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Abstract

There has been great interest in bone mar-
row aspirate concentrate (BMAC) as a cost
effective method in delivering mesenchymal
stem cells (MSCs) to aid in the repair and
regeneration of cartilage defects. Alongside
MSCs, BMAC contains a range of growth fac-
tors and cytokines to support cell growth fol-
lowing injury. However, there is paucity of
information relating to the basic science
underlying BMAC and its exact biological role
in supporting the growth and regeneration of
chondrocytes. The focus of this review is the
basic science underlying BMAC in relation to
chondral damage and regeneration.

Introduction

The potential of mesenchymal stem cells
(MSCs) to transdifferentiate into different
mesenchymal derived tissues has created
huge interest in trauma and orthopedic sur-
gery. MSCs are present in numerous tissues in
the body including bone, adipose, synovium
and blood.1 There has been great debate in the
best way in which to obtain these cells, process
them and deliver to the site of injury. In vitro
culture and amplification of MSCs is associat-
ed with significant financial cost, which in the
current financial restrictions in healthcare
have made this option unfeasible for current
clinical use. To overcome this cost, bone mar-
row aspirate (BMA) as a source of MSCs has
been explored.2 One consideration when using
BMA alone is the relatively low percentage of
MSCs with only 0.001 to 0.01% of nucleated
cells in BMA being MSCs.3 In order to try and
increase the ratio of MSCs in the aspirate the
sample can be concentrated. This is most fre-
quently done using a centrifuge to produce
bone marrow aspirate concentrate (BMAC).4

There have been a number of successful ani-

mal models with BMAC showing beneficial
results in sheep, rats, rabbit, horses and the
mini-pig.5-9 Initial human trials have also been
successful with Gobbi and colleagues showing
beneficial functional and health related quality
of life scores with patients with grade 4 arthri-
tis and production of hyaline like cartilage.10

The beneficial effect of BMAC in chondral
injuries has also been extended to osteoarthri-
tis with Kim and colleagues showing improved
quality of life scores with patients with grade 4
osteoarthritis treated with BMAC.11 BMAC is a
safe treatment with Hendrich and colleagues
reviewing 101 patients with an average follow-
up time of 14 months with no adverse effects
or morbidity from the harvest site reported.12

However, despite the early promise of BMAC in
chondral injuries there is no standardized
regime for the harvest or administration of
BMAC. There is also paucity of information
relating to the basic science underlying BMAC
and its exact biological role in supporting the
growth and regeneration of chondrocytes. The
focus of this review is the basic science under-
lying BMAC in relation to chondral damage
and regeneration. In order to search the litera-
ture for the relevant information we used
Pubmed with specific search terms. This
included basic science, BMAC, chondral
injuries and cartilage injuries. From the initial
searches we then performed a more detailed
search with the key components, growth fac-
tors and cytokines contained in BMAC.

Bone marrow aspirate concen-
trate composition

Cellular composition
The normal composition of BMAC has been

analyzed in a variety of methods including
light microscopy, laser photometry and flow
cytometry.13-15 Despite the various techniques
used the composition has proved to be largely
similar. In normal healthy individuals neu-
trophils and erythroblasts are the dominant
cell type. There are some gender differences
with males having more erythroblasts than
females (28.1 vs. 22.5%) but women having
more neutrophils than males (37.4 vs.
32.7%).13 Lymphocytes occupy 13%,
eosinophils 2.2%, monocytes 1.3% and
basophils 0.1%.13 Platelets show a large varia-
tion between individuals highlighting the wide
range of what is accepted as a normal range in
adults.14,15 Cassano and colleagues have direct-
ly compared the cellular content of whole blood
to that of platelet rich protein (PRP) and
BMAC.16 The results found that BMAC con-
tained 11.8x the number of white blood cells,
19.4x the number of neutrophils and 2.5x the

number of platelets than that of PRP.16 The
number of monocytes, lymphocytes,
eosinophils and basophils were largely similar
between PRP and BMAC.16 These ratios are rel-
ative to the type of centrifuge system used and
serve as an example of the type of differences
one could expect between PRP and BMAC.

Growth factors and cytokines
The study by Cassano and colleagues also

reviewed the growth factor and cytokine levels
between PRP and BMAC.16 This found that
BMAC had 172.5x the concentration of vascu-
lar endothelial growth factor (VEGF), 78x the
concentration of interleukin-8 (IL-8), 4.6x the
concentration of interleukin-1beta (IL-1β),
3.4x the concentration of transforming growth
factor- β2 (TGF-β2) and 1.3x the concentration
of platelet derived growth factor (PDGF).16

A possible explanation for the increased
concentration of growth factors and cytokines
in the BMAC samples relates to the concentra-
tion of platelets it contains. The alpha granules
of platelets contain TGF- β, PDGF, VEGF along
with fibroblast growth factor (FGF), bone mor-
phogenic protein (BMP), and insulin-like
growth factor (IGF).17
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Influence of growth factors
and cytokines in bone marrow
aspirate concentrate 
to chondrocyte repair 
and regeneration

Interleukin-1
Interleukin-1 (IL-1) is subdivided into IL-1� and

IL1-β.18 The IL-1� has more an of intracellular
effect whereas it is IL1-β that modulates the
immune response and downstream effects via
stimulation of matrix metalloproteinases.19 IL1-β
is produced by local monocytes and macrophages
involved in the inflammatory response and is
known to contribute to inflammation in human
joints and can degrade cartilage via its metallopro-
teinase action.19 The effect of this is blocked by the
interleukin antagonist IL-1 receptor antagonist
(IL-1RA).19 Abramson and colleagues has shown
the beneficial effects of blocking the actions of IL-
1β in patients with rheumatoid arthritis with pre-
vention of bone and cartilage loss, highlighting
the catabolic role of this cytokine to chondro-
cytes.20 Pelletier et al. has also shown a similar
effect with using gene therapy in an experimental
model of osteoarthritis using dogs.21

It has been reported that there is a relative
imbalance of the IL-1β:IL-1RA ratio with a defi-
ciency of IL-1RA in osteoarthritis allowing IL-1β
leading to cartilage degradation.22 Cassano and
colleagues has demonstrated an increase in the
IL-1β but also IL-1RA in BMAC, therefore neutral-
izing the effect of the raised IL-1β.16

Interleukin- 8
IL-8 is a powerful cytokine for neutrophil

chemotaxis and activation as part of the inflam-
matory response.16,23 Lotz and colleagues has
demonstrated that IL-1β and TNF� can stimulate
IL-8 release from chondrocytes.23 Chauffer and
colleagues has shown that mechanical stress
can also increase IL-8 from chondrocytes.24

Thus damaged cartilage, which is under
increased mechanical stress, would release
more IL-8 attracting neutrophils to the affected
area. IL-8 has also reported to promote homing
of bone marrow derived cells to the site of
injury, including MSCs.25 Hou and colleagues
has shown that IL-8 enhances the angiogenic
potential of mesenchymal cells via increasing
VEGF production.25 This would appear a clear
benefit in promoting angiogenesis and tissue
healing especially in full thickness chondral
defects. 

Vascular endothelial growth factor
Mature articular cartilage is an avascular

structure, which receives its nutrition via diffu-
sion from the synovial fluid.26 Its unique structure
and function is attributable to the dense packing
of collagen fibers and mature chondrocytes and
lack of blood vessels.26 Mature articular cartilage
contains inhibitors to angiogenesis including
Troponin I and Chondromodulin-1 in the avascu-
lar layers of the cartilage but are absent in the
supporting subchondral bone and spongiosa
allowing VEGF to promote a vascular supply.27-29

Therefore this is clearly important in full thick-
ness chondral defects where the subchondral
bone can release growth factors and cytokines to
support cartilage repair. Maes and colleagues has
clearly shown the importance of VEGF for epiphy-
seal blood supply and cartilage development using
mice as an animal model.30 VEGF deficient mice

showed altered growth plates, ossification centers
and joint dysplasia.30 Oxygen tension is a key fac-
tor that is triggering VEGF production via the
stimulation of hypoxic inducible factor-1 (HIF-1).
Lund-Olesen has shown that after a traumatic
effusion there is a reduction in the oxygen ten-
sion leading to HIF-1 and VEGF production.31

Clearly this situation would match a chondral
injury pattern with an associated effusion or
hemarthrosis and therefore increased VEGF pro-
duction. Alongside oxygen tension other factors
have been shown to stimulate VEGF production
including IL-1 via the Mitogen Activated Protein
Kinase signaling pathway as demonstrated by
Murata and colleagues.29 Thus, highlighting the
complex interplay between the cytokine cascades. 

Transforming growth factor β
TGF superfamily include a number of important

growth factors for cartilage regeneration and
repair including TGF-β1, TGF-β2, TGF-β3 and
BMP-2 and BMP-7.32 The TGF ligands bind type
1 and type 2 TGF-β receptors, which are
serine/threonine kinases.33 The type 2 TGF-β
receptor phosphorylates the type 1 receptor. There
are two distinct pathways relating to the TGF or
BMP ligands.34 The TGF ligands lead to phospho-
rylation of the mothers against decapentaplegic
homolog-2 (SMAD-2) and SMAD-3. The BMP lig-
ands use SMAD-1, SMAD-5 and SMAD-8.34 The
end result of these pathways is the proliferation
and differentiation of chondrocytes.35

Much of the research studying the role of
these growth factors has been done in animal
models. The study by Cassano and colleagues
highlighted the raised TGF-β2 in BMAC. Wang
and colleagues has shown bone marrow derived
MSCs transfected with TGF-β2 show increased
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Table 1. Summary of the growth factors and cytokines in bone marrow aspirate concentrate.

Growth factor/cytokine  Principle action                                                         Signaling pathway                                                Reference

TGF β1, TGF β2, TGF β3        Chondrocyte Proliferation + differentiation                           SMAD-2 and SMAD-3                                                                      33,65
BMP-2                                          Chondrocyte proliferation, matrix synthesis                          SMAD-1, SMAD-5, SMAD-8, TAK-1                                                  65
                                                     and hypertrophy                                                                             
BMP-7                                          Increase ECM production                                                                                                                                                                             
IL-1/IL-1β                                   Inflammatory response- cell migration/                                   Mitogen activated kinases (JNK, P38, ERK1/2)                           66
                                                     recruitment to site of injury                                                        
IL-8                                              Inflammatory response; MSC homing                                       Mitogen activated kinase; P38                                                   16,25,67 
                                                     to site of injury; Increased VEGF production; 
                                                     chondrocyte hypertrophy                                                             
VEGF                                           Promotes angiogenesis to sub-chondral                                 HIF-1, Runx2                                                                                  29,30,68
                                                     bone and supports cartilage growth                                          
PDGF                                           Wound healing, collagen synthesis, angiogenesis,                 ERK 1/2, down-regulation of NF-kB signaling                      49,51,52,69
                                                     suppression of IL-1β, enhanced BMP signaling                    
IGF-1                                           Increased synthetic and metabolic activity- increased        PI-3K, ERK 1/2                                                                           55,56,65,70,71
                                                     collagen and proteoglycan synthesis, 
                                                     chondrogenic differentiation                                                      
FGF-2                                           Chondrogenic differentiation, MSC homing                            ERK 1/2, STAT1/P21                                                                         61-63
FGF-18                                         Chondrogenic differentiation, enhanced BMP signaling                                                                                                                58-60,72
JNK, C-Jun N-terminal kinase; ERK, extracellular signal-related kinases; TAK-1, TGF-β activating kinase 1 (TAK-1); STAT1- signal transducer and activator of transcription-1. PI-3K, phosphoinositide 3-Kinase; Runx2,
Runt-domain transcription factor family-2; HIF-1, hypoxia inducible factor-1; NK-kB, nuclear factor kappa beta. 
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type II collagen and aggrecan production after 48
hrs and this persists for up to 4 weeks.36 This sug-
gests MSCs are activated by TGF-β2 increasing
the synthetic activity. Zlao and colleagues has
demonstrated that TGF-β1 can stimulate chondro-
genic differentiation of MSCs in vitro.37 Draio and
colleagues has developed this with an animal
model showing beneficial effects of TGF-β1 in
chondral defects in the rabbits with improved car-
tilage repair.38 Although TGF-β1 has shown good
promise there has been concerns with using TGF-
β1 due to evidence of side effects including prolif-
erative synovium, fibrosis and osteophyte forma-
tion which has hindered its development as a ther-
apeutic target.39 Joyce and colleagues assessed
the role of TGF-β1 and TGF-β2 in chondrogen-
esis and osteogenesis in rodent femurs by sub-
periosteal injection.40 TGF-β2 was more potent
than TGF-β1 in stimulating chondrogenesis
and osteogenesis but also TGF-β2 increased
autocrine TGF-β1 production. Thus highlight-
ing the importance of TGF-β1 and TGF-β2 in
chondrogenesis but also in its local autocrine
and paracrine role.40 This work has been sup-
ported by Tekari and colleagues using expand-
ed bovine chondrocytes.41 This study assessed
the ability of the chondrocytes to autonomous-
ly produce cartilage. After 3 cell passes in cell
expansion there was loss of ability for chon-
drocytes to form cartilage. This was restored
when TGF-β1 was added. Furthermore, there
was also reduction in TGF-β receptors and tran-
scripts for TGF-β2 prior to TGF-β1 administra-
tion supporting the paracrine/autocrine role of
TGF-β.41 This paracrine/autocrine role of TGF-β
is also evident in human models with Villiger and
colleagues demonstrating that human chondro-
cytes have receptors for and can secrete TGF-β1,
TGF-β2 and TGF-β3.42 Fan and colleagues has
shown that pellet culture of TGF-β3 with MSCs
can enhance glycosaminoglycan, collagen and
ECM production in vitro surrounded by a gela-
tin scaffold.43 This has been transferred to an
ovine model with Tang and colleagues produc-
ing a well-integrated cultured scaffold of MSCs
and TGF-β3.44

BMP as a component of platelet alpha gran-
ules is present in BMAC. BMP-2 has a syner-
gistic effect to TGF-β in that it is able to induce
chondrogenic differentiation of MSCs in
vitro.45 Schmitt and colleagues concluded that
BMP-2 initiates chondrogenic lineage develop-
ment of adult human MSCs.46 Cultured MSCs
with BMP-2 increased type II collagen and
ECM production.46 BMP-7 has been hailed as
the gold standard growth factor in cartilage
repair by Fortier and colleagues in part to its
unique function in that the response of BMP-7
is not affected by age or damage to cartilage.32

Although with normal ageing BMP-7 is
reduced.47 Jung and colleagues used local
BMP-7 release from a biological scaffold to
repair osteochondral defects in a rabbit
model.48 At 12 weeks post implantation the

grafts were well integrated with new cartilage
formation.48

Platelet derived growth factor 
PDGF has an established role in wound

healing but also functions to promote collagen
synthesis and contributes angiogenesis in
subchondral injuries.49 Animal models have
shown that PDGF has an active role in chick
limb bud development and also has been found
to induce chondrocyte proliferation in new
born rats.50 Although PDGF has a minor role in
cartilage repair it does have a synergistic
action with suppression of IL-1β cartilage
degradation.51 This synergism is also shown
with PDGF promoting osteogenic differentia-
tion by activating BMP related SMAD 1/5/8 sig-
naling.52

Insulin-like growth factor-1 

IGF-1 is present in BMAC as it is found in
the alpha granules of platelets.17 Fortier and
colleagues reviewed the effect of using ex-vivo
expanded chondrocytes supplemented with
IGF-1 on a fibrin scaffold in horses with full
thickness cartilage defects.53 At 8 months post
surgery the animals were slaughtered and
found enhanced cartilage regeneration and
defect filling with increased type II collagen
production.53 Fortier and colleagues also
reviewed the IGF-1 profile in horses following
cartilage injury.54 This study found low levels of
IGF-1 at two weeks and increased at four to
eight weeks but declined again at sixteen
weeks following injury.54 This suggests that
most of the chondrogenic effects of IGF-1 are
not immediately following the injury. Pasold
and colleagues highlighted the chondrogenic
potential of IGF-1 when coupled with nanopar-
ticles cultured with human chondrocytes on a
collagen scaffold.55 The total number of chon-
drocytes increased over a two week period with
integration into the collagen matrix.55 The
metabolic and synthetic activity of the cells
also increased with increased type II collagen
expression.55 Mullen and colleagues has also
found promising results when using IGF-1 onto
a scaffold.56 The IGF-1 was loaded onto a colla-
gen-glycosamine scaffold containing chondro-
cytes in vitro. The result was increased type II
collagen and proteoglycan synthesis by chon-
drocytes compared to the control where no IGF-
1 was used.56

Fibroblast growth factors 
FGF represent a large family of growth fac-

tors, of which FGF-2 and FGF-18 have been
found to be important in cartilage damage and
repair.32 FGF signals through its related tyro-
sine kinase based receptors (FGFR) to activate

downstream intracellular signaling cascades.57

FGF-18 in animal studies has been shown to
act through FGFR1-4.57 However, evidence from
Ellsworth and colleagues studying the effect of
FGF-18 on human articular chondrocytes found
increased mRNA for FGFR-2 and FGFR-3 along-
side increased proliferation and differentia-
tion activity of chondrocytes. Davidson and col-
leagues further highlighted the role of FGFR-3
in FGF-18 signaling on mesenchymal cells to
promote chondrogenic differentiation.58

Reinhold and colleagues has demonstrated
synergistic actions of FGF-18 signaling with
BMP signaling in chondrogenesis by suppress-
ing expression of noggin, an inhibitor of BMP
signaling.59 There is now also evidence for
FGF-18 stimulating chondrogenesis and carti-
lage repair in a rat model of induced
osteoarthritis with an FGF-18 dose dependent
increase in cartilage thickness at 3 weeks fol-
lowing therapy.60

FGF-2 has been found to promote earlier
chondrogenic differentiation when compared
to FGF-18 as shown by Correa and colleagues
using expanded human MSCs with sequential
exposure to FGF-2, FGF-9 and FGF-18.61 The
importance of FGF-2 to chondrocyte repair and
regeneration has been demonstrated by
Henson and colleagues after subjecting
explanted equine articular cartilage to a 500 g
load from a height of 2.5 cm then culturing in
FGF-2.62 The results indicated that FGF-2
increased the number and speed of transition
of chondrocyte progenitor cells to the damaged
area.62 Indeed Chuma and colleagues found
that FGF-2 exposure for one day was enough to
ensure repair of 5 mm defects in trochlea
defects in rabbits.63 Defects were cultured for
1, 3 and 14 days using an osmotic pump
infused with saline (control) or FGF-2.
However, culture over 24 hours was enough to
fill defects to the same degree as rabbits
exposed to FGF-2 for 2 weeks when animals
were analyzed at 8 weeks post-injury.63 Using
immunohistochemistry, this study also found
FGF-2 promoted migration of MSCs from bone
marrow similar to Henson and colleagues.62,63

Ishii and colleagues also used 5 mm defects in
the rabbit knee, which were 4 mm deep and
treated them with FGF-2 in a fibrin sealant.
These results supported the work by Chuma
and colleagues with complete defect filling at 8
weeks.63,64

The summary of the growth factors and the
cytokines in BMAC is resumed in Table 1.

Conclusions

Initial experiments with BMAC have demon-
strated clear benefit in animal and human
models. We have reviewed the constituents of
BMAC and its underlying basic science that

                             Review
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supports the positive in vitro and in vivo find-
ings in cartilage regeneration and repair. What
is clear is that a standardized method of BMAC
harvest and processing needs to be estab-
lished. Further clinical trials are needed to
establish the long term effects of BMAC in car-
tilage damage but also other tissues including
bone defects, tendon and ligament injuries
where BMAC has had good preliminary results.
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