.,
2020; KielyCollins et al., 2021). As a possible mechanism of action,
which is described in Figure 1 (blue), in vitro/vivo, the ligand parts of
reversible covalent PROTACs bind to the target proteins or E3
ubiquitin ligases through reversible covalent bonds, thereby forming
stable ternary complexes. Ubiquitin located on the E2 ubiquitin-
conjugating enzymes is then transferred to the target protein, which
leads to the ubiquitination of the target proteins and degradation by
the proteasome. PROTACs are released from the target protein or
the E3 ligase, and a new ternary complex is formed again.

As far as known to the authors, researches in this area are scarce.
We have listed some reported reversible covalent PROTACs, as
shown in Figure 2. Maimone and his cooperators were the first to
design a reversible covalent PROTAC CDDO-JQ1 based on
bardoxolone, which successfully degraded BRD4. The reversible
covalent moiety of CDDO-JQ1 was the E3 ligase recruiter (Tong
et al.; Tong et al., 2020). Following this, Jin Wang and Nir London
designed reversible covalent PROTACs, which both used the first
FDA-approved covalent kinase inhibitor ibrutinib as the target
protein moiety and chose pomalidomide as the CRBN E3 ligase
binder, successfully degrading Bruton’s tyrosine kinase (BTK).
Most PROTACs have poor cell uptake capacity and membrane
permeability due to their large molecular weight. The Jin Wang
research group certified through SPPIER imaging that reversible
covalent PROTAC RC-1 is more efficient in inducing BTK-
PROTAC-CRBN ternary complexes formation in living cells
compared to the other two types PROTACs. They enhanced the
accumulation of PROTACs in cells and their binding ability by
introducing reversible covalent groups. Inspired by Jin Wang’s
idea, another target protein (Fms-like tyrosine kinase 3) had been
degraded by this same strategy (Guo W. H. et al., 2020). The Nir
London group’s research proved that reversible covalent

FIGURE 2 | Examples of reversible covalent PROTACs. The names given to the molecules are taken from the publications in which they are described.
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PROTACs based on dimethylated cyanoacrylamide could form
covalent complexes more rapidly and validated reversible binding
by the ibrutinib competition assay. Moreover, they made a
comparison among these three types and found that only the
reversible covalent PROTAC RC-3 degraded a known ibrutinib
off-target BLK (a covalent off-target of ibrutinib) with no activity
against the noncovalent off-targets CSK and LYN, representing
enhanced selectivity. In essence, their research suggested that
degradation by reversible covalent PROTACs was driven by
covalent engagement and exhibited enhanced selectivity toward
BTK compared to noncovalent and irreversible covalent
PROTACs (Gabizon et al., 2020b). The aforementioned
PROTACs may form reversible covalent complexes with the
target proteins or E3 ubiquitin ligases. The PROTACs are then
released and form a ternary complex again, thus inducing protein
degradation in a substoichiometric/catalytic manner. The
advantages of reversible covalent PROTACs are evident in
Table 1. Furthermore, many reports had proven that covalent
enzyme inhibitors displayed powerful therapeutics and exquisite
selectivity by using reversible covalent warheads in drug design and
discovery (Bandyopadhyay and Gao, 2016).

In conclusion, reversible covalent PROTACs present a very
promising and powerful approach for current drug discovery and
tool development in biology with better selectivity, degradation
activity, and longer duration of action compared to noncovalent
and irreversible covalent PROTACs. Reversible covalent
PROTACs can overcome the drawbacks of the other two types

by avoiding a permanent protein complex and maintaining the
catalytic nature of PROTACs. Currently, keys to designing a
reversible covalent PROTAC are to discover a reversible covalent
E3 recruiter or introduce a reversible covalent ligand binding to
the target protein (KielyCollins et al., 2021), such as
cyanoacrylamide (Guo W. H. et al., 2020) and dimethylated
cyanoacrylamide (Gabizon et al., 2020b). On one hand, more
target binders and E3 ligases applicable in the development of
PROTACs are awaiting to be discovered. On the other hand, extra
efforts are required to gain deeper insight into the clinical
effectiveness and safety of PROTACs.
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