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Abstract: Aortic stiffening is a fundamental pathological alteration of atherosclerosis and other
various aging-associated vascular diseases, and it is also an independent risk factor of cardiovascular
morbidity and mortality. Ultrasonography is a critical non-invasive method widely used in assess-
ing aortic structure, function, and hemodynamics in humans, playing a crucial role in predicting
the pathogenesis and adverse outcomes of vascular diseases. However, its applications in rodent
models remain relatively limited, hindering the progress of the research. Here, we summarized
the progress of the advanced ultrasonographic techniques applied in evaluating aortic stiffness.
With multiple illustrative images, we mainly characterized various ultrasound techniques in assess-
ing aortic stiffness based on the alterations of aortic structure, hemodynamics, and tissue motion.
We also discussed the discrepancy of their applications in humans and rodents and explored the
potential optimized strategies in the experimental research with animal models. This updated infor-
mation would help to better understand the nature of ultrasound techniques and provide a valuable
prospect for their applications in assessing aortic stiffness in basic science research, particularly with
small animals.

Keywords: aortic stiffness; atherosclerosis; ultrasonography; hemodynamics; cardiovascular
risk factor

1. Introduction

Cardiovascular diseases remain one of the leading causes of morbidity and mortality,
drawing numerous clinical and basic science studies. Various techniques have been clini-
cally developed to detect the structural and functional alterations of cardiovascular systems,
including non-invasive methods such as ultrasonography, magnetic resonance imaging,
computed tomography, positron emission tomography, and single-photon emission com-
puted tomography, and invasive procedures such as cardiac catheterization [1–4]. The
applications of these new inventions have dramatically changed our knowledge and under-
standing of cardiovascular diseases and improved the evaluation of the latest treatments’
effects. Importantly, these techniques also provide new strategies for basic science research
in various animal models. While many new techniques are developing, ultrasonography
remains an essential and principle tool in assessing structural and functional alterations of
the cardiovascular system in humans [5,6]. However, its applications appear relatively less
in vascular diseases, particularly in small animal models, due to the technique challenge.

The aorta is the largest artery that carries blood from the left ventricle (LV) to the
systemic circulation [7]. Aortic stiffening is a fundamental pathological alteration of
atherosclerosis and other various aging-associated vascular diseases. It is also known
as an independent risk factor of cardiovascular complications and has been considered
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as a predictor of cardiovascular outcomes in clinical [8–10]. As a non-invasive method,
ultrasonography has been used in clinical diagnosis for aortic stiffness in many aortic
disorders such as atherosclerotic degeneration and aortic aneurysms through measuring
the wall-thickness, diameter, structural defects, blood flow velocity, and other pathological
changes in the aorta [7,11–13]. The developed techniques used in patients also provide
powerful tools for basic science research in different animal models, particularly the large
animal models such as monkeys, swine, canines, and horses [14–19]. The combination of
ultrasonography with other invasive strategies in large animal models provides valuable
direct evidence of the pathogenesis of the diseases that may not be able to obtain from
human studies, which, in turn, led to the translational development of new diagnostic
techniques and therapeutic strategies for predicting and preventing cardiovascular disease
complications in humans [20].

Small animals, especially rodents (rats and mice), have also been widely used in the
basic science research of vascular diseases, particularly in mechanistic molecular studies
with the advantages of various genetic-modified models [21]. These small animal models
have the feasibility to perform analysis that is not practical in humans, such as surgery,
genetic and pharmacological inventions, invasive measurements, and tissue/cell isola-
tions. Although ultrasonography has been widely used in rodents for detecting heart
alterations [20,22–24], its application in rodent blood vessels has encountered tremendous
challenges due to the specific location and remarkable smaller size of the blood vessels,
as well as the rapid changes caused by the high heart rate (around four to five folds the
human heart rate). Since the evaluation of vascular structure and function is crucial in
determining the mechanistic regulation and pharmacological efficiency in rodents, it is
essential to establish an optimal ultrasonographic assessment of the aortic alterations in
these small animal models.

In this review, we summarized the progress of the ultrasonographic applications in
assessing aortic stiffness and outlined the application discrepancy of the current techniques
in humans and rodents. Specifically, using multiple illustrative images from both human
and mouse models, we characterized the nature of each ultrasound technique in the
assessments of aortic stiffness based on the alteration of aortic structure, hemodynamics,
and tissue motion. We also discussed the potential optimized strategies to improve the
applications of these techniques in rodents. The updated information would provide a
valuable prospect for the application of clinical approaches in basic science research.

2. Integrating Applications of Ultrasonography in the Assessments of Aortic Stiffness

The aorta consists of five anatomical segments from the proximal to distal ends,
including the aortic root (AoR), ascending aorta (AAo), aortic arch (AoA), descending
thoracic aorta (DTAo), and descending abdominal aorta (DAAo). The ultrasonographic
images of the aorta can be obtained with multiple views and have been used to assess
the aortic structural and functional alterations in humans and large animals as well as
in rodents.

Aortic stiffness is a combined phenotype that could be changed by the long-term
remodeling of the wall constituents or with the acute dysfunction of smooth muscle and/or
endothelial cells. Ultrasonographic evaluations of the aorta could be interrogated from
various imaging [7], including (a) real-time B-mode images and M-mode traces; (b) doppler
ultrasonography [25]; (c) pulse wave velocity (PWV); and (d) newly developed processing
technologies, such as speckle tracking imaging (STI), power mode imaging, elastography,
and contrast-enhanced ultrasound [26–28]. Due to the complexity of the aortic mechanical
properties and functions, no signal parameter could represent the full characterization of
aortic stiffness; thus, the assessment of aortic stiffness usually requires a combination of
multiple measurements and analysis by integrating various ultrasonography. As summa-
rized in Figure 1, aortic stiffness could be assessed through the following three essential
measurements based on aortic structure, hemodynamics, and tissue motion, respectively.
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Figure 1. The scheme of integrating applications of ultrasonography in aortic stiffness assessments. Based on the characters
of each ultrasonography, aortic stiffness could be assessed through the three major measurements: aortic structure,
hemodynamics, and tissue motion.

2.1. Structure-Based Assessment of Aortic Stiffness

Stiffness refers to the resistance to deformation. Thus, aortic stiffness can be assessed
based on its capability for structural alteration, such as luminal diameter and vessel wall
thickness, which can be accurately measured by M- and B-mode ultrasonography.

2.1.1. Image Acquisition of Aorta by M- and B-Mode Ultrasonography

M-mode ultrasonography detects the structures along a single axis, by which the
tissue interfaces are represented in dots on the display screen. With a high temporal
resolution, M-mode images can measure the inner diameter and wall thickness of the
aorta from several cardiac cycles. Thus, systolic and diastolic diameters could be ob-
tained simultaneously [29]. As illustrated in Figure 2, an M-mode line can be placed
perpendicular to the aortic walls, such as a long-axis view of the AAo (Figure 2A,B) and a
short-axis view of the DAAo (Figure 2C,D). The image acquisition of the aorta by M-mode
ultrasonography and its application in assessing aortic dimensions are similar between
humans (Figure 2A,C) and rodents (Figure 2B,D).
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Figure 2. Representative M-mode displays of the aorta for the anterior–posterior diameter measurement. (A,B): The
long-axis view of the ascending aorta (AAo) obtained in systole and diastole in human (A) and mouse (B). (C,D): The
short-axis view of the descending abdominal aorta (DAAo) in systole and diastole in humans (C) and a mouse model (D).

B-mode ultrasonography, also known as two-dimensional (2D) ultrasonography, is
one of the most basic ultrasound models that produces a real-time black/white image
of the targeted site, where the aortic wall is shown as echo-reflecting and the lumen as
echo-free. As shown in Figure 3, the ultrasonographic view of the aorta is either circular in
the perpendicular sections or tube-shaped in the parallel sections in humans. For example,
the AoR and the AAo could be visualized in the parasternal long-axis view (Figure 3A),
the modified right parasternal long-axis view, modified apical five-chamber (Figure 3B),
and three-chamber views (Figure 3C). Additionally, the suprasternal view is a crucial
view to visualize the AoA and the three supra-aortic trunks (innominate, left carotid, and
left subclavian arteries), and a variable tract of the AAo and the DTAo (Figure 3D). In
some cases, the entire arch could not be visualized in a single image plane because of the
aorta’s extreme tortuosity. The DTAo can also be displayed in the posterior field through
the cardiac acoustic window (Figure 3E). Moreover, parts of the DTAo may be invisible
due to the tracheal air. The subcostal views may be helpful and allow the DAAo to be
visualized (Figure 3F). Although B-mode has been widely used in humans, its application in
mouse aorta remains relatively challenging, primarily because of the difficulty in obtaining
exceptional spatial and temporal resolution in a small, rapidly varying vessel. Since apical
views of the heart are prone to change in rodents, particularly in mice, it is difficult to
obtain stable images of the aorta in this view. Reciprocally, the parasternal (Figure 4A),
suprasternal (Figure 4B), subcostal, and transabdominal views (Figure 4C) are the most
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critical views for murine aorta, which enable an adequate assessment of the AoR, the AAo,
and most of the segments of the DTAo and DAAo in mouse models.
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Figure 3. The representative images of human aorta segments were obtained by B-mode. The segments of the aorta were
imaged from a 20-year-old male volunteer. (A): The parasternal long-axis view of the aortic root (AoR). (B): The apical
five-chamber view of the AoR. (C): The apical three-chamber view of the AoR. (D): The suprasternal view of the aortic
arch (AoA). (E): The parasternal view of the descending thoracic aorta (DTAo). (F): The subcostal view of the descending
abdominal aorta (DAAo). LV: left ventricle, LA: left atrium, RV: right ventricle, RA: right atrium.
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2.1.2. Parameters of Aortic Stiffness Assessment by M- and B-Mode Images

Although current clinical guidelines support the use of aortic diameter to predict the
complications and guide elective aortic surgery [30], the aortic diameter per se may be
not suitable to determine the early functional abnormality of the aortic wall due to the
segmental differences along with the aorta [31,32] and the variations in pathophysiologic
changes of aortic tissue [26]. Therefore, a series of combined parameters were established to
assess the aortic mechanical property in patients and animal models based on the alteration
of local aortic diameters during the systolic and diastolic cycles or under different blood
pressure (BP).

As shown in Table 1, the structural measurements of the aorta with M- and B-mode
images have been used to determine comprehensive parameters of aortic stiffness or
vascular elasticity. For example, aortic strain (AS), calculated by a few formulas based on
the alterations of aortic systolic and diastolic diameters, was used to reflect a deformation
of the vessels under cardiac cycles, such as AS = (AoS − AoD)/AoD or circumferential
strain = 1

2 × [(AoS/AoD)2 − 1]× 100%, while AoS and AoD represent the systole and aortic
diameters, respectively. In addition, as aortic stiffness is pressure-dependent, stiffness
parameters were calculated by various formulas based on the changes in the area (or
in diameters) for a given pressure step (∆P). For examples, arterial compliance (C) was
calculated by the ratio of the absolute change in diameter (∆D = AoS − AoD) and pressure
(∆P = SBP − DBP) at a fixed vessel length (C = ∆D/∆P), and Young’s modulus (EY)
was calculated by AoD/H/(∆A/A × ∆P), while H represents aortic wall thickness, A
represents the minimal cross-sectional area of the aorta and ∆A as the maximal minus
minimal cross-sectional area of the aorta. By contrast, some other indexes were calculated
by the stress/strain ratio, such as the elastic pressure-strain modulus (Ep = 1333 ∆P/AS);
aortic stiffness index (SI) = ln ∆P/AS; β index = ln (SBP/DBP)/AS), or the distensibility
(DI) by (2 AS/∆P), which is the inverse of Ep. Furthermore, strategies were also used to
determine the vessel’s response to the wide changes of BP with drug administration. The
correlation between the diameter changes or the wall thickness to the BP was used to reflect
the aortic stiffness [14,15]. The relevant formulas of the aortic stiffness parameters using M-
and B-mode and the citations are summarized in Table 1.

Table 1. Formulas for calculating the biophysical properties of the aorta.

Echo Technique Formula References

M-mode

Stiffness index (SI) = ln (SBP − DBP)/[(AoS − AoD)/AoD] [22,23,33–38]

Distensibility (DI) = 2 × (AoS − AoD)/[AoD × (SBP − DBP)] [33–40]

M-mode strain = (AoS − AoD)/AoD [15,22,36–39]

Compliance= (AoS − AoD)/(SBP − DBP) [22,36]

• Elastic pressure-strain modulus (Ep) = (SBP − DBP)/
[(AoS − AoD)/AoD]

• Ep = 1333(SBP − DBP)/[(AoS − AoD)/AoD]
[34,41]
[15,23]

Young’s modulus (EY = AoD/thickness of aortic wall/DC) [23]

Peterson’s elastic modulus = AoD(SBP − DBP)/(AoS − AoD) [36]

M-mode
B-mode

Aortic strain = 100(AoS − AoD)/AoD [19,33,37]

β index = ln (SBP/DBP)/[(AoS − AoD)/AoD] [5,15,39–43]

Circumferential strain = 1/2 × [(AoS/AoD)2 − 1] × 100% [25,31,44]

“AoS” to the aortic diameter in systole; “AoD” to the aortic diameter in diastole; “ln” refers to the natural logarithm; “SBP” to the systolic
blood pressure; “DBP” to the diastolic blood pressure; “BSA” to body surface area; DC: = ∆A/A × (SBP − DBP), while A: the minimal
cross-sectional area of the aorta, ∆A: the maximal minus minimal cross-sectional area of the aorta.
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2.1.3. Applications of M- and B-Mode Images in Aortic Stiffness Assessments

M-mode images have been used in detecting aortic stiffness in humans in both normal
tissue development and pathobiological vascular diseases. For example, M-mode was used
to determine the aortic elasticity during the development of isolated bicuspid aortic valve
(BAV) and healthy children. By calculating the strain, DI, and SI of AAo, the results showed
that children with BAV exhibited abnormal aortic elasticity from infancy to adolescence [33].
In addition, Rosca et al. showed for the first time that, in patients with severe aortic stenosis,
the increased aortic rigidity, as assessed by aortic β index, was independently correlated
with reduced LV longitudinal function and increased LV filling pressures as well as B-type
natriuretic peptide levels. These results revealed that the increased aortic stiffness could
potentially be used for prognostic prediction in patients with aortic stenosis [42].

In addition, many studies have used the parameters calculated from B-mode images
to evaluate the mechanical property of the aorta, including the aortic size index (ASI),
a ratio of aortic diameter and body surface area, or aortic root z-score [9,45,46]. It has
been shown that ASI is positively correlated with the incidence of aortic rupture and
dissection or their associated death [45]. The results showed significantly larger aortic
dimensions and z-score values in the children with BAV than the control group, and a
z-score >2 indicated an aortic dilatation [33]. Furthermore, with B-mode images, a study
in a large population of adolescents and adults also showed an independent association
of AoR size with age, body size, and gender; i.e., AoR diameter is more extensive in men
than women and increases with body size and age [47]. Importantly, studies have shown
that B-mode images presented a higher reproducibility in the measurements of Valsalva’s
sinuses in patients with suspected Marfan syndrome [48]. B-mode has been applied to the
analysis of arterial distension of the carotid arteries and the DAAo in preclinical studies of
disease [21]. Measurements of arterial stiffness at different vascular tree sites do not seem
to be interchangeable, but there is a correlation [49].

Moreover, a structure-based aortic stiffness assessment has been applied in large
animal models to determine the regional aortic stiffness. A recent study used B-mode-
derived AS to measure the aortic stiffness at two different transverse sections (renal and
iliac level) with or without hypertension and indicated that the regional AS can be used
to assess abdominal aortic stiffness, especially when the indirect BP measurements are
inaccurate [19]. In addition, using an invasive pressure catheter or an implanted aortic
pressure probe, the regional aortic pressure can be measured directly or continuously in
large animal models, which provided a more accurate and reliable assessment of regional
aortic stiffness [14,15]. These methods were also used and confirmed in our previous
studies in hypertensive rats in which a significantly increased local aortic wall stiffness was
detected in spontaneously hypertensive rats compared to Wistar Kyoto rats, evidenced by
lower arterial compliance and arterial strain [22–24].

Furthermore, arterial distension has also be used as an early marker for detecting
arterial disease in small animal models. It has been shown that the reduced circumferential
strain is correlated with an increased elastin fragmentation in fibrillin-1 hypomorphic
mice [44]. In addition, a novel semi-automatic method for tracking the changes of vessel
lumen diameter with B-mode images was also applicable in mouse models of vascular
disease by measuring the arterial diameter over the entire B-mode cine loops [21].

2.1.4. Potential Limitations of the Structure-Based Aortic Stiffness Assessment

Although M-mode imaging is technically feasible and reproducible, it provides only a
one-dimensional semiquantitative assessment. Attention needs to be paid to the potential
bias caused by the shift field of view. It is also critical to obtain an image perpendicular to
the long aortic axis to avoid overestimating the diameter of the short aortic axis [25].

The B-mode image has the capability of determining spatial pathological alterations
directly. It provides excellent value for aortic stiffness calculations due to its geometric
dependencies in evaluating the aortic lumen, diameter, and wall thickness. When using
B-mode images, narrowing the window of interest is crucial to obtain the highest frame
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rate [6]. The impacts of imaging modality on the aortic diameter measurements need to
be considered. It has been shown that the anteroposterior AoR diameter at end-diastole
is one to two millimeters smaller with M-mode ultrasonography than the measurements
obtained by B-mode, indicating the importance of multiple planes (sagittal, coronal, axial)
in B-mode ultrasonography [12].

A combination of an invasive measurement of the pressure and an M-mode measure-
ment of the diameter could enhance the reliability in local aortic stiffness. It is notable that
when assessing non-invasive circumferential strain, this should be done with short or long
axis M-mode images [25].

2.2. Hemodynamic-Based Assessment of Aortic Stiffness

Aortic stiffness may change the blood flow resistance, which alters hemodynamics and
leads to a difference in blood flow velocity. Thus, aortic stiffness can also be determined by
the local hemodynamic parameters, which can be obtained by Doppler ultrasonography,
such as color Doppler (CD), spectral Doppler (SD), and PWV. While both CD and SD
imaging can be applied to calculate flows at different regions of vessels, PWV was widely
used to quantify systemic arterial stiffness noninvasively.

2.2.1. The Nature of CD/SD Ultrasonography and PWV

Doppler ultrasonography employs the Doppler effect to generate imaging of the move-
ment of tissues or body fluids (usually blood) and their relative velocity to the probe. By
calculating the frequency shift of a particular sample volume, its speed and direction can be
determined and visualized. There are several applications with Doppler ultrasonography,
such as CD, SD, and tissue Doppler images (TDI). While CD ultrasonography provides an
image showing blood flow by the bright areas of aliasing (Figure 5A–C) and turbulence
in the aorta’s narrowed segment, SD imaging provides quantitative data on blood veloc-
ities, enabling flow volumes and pressure gradients to be calculated (Figure 5D–F). An
important characteristic of the waveform is the peak systolic velocity, which increases as
the luminal diameter decreases, such as in the setting of stenosis. Vessel tortuosity and
branching can lead to either focally increased or decreased velocity, resulting in a flow
disturbance or even flow reversal [50]. These characters of Doppler images are similar in
humans (Figure 5A–F) and rodents (Figure 6A–D).
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Figure 5. Representative Doppler signals and velocity waveforms of a human aorta. Images were obtained from a
20-year-old male volunteer representing Doppler images of the apical five-chamber view (A) and three-chamber view (B) of
the aortic root (AoR) and the suprasternal view of the aortic arch (AoA) (C). (D–F): The corresponding assay of the aortic
velocity of (A–C). LV: left ventricle, LA: left atrium, RV: right ventricle, RA: right atrium.
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Figure 6. Color Doppler(CD) and pulsed-wave images from a mouse aorta. The representative images by CD were obtained
from a healthy four-month-old C57BL/6J mouse. (A,B): CD images of the aorta arch (AoA) (A) and descending abdominal
aorta (DAAo) (B). (C,D): The corresponding Inflow velocity of (A,B) using pulsed-wave Doppler imaging.

PWV is defined as the speed of a pulsatile blood wave that travels along an artery.
It was considered the “gold standard” method for the non-invasive measurement of
aortic stiffness in humans due to its strong correlation with the risk of cardiovascular
events [41,51,52]. As illustrated in Figure 7A,B, PWV is determined by the temporal shift
among the pulses, e.g., PWV = D (meters)/∆t (seconds), while the transit time (∆t) refers
to the time of travel of the “foot” of the wave over a known distance (D). The transit
time between two arterial sites can be measured invasively with one double-sensor [53] or
two single-sensor pressure catheters [54], or noninvasively via sphygmomanometer [55],
magnetic resonance imaging [1,56], or ultrasonography [39,57]. In humans, PWV is usually
assessed using the “foot-to-foot” velocity method from various waveforms, and the most
widely used proxy for aortic PWV is carotid-femoral PWV, with transit times assessed from
signals measured at the carotid and femoral arteries (Figure 7A). Reciprocally, different
from humans, PWV was measured regionally in mice due to the nature of the small size of
the mouse body. As shown in Figure 7B, mouse PWV was determined by the distance and
the time delay of the pulse waves detected from the aorta’s proximal and distal sites.
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2.2.2. Applications of CD/SD and PWV in Aortic Stiffness Assessments

Whereas strain, compliance, and distensibility are local markers of arterial elasticity,
aortic stiffness can also be assessed through a systemic or regional functional measurement
over a certain arterial length. When the aortic stiffness progresses to an advanced stage,
the blood flow in the lumen may accelerate or even disappear, which can be detected by
CD imaging and quantitated by SD ultrasonography. Doppler methods have been used to
characterize and evaluate the vascular remodeling that occurs following transverse aortic
constriction [58]. The magnitudes and waveforms of blood velocities from both cardiac
and peripheral sites are similar in mice and humans [58].

PWV was widely used to quantify both regional and systemic arterial stiffness nonin-
vasively. Particularly, aortic PWV has been commonly used in humans to evaluate aortic
stiffness and has been proved to be an independent predictor of outcome in various popu-
lations [59]. For example, a large body of evidence demonstrated that the carotid-femoral
PWV is positively associated with the incidence of human cardiovascular disease [43]; this
parameter has been widely used in epidemiological studies in predicting aortic stiffness-
associated cardiovascular events. Styczynski et al. also compared the efficiency of PWV
measurement among different methods in assessing aortic stiffness and found a close corre-
lation between echo-PWV measurements and invasive assessment. The results suggested
that Doppler ultrasonography is a reliable method of aortic PWV measurement [51]. PWV
has been used to evaluate aortic stiffness in patients with Kawasaki disease, and the result
showed a faster aortic PWV in patients with Kawasaki disease, suggesting an increased
arterial stiffness [41].

PWV is also used to evaluate the aorta in mice. L. Lee et al. gave the first demonstration
of the direct measurement of PWV noninvasively in the AoA of Marfan syndrome mice.
They found that PWV was significantly increased with age in these mice [57]. PWV was
also found to be increased dramatically in Mcoln1-/- mice compared to their wild-type
littermates, and Vitamin D treatment further enhanced such stiffening in these mice [11].
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2.2.3. Potential Limitations of the Hemodynamic-Based Ultrasonography

While Doppler ultrasonography increased the understanding of blood flow within the
aorta, attention needs to be taken in interpreting measurements due to the consequent re-
duction in the frame rate, aliasing Doppler sample volume size, and angle of incidence [58].
In addition, CD and SD may only detect changes in hemodynamics in the late stage of
aortic stiffness.

Despite its wide applications in humans, there are some limitations in PWV measure-
ment in rodents. One of the difficulties is the small time differences between the onset of
Doppler flow within the two sites of the aorta in small animals [60]. Additionally, the bias
may also be caused by the inaccurate estimation of the designed sites’ distances and the
potential difficulty in obtaining a clear blood flow waveform of the aorta in small animals.
PWV may be affected by cardiac function, which should be considered to evaluate aortic
functional alterations.

2.3. Aortic Stiffness Assessments Based on the Tissue Motion

Tissue deformation happens before the changes of the vascular global structure and
function. In recent years, the development of TDI and STI enables us to quantify tissue
motion and deformation, which further altered the way that echocardiography approaches
the characterization of aortic stiffness. Through the ultrasound evaluation of tissue motion,
it is possible to obtain earlier and more detailed information on aortic stiffness.

2.3.1. The Natures of the TDI and STI

In addition to detecting the blood flow within the aorta, Doppler signals can also be
collected from tissue and recorded by TDI, either as spectral or color displays, which can
be used to measure tissue stiffness with the velocities and strain rate of the tissue motion.
The image acquisition of the aorta by TDI is similar between humans (Figure 8A) and
rodents (Figure 8B).

STI is another newly developed ultrasonographic method used to quantify the tissue
wall’s deformation of subsurface structures with high spatial resolution. The speckle
pattern can be tracked consecutively from frame to frame and ultimately resolved into
angle-independent 2D and three-dimensional (3D) strain-based sequences, providing both
quantitative and qualitative information regarding tissue deformation and motion. So
far, speckle tracking using in-vessel deformation has been limited to 2D-STI, while the
application of 3D-STI in vessels is still undergoing technological developments. 2D-STI can
be obtained by B-mode, and the corresponding circumferential strain rate can be calculated
by using the dedicated software. Based on frame-by-frame tracking of tiny echo-dense
speckles within the tissue, 2D-STI enables the calculations of motion and deformation
variables, such as velocity, displacement, strain, and strain rate, through the assessment of
the tissues’ lengthening and shortening [43,61]. As illustrated in the upper panel of Figure 9,
with a 2D ultrasonographic image of the human aorta, a line was manually drawn along the
inner side of the DAAo circumference, and the additional lines within a 15-mm-wide region
of interest would be automatically generated by the software (Automated Cardiac Motion
QuantificationA · I, Qlab 13.0; Philips Healthcare, Amsterdam, The Netherlands). The
shape and width of the regions of interest could be manually adjusted. A cine loop preview
feature allowed visual confirmation that the internal line followed the vascular expansion
and recoil movements throughout the cardiac cycle. Based on these measurements, the
circumferential strain rate can be automatically or semi-automatically calculated by the
software, as shown in the lower panel of Figure 9.
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Figure 9. The illustration of human aortic assessments by two-dimensional (2D) speckle tracking. Intraoperative 2D speckle
tracking analysis from a short-axis view of descending abdominal aorta (DAAo) in a healthy individual. The circumferential
strain profile is displayed on a positively directed curve with a peak value of 18.3%.

Due to its high feasibility and excellent reproducibility, this technique may be of
particular benefit in small animal imaging. Recently, we have used 2D-STI to obtain mouse
AS. As shown in Figure 10A–E, the images of the parasternal long-axis of AAo and subcostal
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views of DAAo were successfully obtained by B-mode imaging using a VisualSonics Vevo
3100 system (FUJIFILM VisualSonics Inc., Toronto, ON, Canada). The data were analyzed
by using the Vevo Vasc software (Vevo LAB 3.2.6), including the diameter, area, strain,
distensibility/elasticity, and wall thickness.
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Figure 10. Representative images of mouse aortic assessments by 2D speckle tracking. Images acquired from a four-month-
old C57BL/6J mouse over one cardiac cycle. (A): B-mode image of the ascending aorta (AAo) in long-axis orientation. (B):
Regional radial strain curve superimposed M-mode image of the aorta. (C): Tangential strain curve superimposed M-mode
image of the aorta. (D): A B-mode image of the descending abdominal aorta (DAAo) in short-axis orientation. (E): Regional
radial strain curve superimposed M-mode image of the aorta.

Studies have revealed several significant advantages of 2D-STI assessment over TDI.
For example, the 2D-STI technique is angle-independent and is not influenced by tethering
or translational motion, and the deformation pattern can be analyzed in longitudinal,
radial, and circumferential directions [62]. By capturing the segmental tissue motion across
multiple planes and axes serially, the analysis from the 2D-STI images could provide
much greater sensitivity and specificity assessment on regional and global cardiovascular
function than the conventional echocardiographic measurements [63]. Although 3D-STI
has potential advantages over 2D-STI due to the third parameter of the image, particularly
in evaluating cardiac pathologies [64,65], the technique and equipment requirement and
the database load of 3D-STI are much more significant than 2D-STI.

2.3.2. Applications of TDI and STI in Aortic Stiffness Assessments

Previous studies have revealed that TDI could be used to evaluate arterial stiffening
in humans by measuring the vessel wall motion waveforms [35,66]. Multiple TDI-related
parameters were applied in assessing the aortic elastic properties, including wall velocities
and tissue strain (TDI-ε). The velocity could be measured at different phases, such as
during systole (S′), early relaxation (E′), and atrial systole (A′) [36]. It has been shown that
tissue strain was significantly impaired in diabetic patients and even more so in diabetic
patients combined with hypertension [36]. The same method has been used in patients with
coronary syndrome disease (CAD) [34], and the results showed that E′ of the anterior wall
of AAo measured with TDI was decreased in patients with premature CAD and correlated
with arterial stiffening [34]. TDI has also been used to measure myocardial velocities and
strain rate noninvasively in mice. Both indices are sensitive markers for quantifying LV
global and regional function in mice [67]. However, its application in aortic studies in
animal models remains limited.

In addition, it has been demonstrated that the circumferential deformation of the
aorta can be measured using 2D-STI and has been proved to be a simple and accurate
determination of aortic stiffness [40,43,68,69]. Human studies have demonstrated that 2D-
STI measurements are the most valuable to determine the early alteration of aortic tissue
mechanical properties [26]. For example, it has been shown that the global circumferential
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AS could be easily assessed in patients with moderate-to-severe aortic stenosis [40]. Using
2D-STI, the AoA strain and strain rate were significantly lower in hypertensive patients
than healthy individuals, indicating that 2D-STI might serve as a new and reliable approach
in diagnosing vascular diseases at the early stage [43]. This method has also been used to
derive biomechanical information and stratify risk in patients with hypertension, diastolic
dysfunction, LV hypertrophy, atrial fibrillation, and other CAD [40,43,70].

Furthermore, 3D-STI provides a powerful tool to measure the dynamic cyclic defor-
mation of the aorta in vivo. For example, using 3D-STI, the results found that, compared
with healthy DAAo, patients with abdominal aortic aneurysms not only showed reduced
mean strains but also revealed an increased spatial heterogeneity and more pronounced
temporal dysynchrony delayed systole [68]. 3D-STI has also been used and validated
in large animals [71]. This method is expected to provide a valuable tool to measure
more detailed information related to the small and regional alterations during the early
stage of vascular diseases in rodent models. Due to their advantages, these tissue motion-
based techniques provide essential research tools with great potential in future clinical and
research applications.

2.3.3. Potential Limitations of TDI and STI

Despite the promising advantages of TDI, most of the current studies are concentrated
in the myocardial structural/functional assessment, while the application in the aorta
remains limited, particularly in mice, which may be due to the relative challenge in image
acquisition of the echocardiogram compared to the heart [6,72].

Some limitations of 2D-STI for assessing AS are also noticed, particularly in mice.
In addition to being time-consuming and the requirement of the STI software [43], the
adoption of strain analysis in small animal models has been limited primarily because
of technical differences in imaging mice versus humans, including limited ultrasono-
graphic views, translational motion during image acquisition, and the effect of very high
heart rates [73].

3. Conclusions and Future Directions

Ultrasonography is an essential non-invasive imaging tool that would offer structural
and functional evaluations in the aorta and has been widely used in clinical and basic
research. Although various ultrasound techniques have been developed, each has its
advantages and limitations in measuring aortic stiffness. For example, structure-based
assessments provide a fundamental association between pathological alteration with aortic
stiffness. However, since the measurements rely on only one plane imaging or only a
straight line in a direction, the parameters, such as diameter and wall thickness, can be
quite variable due to the acoustic window and may not reflect the systemic functional
alteration temporally. Reciprocally, although hemodynamics-based assessments reflect
aortic functional alteration via measuring the velocity of blood flow, it is notable that the
Doppler signals are angle-dependent, and the blood flow velocity can be affected by other
factors, such as heart rate, LV ejection fraction, and regional variation along the aortic tree.
Newly developed measurements on the tissue motion reflect the tissue deformation of the
aortic wall, providing a more direct assessment of the aortic stiffness. It also led to an early
diagnosis since the tissue deformation happens before the vascular global structural and
functional changes. However, the application of these techniques may be limited by their
requirement of high-quality images and time costs, and the bias caused by the variability
of the analysis software. Integrating multiple ultrasonography imaging-based techniques
would provide a comprehensive characterization of the vessel mechanics and improve our
accurate information on the pathophysiology of aortic disease.

The applications of ultrasonography in assessing aortic stiffness are also different
between humans and rodents. For example, as PWV was widely used in humans to assess
aortic stiffness, its application in rodents is dramatically limited by the potential inaccuracy
in measuring the time difference between the onsets of Doppler flow due to the small
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body size and the high heart rates of the rodents. In addition, while the ultrasonographic
measurements were performed in humans in a conscious condition, they have to be taken
in rodents under anesthesia; the bias may also be caused by the anesthesia in structure-basis
aortic stiffness measurements due to the inconsistent alterations between the structure
and BP. Furthermore, although the TDI and STI provide a valuable tool to measure the
early regional alterations of aortic stiffness in humans, their applications in rodents are far
behind due to the technique proving to be challenging in small animals.

Rodent models allow the ultrasonographic measurements combined with invasive
methods, genetic and pharmacological inventions, and in vitro studies, providing valuable
information that cannot be obtained from human studies. One primary direction in the
future research of aortic diseases by using ultrasonography is to develop new techniques
to overcome the current challenges in assessing aortic stiffness in these small animals. First,
increasing new techniques have been invented and applied in clinical patients. These
techniques could be transferred from humans to animal models for basic science research
by improving the image quality and the analysis software that are applicable for small
animals, such as TDI and STI. Secondly, it is crucial to take advantage of the animal models
to identify the relationship between physiological alterations to the mechanistic outcomes.
For example, exploring the biomarkers that can be detected by ultrasonography would im-
prove the assessment of the hemodynamics or PWV changes in small animals. In addition,
using bio-labeling techniques to trace the cell/tissue-specific targets would enhance the
sensitivity and specificity of ultrasonography in measuring the tissue motion or deforma-
tion. Furthermore, using a combined continuous BP measurement and ultrasonography
to detect the real-time alterations of aortic structure with the BP change in a conscious
condition would provide more faithful aortic stiffness and avoid the influence of anesthesia
on hemodynamics. Finally, ultrasonography can also be combined with new drugs to
assess aortic stiffness in small animals. By measuring the aorta’s response to these newly
developed vaso-activators or dilators, aortic stiffness could be calculated based on the
drug-induced structure–BP response in vivo. These responses can be further confirmed ex
vivo in animal tissues, which will, in turn, improve the in vivo measurements.

On the other hand, basic research on rodent models could bring new mechanistic
information to clinicians and develop new techniques with the molecular/cell/tissue-
specific targets to explore disease- or drug-related dynamic alterations. More advanced
imaging technologies are bound to be used in the clinical evaluation of aortic conditions
in the future research field, such as strain-based imaging, contrast ultrasonography, and
ultrasound molecular imaging. Echo-derived aortic stiffness parameters could be combined
with biomechanical parameters and histopathology to provide more clinical information.
The clinicians, basic scientists, and pharmacologists need to work together to develop a
new comprehensive system to detect vascular alterations in humans at cellular/subcellular
or molecular levels.
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Abbreviations

LV left ventricle
AoR aortic root
AAo ascending aorta
AoA aortic arch
DTAo descending thoracic aorta
DAAo descending abdominal aorta
BP blood pressure
AS aortic strain
CD color Doppler
SD spectral Doppler
PWV pulse wave velocity
STI speckle tracking imaging
SI stiffness index
DI distensibility
BAV bicuspid aortic valve
2D two-dimensional
ASI aortic size index
TDI tissue Doppler imaging
CAD coronary syndrome disease
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