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Abstract

Motivation: B cells derive their antigen-specificity through the expression of Immunoglobulin (Ig)

receptors on their surface. These receptors are initially generated stochastically by somatic re-

arrangement of the DNA and further diversified following antigen-activation by a process of somat-

ic hypermutation, which introduces mainly point substitutions into the receptor DNA at a high rate.

Recent advances in next-generation sequencing have enabled large-scale profiling of the B cell Ig

repertoire from blood and tissue samples. A key computational challenge in the analysis of these

data is partitioning the sequences to identify descendants of a common B cell (i.e. a clone). Current

methods group sequences using a fixed distance threshold, or a likelihood calculation that is

computationally-intensive. Here, we propose a new method based on spectral clustering with an

adaptive threshold to determine the local sequence neighborhood. Validation using simulated and

experimental datasets demonstrates that this method has high sensitivity and specificity compared

to a fixed threshold that is optimized for these measures. In addition, this method works on data-

sets where choosing an optimal fixed threshold is difficult and is more computationally efficient in

all cases. The ability to quickly and accurately identify members of a clone from repertoire sequenc-

ing data will greatly improve downstream analyses. Clonally-related sequences cannot be treated

independently in statistical models, and clonal partitions are used as the basis for the calculation of

diversity metrics, lineage reconstruction and selection analysis. Thus, the spectral clustering-based

method here represents an important contribution to repertoire analysis.

Availability and implementation: Source code for this method is freely available in the SCOPe

(Spectral Clustering for clOne Partitioning) R package in the Immcantation framework:

www.immcantation.org under the CC BY-SA 4.0 license.

Contact: steven.kleinstein@yale.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

B cell receptors (BCRs, also referred to as Immunoglobulins, (Igs))

are expressed by B cells and serve as the primary means for specific

detection of foreign antigens. BCRs are comprised of two identical

heavy and light chain proteins. BCRs exhibit extensive naive se-

quence diversity, which is generated through a somatic gene

rearrangement process termed V(D)J recombination (Tonegawa,

1983). For heavy chain rearrangements, V(D)J recombination brings

together one Variable (V) region gene with one Diversity (D) gene

and one Joining (J) gene. For light chain rearrangements V genes are

rearranged directly to J genes. Further diversity is generated at the

junctions between these joining gene segments by N-addition,

P-addition and exonucleolytic nibbling (Murphy, 2011). The

large number of possible V(D)J gene segments, combined with junc-

tional diversity, result in a theoretical diversity of > 1014. During

T-dependent responses, antigen-activated B cells undergo rapid pro-

liferation and further diversification of their BCR by

somatic hypermutation (SHM), an enzymatically-driven process

introducing point substitutions into the Ig locus at a rate of

�1=1000 bp/cell division (Kleinstein et al., 2003; McKean et al.,

1984). This clonal expansion and diversification is coupled to selec-

tion for binding to specific antigen, resulting in affinity maturation
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of the immune response (Bannard and Cyster, 2017; Victora and

Nussenzweig, 2012). In healthy human adults, the average mutation

frequency in the memory B cell population can reach close to 10%

(Vander Heiden et al., 2017). The total collection of BCRs in an in-

dividual, tissue, or cell subset is referred to as the ‘repertoire’ of the

given cell population.

Rapid improvements in next-generation sequencing (NGS) tech-

nologies have revolutionized our ability to carry out large-scale

adaptive immune receptor repertoire sequencing (AIRR-Seq) experi-

ments (Boyd and Joshi, 2015). AIRR-Seq (Rubelt et al., 2017) is in-

creasingly being applied to profile the BCR repertoire to gain

insights into the adaptive immune response in healthy individuals

and in those with a wide range of diseases, including auto-immunity,

infection, allergy, cancer and aging (Boyd et al., 2009; Hershberg

et al., 2014; Logan et al., 2011; Wang et al., 2014). As NGS technol-

ogies continue to improve, these repertoire experiments are produc-

ing ever larger datasets, with tens- to hundreds-of-millions of

sequences. A key computational challenge in the analysis of these

data is partitioning the sequences to identify members of a clone,

which arise from a shared V(D)J recombination event (naive cell)

but can express different BCRs due to the accumulation of muta-

tions introducing by SHM. Accurate identification of clonal rela-

tionships is important, as these clonal groups form the basis for a

wide range of repertoire analysis, including diversity analysis, lin-

eage reconstruction and detection of antigen-specific sequences

(Yaari and Kleinstein, 2015).

Several methods have been proposed to partition a set of BCR

sequences into clonally-related groups. These methods can broadly

be divided into probabilistic (Kepler, 2013; Ralph and Matsen,

2016) and distance-based models (Glanville et al., 2011; Gupta

et al., 2017; Nouri and Kleinstein, 2017). Probabilistic models work

by calculating the likelihood of sharing a B cell ancestor and subse-

quently inferring the clones. The distance-based methods work by

leveraging the high diversity of the junction region (i.e. complemen-

tarity determining region 3, plus the conserved flanking amino acid

residues) as a ‘fingerprint’ to infer the B cell clones. In general, the

likelihood-based approaches are computationally demanding, and

distance-based approaches are more widely used for identifying

clonally-related sequences. Many studies simply choose a threshold

and define any sequences with junction region sequence similarity

below this fixed threshold to be clonally-related; e.g. 10% and 15%

are common thresholds (Hershberg and Prak, 2015; Jiang et al.,

2013; Meng et al., 2017; Vander Heiden et al., 2017). Glanville

et al. (Glanville et al., 2011) offered a subject-specific method of

choosing this threshold using the distribution of distances of each se-

quence to its nearest (non-identical) neighbor. This distance distri-

bution tends to be bi-modal, and it is assumed that the lower mode

represents sequences with clonal relatives and the higher mode rep-

resents those without clonal relatives (i.e. singletons) in the dataset.

In this case, a reasonable choice of distance threshold is one that sep-

arates these two modes (Jiang et al., 2013). Building on this insight,

Gupta et al. (Gupta et al., 2017) developed an automated method to

analyze this distance-to-nearest distribution and choose a threshold.

They also analyzed different linkage approaches for clustering the

sequences into groups (complete, average and single) as well as dif-

ferent measures of distance between junction regions. Gupta et al.

found that applying a fixed distance threshold with single-linkage

hierarchical clustering using Hamming distance normalized by junc-

tion length detected clones with high confidence on several simu-

lated and experimental datasets. Recently, we further extended this

hierarchical clustering-based technique by developing an approach

to estimate the study-specific sensitivity and specificity for any

choice of distance threshold, thus providing a quantitative basis for

choosing a fixed threshold value for partitioning (Nouri and

Kleinstein, 2017). Our method works by modeling the distance-to-

nearest distribution as a mixture of two univariate curves, and then

fitting the parameters of those curves [Fig. 1, panels A: (Stern et al.,

2014), B: (Parameswaran et al., 2013), C: (Vander Heiden et al.,

2017) and D: (de Bourcy et al., 2017)].

Despite their wide use, existing distance-based methods have sev-

eral shortcomings. First, not all datasets exhibit bi-modality in their

distance-to-nearest distribution making it difficult to justify the

choice of a fixed threshold. This occurs, for example, in datasets

composed of many expanded BCR clones which results in the ab-

sence of a second large distance peak [Fig. 1, panels E: (Stern et al.,

2014), F: (Meng et al., 2017), G and H: (Ralph and Matsen, 2016)].

The single-linkage hierarchical clustering-based method described

above will not work in these cases. Second, the use of a fixed thresh-

old for partitioning sequences into distinct clones does not allow for

widely varying levels of clonal diversification. In the case where this

threshold is applied to the dendrogram produced by single-linkage

clustering, the assessment of cluster quality is reduced to a single

similarity between a pair of sequences irrespective of all others. This

can result in long chains of sequences where every sequence is close

to one other, but the entire set is widely dissimilar (the so-called

‘chaining phenomenon’ of single-linkage). For such a method to

work well, the distribution of maximum-distance-within clusters

(compactness) and minimum-distance-between clusters (isolation)

should be distinguishable. In datasets where these two distributions

overlap, the inferred clones are highly sensitive to the fixed threshold

placed on the similarity measure, thus leading to heterogeneity in

the inferred clones.

In this paper, we present a new technique for inferring BCR

clones based on spectral clustering with an adaptive threshold to

determine the local sequence neighborhood. This method does

not require bi-modality in the distance-to-nearest distribution.

Furthermore, by allowing the required level of junction sequence

similarity to vary in different local neighborhoods, the inferred

clones exhibit more homogeneity. We show that this approach per-

forms better than a fixed threshold method on simulated and experi-

mental datasets, and is also a reliable partitioning method when

existing approaches fail to work. Finally, we show that the spectral

clustering-based technique offers a significant improvement in com-

putational speed.

2 Materials and methods

In following sections, we briefly discuss the general framework of

clonal inference methods used in this study. As with many previous

approaches, we first partition sequences into groups that share the

same V gene, J gene and junction length (Boyd et al., 2009;

Glanville et al., 2011; Jiang et al., 2013; Stern et al., 2014; Tsioris

et al., 2015). Next, each of these groups is subject to the spectral

and hierarchical clustering-based methods.

2.1 Spectral clustering-based method
The spectral clustering-based method proceeds in five steps, as

follows (an overview of the approach is shown in Supplementary

Fig. S1A–D):

i. Compute the similarity matrix: Given a set of BCR sequences

fx1;x2; . . . ; xng we generate a symmetric matrix with entries sij

defined by the Hamming distance between the junction regions

of sequences xi and xj.

i342 N.Nouri and S.H.Kleinstein

Deleted Text: <xref ref-type=
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: Logan <italic>et<?A3B2 show $146#?>al.</italic>, 2011; 
Deleted Text:  
Deleted Text: ,
Deleted Text: ,
Deleted Text: CDR3, 
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: Jiang <italic>et<?A3B2 show $146#?>al.</italic>, 2013; 
Deleted Text: ,
Deleted Text:  
Deleted Text:  
Deleted Text: (Figure 
Deleted Text: ,
Deleted Text: )
Deleted Text:  
Deleted Text:  
Deleted Text: (Figure 
Deleted Text: )
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text:  
Deleted Text:  
Deleted Text: ; Jiang <italic>et<?A3B2 show $146#?>al.</italic>, 2013; Glanville <italic>et<?A3B2 show $146#?>al.</italic>, 2011
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty235#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty235#supplementary-data


ii. Compute the kernel matrix: Given the (n, n) similarity matrix,

we generate a fully connected graph such that its elements rep-

resent the local neighborhood relationship of each sequence to

all other sequences (i.e. edges between sequences in local neigh-

borhoods are connected with relatively high positive weights,

while edges between far away sequences have smaller positive

weights). This is implemented using a Gaussian kernel matrix

with elements kij ¼ exp ð�s2
ij=2rirjÞ, where the parameters ri

and rj (SD) control the width of the neighborhoods correspond-

ing to the sequences xi and xj, respectively. The SD is computed

such that the width of neighborhood varies in different parts of

the graph capturing a dynamic threshold among only those

junction segments which have shown higher similarity than the

other sequences. To calculate the scale parameter ri, the rank-

ordered set of distances corresponding to the ith row of the

similarity matrix s is examined to find the first largest gap in dis-

tance values. This gap is flagged as the neighborhood width.

Finally, we compute the scale parameter ri associated with ith

sequence as the SD of distances within this neighborhood

(Fig. 2).

iii. Compute the Laplacian matrix: Given the (n, n) kernel matrix

we generate the graph Laplacian defined as L ¼ D� K, where

D is a diagonal matrix defined as Dii ¼
P

j Aij (Mohar et al.,

1991; Mohar, 1997). Subsequently, we calculate the eigenvec-

tors and eigenvalues of this matrix using the eigen function

from base R package (version 3.4.3).

iv. Determine the number of clusters: Given the set of eigenvalues

f0 ¼ k1 � k2 � � � � � kng we infer the number of clusters, k,

such that all eigenvalues k1; . . . ; kk are very small (’ 0), but

kkþ1 is relatively large. Therefore, the rank-ordered eigenvalues

are examined to find the first largest gap where kkþ1 > 0, while

the eigenvalue ’ 0 has multiplicity up to kth eigenvalue. Then,

the value k is used as the number of clusters (Von Luxburg,

2007).

v. Clonal inference: Given the number of clusters k, we perform

k-means Euclidean distance-based clustering, using the kmeans

function from stats R package (version 3.4.3), over the k

eigenvectors associated with the smallest k eigenvalues to find

the appropriate clones.

2.2 Hierarchical clustering-based method
The hierarchical clustering-based method applied herein is described

in Gupta et al. (Gupta et al., 2017) and Nouri et al. (Nouri and

Kleinstein, 2017); an overview of the approach is shown in

Supplementary Figure S1E–H. Specifically, we use the bygroup sub-

command of DefineClones.py in the Change-O package (version

0.3.9; Gupta et al., 2015) and the findThreshold function from

the SHazaM R package (version 0.1.9) with the default parameters.

3 Results

3.1 The spectral clustering-based method has high

sensitivity and specificity
We first characterized the performance of the spectral clustering-

based method on simulated data, where clonal relationships are

known with certainty. Specifically, we used the simulated datasets

A B C D

E F G H

Fig. 1. The distance-to-nearest distribution can be bimodal or unimodal. BCR sequencing data was obtained for (A, E) cervical lymph node B cells from multiple

sclerosis patients (Stern et al., 2014), (B) peripheral blood B cells from a patient with an acute dengue virus infection (Parameswaran et al., 2013), (C) sorted mem-

ory and naive B cells from a healthy donor blood sample (Vander Heiden et al., 2017), (D) peripheral blood B cells from a healthy, older adult donor (de Bourcy

et al., 2017), (F) splenic B cells from an organ donor (Meng et al., 2017) and (G, H) simulated data from Ralph and Matsen (Ralph and Matsen, 2016). Within each

dataset, the nucleotide Hamming distance (normalized by junction length) from each sequence to every other sequence with the same V gene annotation, J gene

annotation and junction length was calculated and the nearest (non-zero) neighbor was identified. Bi-modal ‘distance-to-nearest’ distributions (A, B, C, D) were fit

to a mixture model of Gamma distributions (solid lines) in order to determine the optimal threshold (vertical dashed lines; Nouri and Kleinstein, 2017)

Fig. 2. Schematic overview for determination of scale parameter used in the

spectral clustering-based method. (A) The Hamming distance of each unique

sequence (rows) to every other sequence with the same V gene, J gene and

junction length is determined and rank-ordered (columns). (B) For each row i,

consecutive elements are examined to find the first largest gap in distance

values, which is used to define the neighborhood width. The scale parameter

ri associated to the ith sequence is determined as the SD of distances within

this neighborhood (shaded areas in A)
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from Gupta et al. (Gupta et al., 2017). These simulations start with

a set of observed lineage tree topologies from lymph node samples

from each of four individuals [M2, M3, M4 and M5 from Stern

et al. (Stern et al., 2014)], and generate a simulated dataset for each

individual (R1, R2, R3 and R4, respectively) by randomly selecting

a new germline sequence for every lineage and then stochastically

re-introducing mutations along the lineage branches. This process

was repeated 10 times for each individual to create a collection of 40

simulated datasets; R1.1–R1:10 � 86k, R2.1–R2:10 � 55k, R3.1–

R3:10 � 85k and R4.1–R4:10 � 130k total reads. Using these data,

the sensitivity of the method is defined as the fraction of all sequence

pairs from the same clone that were correctly inferred by the method,

while specificity is defined as the fraction of pairs of unrelated sequen-

ces that were successfully inferred by the method to be in different

clones. As we previously found that specificity decreased as a function

of junction length (Gupta et al., 2017), we characterized performance

separately over three different junction length domains: (i) ð0;30�
(< 5% of the sequences), (ii) ð30;60� (�65% of the sequences) and

(iii) ð60; 90� (�30% of the sequences) nucleotides.

The spectral clustering-based method achieved high sensitivity

and specificity across all simulated datasets and junction lengths

(Fig. 3). For junction lengths > 30, the sensitivity and specificity

were > 98%. Performance was significantly more variable for junc-

tion lengths in the ð0; 30� range. The decreased number of sequences

in this range causes a small number of false-positives or false-

negatives to have an outsized impact on the performance measure.

Nevertheless, only moderately decreased performance was seen for

junction lengths < 30, particularly sensitivity in R1, with sensitivity

and specificity remaining > 98% for most simulations.

We next compared the performance of our new method with a

current state-of-the-art method that uses single-linkage hierarchical

clustering with a fixed distance threshold to partition sequences into

clones (Nouri and Kleinstein, 2017; Methods Section). In this case,

the threshold was chosen to maximize the average predicted sensitiv-

ity and specificity by fitting a mixture model to the distribution of

distances of every sequence to its nearest, non-identical neighbor.

Like the spectral clustering-based method, we found that the hier-

archical clustering-based method achieved sensitivity and specificity

> 98% for junction lengths > 30 and that this performance was

moderately worse for junction lengths < 30. However, while per-

formance was similar overall, the spectral clustering-based method

had noticeably better sensitivity for junction lengths ð30;60�(nt) in

R1, and better specificity for junction lengths ð0; 30� in R1 (Fig. 3).

Overall, these results show that the spectral clustering-based method

can identify clones with high confidence, on par or better than a

state-of-the-art distance-based method on simulated data.

3.2 More shared mutations and higher homogeneity

compared with hierarchical clustering
We next sought to compare the performance of the spectral and

hierarchical clustering-based methods on experimental data. As a

first comparison, we used the lymph node samples from the four

individuals that the simulation was based on (Stern et al., 2014).

These are M2 (�100k total reads), M3 (�150k total reads), M4

(�200k total reads) and M5 (�400k total reads). Notably, while the

spectral clustering-based method was able to partition the sequences

in all four samples, the hierarchical clustering-based method failed

to converge on an optimized threshold at which to cut the hierarchy

for three of the samples (M3, M4 and M5). This is because only a sin-

gle peak (at close distances) is apparent in the distance-to-nearest distri-

butions for these samples, suggesting they are composed of highly

expanded clones with few singleton sequences (Fig. 1E). In contrast,

there is a clear bi-modal distribution in the sample from M2, which

allows the mixture modeling optimization to work (Fig. 1A). Since we

could not optimize the distance threshold for M3–M5, we chose to use

a threshold of 0.15 normalized Hamming distance for these samples,

which is consistent with many previous human studies (Hershberg and

Prak, 2015; Meng et al., 2017) and the same as the optimized thresh-

old found for M2.

Most of the clones identified by the spectral and hierarchical

clustering-based methods were identical, or highly overlapping,

across all four individuals (Fig. 4A). The degree of overlap between

R3 R4

R1 R2

(0,30] (30,60] (60,90] (0,30] (30,60] (60,90]
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Fig. 3. The clustering-based method identifies clones with high confidence on simulated data. The spectral (circles) and hierarchical (diamonds) clustering-based

methods were applied to identify clonally related sequences in 40 simulated datasets (10 datasets from each of 4 simulated individuals R1–R4) generated by

Gupta et al. (Gupta et al., 2017). Performance was assessed by calculating (A) sensitivity and (B) specificity on three junction-length domains. Mean performance

is indicated by the solid bars (spectral) and dashed bars (hierarchical)
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the top 25 clones inferred by the two methods, quantified as the size

of their intersection divided by the average of their sizes (Ralph and

Matsen, 2016), was greater than 0.9 for all clones. We can also

measure the consistency between the spectral and hierarchical

clustering-based methods by the correlation coefficient between the

rows and columns of the similarity matrix. If we consider each row

and column as samples of random variables generated by hierarchic-

al and spectral clustering techniques, respectively, then the sample

correlation coefficient lies between values –1 (i.e. perfectly anti-

correlated) and 1 (i.e. perfectly correlated). Measures of correlation

�0:98 were obtained in all individuals. In cases where the two meth-

ods differed, the spectral clustering-based method tended to identify

more homogeneous clones. In contrast, the hierarchical clustering-

based method shows evidence of the well-known chaining phenom-

enon and can include sequences which are less similar to others

within a clone, thus resulting in more heterogeneity within the

clones (Fig. 4B).

The underlying clonal relationships among the sequences in the

experimental datasets are not known with certainty. However, we

reasoned that true clones would share more SHMs (either because

they occurred early in the clonal expansion, or they were positively

selected during affinity maturation), and that a higher frequency of

shared mutations should indicate better performance. To carry out

this analysis, we defined a shared mutation as a single nucleotide

mutation that is precisely replicated across all sequences in the

clone. We first compared the total number of shared mutations in

the 50 largest clones produced by the each of the clustering methods

with a set of negative controls (randomly sampled sequences) that

share the same V gene annotation and have the same size as the

given clone (we generated 100 negative controls for each of the 50

largest clones inferred by each clustering technique from all four

samples). Since the precise V gene sequence (up to the start of the

junction) is not used to partition sequences into clones, we counted

shared mutations in this region. In M2–M5, no shared mutations

were found in the negative controls, while 26–155 and 20–125

shared mutations were found using the spectral and hierarchical

clustering-based methods across the four datasets, respectively

(Fig. 5E–H). These results indicate that both clustering-based meth-

ods identify clones that are highly unlikely to be random.

When comparing the spectral and hierarchical clustering-based

methods, we found that most of the clones were highly overlapping

and contained equivalent numbers of shared mutations (Fig. 5A–D).

However, a small number of clones differed and, overall, the spec-

tral clustering-based method produced a larger number of shared

mutations regardless of whether sharing was measured over the en-

tire clone (Fig. 5E–H) or pair-wise between each sequence in the

clone (Supplementary Fig. S2C). Inspection of the dendrogram from

these cases showed that spectral clustering implied a smaller distance

threshold for these clones that resulted in the removal of outlying

branches, thus creating a more homogeneous lineage (Fig. 6). In

general, the scale parameters r used in the spectral clustering-

based method were systematically lower than fixed threshold

used in the hierarchical clustering-based method (Supplementary

Fig. S2A), thus spectral clustering generated more smaller clones

(Supplementary Fig. S2B).

We further tested the methods using experimental data from

BCR sequencing of PBMCs from 58 individuals with acute dengue

virus infection (Parameswaran et al., 2013). These samples con-

tained �1–10k total reads (we excluded two datasets with total

reads < 1k sequences). A bimodal distribution in the distance-to-

nearest distribution was evident in all samples (Fig. 1B), and the

hierarchical clustering-based method successfully converged on an

optimized threshold to cut the hierarchy in every sample. Once

again, both clustering-based methods identified more shared muta-

tions than a negative control, which produced no shared mutations

in �99% of cases (we generated 100 negative controls for each of

A B

Fig. 4. Clones identified by the spectral clustering-based method are more homogeneous. The spectral and hierarchical clustering-based methods were applied

independently to identify clones in cervical lymph node samples from four multiple sclerosis patients (M2, M3, M4 and M5) obtained from (Stern et al., 2014).

(A) Comparison of clone sizes between pairs of 25 largest inferred clones via hierarchical (x-axis) and spectral (y-axis) clustering-based methods. Clones with any

overlapping membership are indicated in black. (B) Dendrogram trees representative of cases where the two methods differed in each of the four individuals.

The spectral clustering-based method implied a smaller threshold (vertical dot-dash line) for these clones that removed outlying branches (dashed branches),

thus creating a more homogeneous clone compared to the fixed threshold at 0.15 (vertical dashed line) used by the hierarchical clustering-based method.

Panel titles indicate total sequences, while leaves represent unique sequences in each clone
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the 50 largest clones inferred by each clustering technique from all

58 individuals). In addition, in every case where the spectral and

hierarchical clustering-based method differed, the clone identified

by the spectral method had a larger number of shared mutations

(Fig. 7 and Supplementary Fig. S3C). The scale parameters r was

also systematically lower than the fixed thresholds (Supplementary

Fig. S3A) and spectral clustering generated more smaller clones

(Supplementary Fig. S3B). Overall, these results suggest that the

spectral clustering-based method identifies true clonal relationships

and is likely to be more specific compared to the hierarchical

clustering-based method on real experimental data.

3.3 Spectral clustering performs with high confidence

on repertoires with few singletons
Current automated methods for choosing a fixed threshold to identify

clones in the hierarchal clustering-based method depend on the bi-

modality of the distance-to-nearest distribution. However, this distribu-

tion can sometimes be unimodal, as seen earlier for the lymph node

repertoires from M3–M5 (Fig. 1E). In these cases, the hierarchical

clustering-based method fails to produce a partition. In contrast, the

spectral clustering-based method returns a partition with clones that

included many shared mutations in the V gene (Fig. 5). Since the true

clonal relationships are not known for these experimental data, we next

sought to characterize the performance of the spectral clustering-based

method on simulated data displaying similar unimodal properties.

For the analysis here, we used three simulated datasets (sim-50-1.0-

mut, sim-100-1.0-mut and sim-200-1.0-mut) by Ralph and Matsen

(Ralph and Matsen, 2016) each containing�10k total reads with�10%

mean mutation frequency. Inspection of the distance-to-nearest distri-

bution of these datasets shows that they are unimodal with a large

peak at small distances and no apparent second peak (Fig. 1G–H). As

expected from the lack of bi-modality, the optimized threshold cannot

be computed which results in the failure of the hierarchical clustering-

based method. To confirm that a fixed threshold was not appropriate

for these data, we compared the maximum-distance-within clones

(compactness) and minimum-distance-between clones (isolation) distri-

butions (Fig. 8A–C). These two distributions are widely overlapping,

meaning no fixed threshold will adequately separate sequences into

clones. This contrasts with the simulated datasets from Gupta et al.

(Gupta et al., 2017; e.g. R1.1 in Fig. 8D), where the compactness and

isolation conditions are clearly fulfilled. Despite low compactness and

isolation in the Ralph and Matsen simulations, the spectral clustering-

based method has high sensitivity (�97% sim-50-1.0-mut, �98%

sim-100-1.0-mut, �96% sim-200-1.0-mut) and specificity (�97%

sim-50-1.0-mut, �98% sim-100-1.0-mut, �100% sim-200-1.0-mut).

The true and inferred clone sizes are highly correlated (Fig. 9A–C).

The degree of overlap between the top 25 true and inferred clones,

A B C D

E F G H

Fig. 5. The spectral clustering-based method identifies clones with more shared mutations. (A–D) The number of shared mutations in the V segment (up to the

start of the junction) was determined for the 50 largest clones (covering �30% of the total reads) inferred by spectral clustering (black bars towards left), hierarch-

ical clustering (black bars towards right) and negative controls (grey bars). Results are shown for the same four experimental datasets shown in Figure 4. Note

that fewer than 50 clones are shown because some pairs of largest inferred clones did not overlap or no shared mutation was observed for either method. (E–H)

The total number of shared mutations across all clones identified by the spectral (circles) and hierarchical (triangles pointing up) clustering-based methods, as

well as a negative control (triangles pointing down) was determined for each subject M2–M5
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quantified as the size of their intersection divided by the average

of their sizes (Ralph and Matsen, 2016), was greater than 0.9.

Furthermore, we found an overall correlation of �0:98 for all three

datasets. Thus, the spectral clustering-based method is able to identify

clones with high confidence in repertoires that display a unimodal

distance-to-nearest distribution, and do not meet the compactness and

isolation criteria necessary for a fixed threshold to work well.

3.4 The spectral clustering-based method is computa-

tionally efficient
The hierarchical clustering-based method can be computationally

expensive, particularly the optimization of the distance threshold.

On a Linux computer with a 2.20 GHz Intel processor and 32 GB

RAM, we found that partitioning a dataset of �130k sequences

took > 90 min (Fig. 10). Even a smaller dataset of �54k sequences

took over 25 min. In contrast, the spectral clustering-based tech-

nique completed in less than 20 min in both cases. Even in cases

where the hierarchical clustering-based method failed to return a

partition, the spectral clustering-based method efficiently identify

clones (taking < 5 min for �10k sequences). Overall, on multiple

simulated and experimental datasets spanning a wide range of sizes,

from less than 10k to more than 100k sequences, the spectral

clustering-based method was associated with significant time savings

compared to the hierarchical clustering-based method (Fig. 10).

4 Conclusion

B cell clones [the descendants of a common ancestor sharing the same

V(D)J recombination event] are a fundamental unit of analysis for

adaptive immune responses. Here, we present a computationally effi-

cient method to identify B cell clones from AIRR-Seq datasets. This

method is based on spectral clustering of the junction sequences of

BCRs that share the same V gene, J gene and junction length. It uses

an adaptive threshold that analyzes sequences in a local neighborhood.

While previous methods that use a fixed threshold offer the advantage

of being easy to explain (e.g. members of a clone have junctions with

at least 90% sequence similarity), a single, fixed threshold is not ap-

propriate for repertoires where the distribution of inter-clonal distan-

ces overlaps the distribution of intra-clonal distances. The spectral

clustering-based method presented herein can identify clones even in

samples that have a unimodal distance-to-nearest distribution.

Validation of methods for partitioning sequences into clones

presents several challenges. Gold standard experimental data, where

clonal relationship between different sequences is known with

A B

C D

E F

Fig. 6. Clones identified by the spectral clustering-based method are more

homogeneous. Representative examples of dendrogram trees from clones

where the spectral and hierarchical clustering-based methods found differing

numbers of shared mutations in (A, B, C) M2, (D) M3, (E) M4 and (F) M5 (see

details in Fig. 5). Dendrogram leaves are unique sequences in the clone found

by both clustering-based methods (connected by solid lines) or only by the

hierarchical clustering-based method (connected by dashed lines). Each

panel also shows the fixed threshold of 0.15 normalized Hamming distance

used by the hierarchical clustering-based method (vertical dashed lines) and

the threshold necessary to reproduce the clone identified by the spectral clus-

tering-based method (vertical dot-dash lines)

Fig. 7. The spectral clustering-based method identifies clones with more shared mutations in subjects with acute dengue virus infections. The spectral and hierarchic-

al clustering-based methods were applied to peripheral blood B cell repertoires from 58 subjects with acute dengue virus infections (Parameswaran et al., 2013). The

total number of shared mutations in the V segment (up to the start of the junction) was determined for clones that were among the 50 largest inferred by both the

spectral clustering and hierarchical clustering methods (covering �25% of the total reads), and the difference between the methods was calculated. Each number rep-

resents a single clone, with the number specifying the individual where the clone was observed and the x-axis label indicating the V gene used by the clone
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certainty, do not exist for human immune responses. Simulations offer

a mechanism to generate data where the underlying clonal groups are

known, but the critical parameters to drive such these models are un-

known. Indeed, different simulations can produce widely different dis-

tance distributions (for example, see Fig. 8). To some extent, this

mirrors the diversity seen in different types of immune responses, vari-

ability in the tissues profiled and whether bulk or sorted B cells were

sequenced. Naive B cells from peripheral blood of healthy young

adults are expected to look very different from germinal center B cells

from a lymph node. Here, we used both simulated and human experi-

mental datasets to validate our methods. By using simulations from

two different groups with different properties (Gupta et al., 2017;

Ralph and Matsen, 2016), we could show that the spectral clustering-

based method can identify clones with high confidence either with or

without bi-modality in the distance-to-nearest distribution. To evalu-

ate performance on experimental data, we measured the number of

shared mutations in each clone, reasoning that real clones should

share more mutations. The spectral clustering method explicitly mod-

els the local relationships among the most similar sequences by defin-

ing a local neighborhood, thus leading to increase homogeneity within

the inferred clones. This leads to more shared mutations in the struc-

ture of BCR clone lineage trees.

Computational efficiency is an important consideration. Some

steps in the fully automated hierarchical clustering-based method

used here, in particular choosing the distance threshold for cutting

the dendrogram, can be slow (Nouri and Kleinstein, 2017). Runtime

can be improved by randomly sub-sampling sequences from the rep-

ertoire, but it would be at the potential expense of excluding some

genuine information. The spectral clustering-based method exhibits

faster performance by removing this computationally expensive

step, so that in repertoires containing �150k sequences the clones

can be inferred in �20 mins. Run times can be further improved by

distributing the computation across many processing cores. In our

current implementation, the parallelization is achieved by distribut-

ing the clonal inference process from each group of sequences (with

same V gene, J gene and junction length) across cores dynamically.

SHM mainly introduces point substitutions into the BCR se-

quence. However, insertions and deletions (indels) can also be intro-

duced at a low frequency. Smith et al. (Smith et al., 1996) reported

< 2% of all somatic mutations are single-base insertions or

A B C D

Fig. 8. Compactness and isolation properties vary across repertoire datasets.

For each dataset, the maximum-distance-within clones (compactness, black)

and minimum-distance-between clones (isolation, grey) were calculated

across all clones. Results are shown for simulated datasets from Ralph and

Matsen (Ralph and Matsen, 2016) (A) sim-50-1.0-mut, (B) sim-100-1.0-mut, (C)

sim-200-1.0-mut, and Gupta et al. (Gupta et al., 2017) (D) R1.1. The horizontal

dashed line indicates the threshold of 0.15 normalized Hamming distance

used by the hierarchical clustering-based method

A B C

Fig. 9. The spectral clustering-based method identifies clones with high sensitivity and specificity in repertoires with unimodal distance-to-nearest distributions.

The spectral clustering-based method was applied to identify clones in simulated data from Ralph and Matsen (Ralph and Matsen, 2016). The clone sizes of the

25 largest inferred clones (y-axis) were compared with their true sizes (x-axis) in (A) sim-50-1.0-mut, (B) sim-100-1.0-mut and (C) sim-200-1.0-mut. Clones with

any overlapping membership are indicated in black

Fig. 10. The spectral clustering-based method is computationally efficient. The

running times for spectral (black bars) and hierarchical (grey bars) clustering-

based methods were measured for several experimental (Parameswaran et al.,

2013) and simulated (Gupta et al., 2017; Ralph and Matsen, 2016) datasets span-

ning a wide range of sizes (total number of sequences indicated above each col-

umn). NA’s indicate datasets in which the hierarchical clustering-based method

failed to converge on a threshold. Error bars indicate the SEM calculated from 20

bootstrap replicates (with replacement) from the original dataset. Evaluation was

carried out on a Linux computer with a 2.20 GHz Intel processor with 32 GB RAM
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deletions in the introns between the joining and constant region

genes. Briney et al. (Briney et al., 2012) reported that in-frame inser-

tions and deletions were happened in �2:0% and �2:0–3.0%, re-

spectively, of all sequences in memory B cells. Hwang et al. (Hwang

et al., 2017) reported an estimated frequency of < 1% deletion

mutations in VRC01-class broadly neutralized HIV antibodies. The

method developed here initially groups sequences that share a V

gene, J gene and junction length. Thus, if cells have accumulated an

indel in the junction region during affinity maturation, these will not

be grouped together properly. In principle, it is possible to remove

the restriction of a common junction length, and cluster all sequen-

ces sharing the same V gene and J gene. In this case, the distance used

in this study (i.e. Hamming distance) would need to be replaced with

another string metric that accounts for differing sequence lengths. One

possibility is the Levenshtein distance, which measures the edit distance

between two sequences with different lengths. The Levenshtein dis-

tance is the minimum number of single character edits (insertions, dele-

tions or substitutions) required to change one sequence into the other.

Proper tuning the costs associated with insertion, deletion and substitu-

tion will an important area of further study here.

Partitioning BCR sequences into clonal groups is a key step in

AIRR-Seq analysis. In this study, we have developed a spectral

clustering-based method that uses an adaptive threshold to tune the

required level of similarity among sequences in different local neigh-

borhoods. This method improves current distance based methods

for inferring clonal relationships on both simulated and human

experimental data. An implementation of this methodology is

freely available as part of the SCOPe (Spectral Clustering for

clOne Partitioning) R package in the Immcantation framework

(www.immcantation.org).
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