
Kidney Res Clin Pract 33 (2014) 3–8
journal homepage: http://www.krcp-ksn.com

Kidney Research and Clinical Practice
2211-91

license

http://d

n Corre
ogy, Ke
E-mail
Contents lists available at ScienceDirect
Review Article
Treatment of phosphate retention: The earlier the better?
Patrick Biggar 1,n, Samuel K.S. Fung 2, Markus Ketteler 1

1 Klinikum Coburg GmbH, Department of Nephrology, Coburg, Germany
2 Princess Margaret Hospital, Kowloon West Cluster Hospital Authority, Kowloon, Hong Kong SAR, China
Article history:
Received 14 July 2013
Received in revised form
2 October 2013
Accepted 5 October 2013
Available online 3 February 2014

Keywords:
Calcification
Chronic kidney disease
FGF-23
Hyperphosphatemia
Phosphate binders
Prognosis
32/$ - see front matter & 2014. The Korea

(http://creativecommons.org/licenses/by-n

x.doi.org/10.1016/j.krcp.2013.11.004

sponding author at: Kunikum Coberg,
tschendorfer Stasse 33, 96450 Coberg,
address: patrick.biggar@t-online.de (P B
A b s t r a c t

Over the last 15 years, our knowledge and understanding of the underlying mechanisms
involved in the regulation of calcium and phosphate homeostasis in chronic kidney
disease have advanced dramatically. Contrary to general opinion in the 20th century that
moderate hypercalcemia and hyperphosphatemia were acceptable in treating second-
ary hyperparathyroidism, the calcium and phosphate load is increasingly perceived to
be a major trigger of vascular and soft tissue calcification. The current treatment options
are discussed in view of historical developments and the expectations of the foreseeable
future, focusing on the early treatment of hyperphosphatemia. At present, we lack
indisputable evidence that active intervention using currently available drugs is of
benefit to patients in chronic kidney disease stages 3 and 4.

& 2014. The Korean Society of Nephrology. Published by Elsevier. This is an open
access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Renal insufficiency and failure are characterized by multiple
and complex disturbances in mineral and bone metabolism. In the
past decade, the term chronic kidney disease–mineral and bone
disorder (CKD-MBD) was developed to describe a “syndrome”
which is not exclusively restricted to bone metabolism. In this
context, Block et al [1] showed the relevance of increased serum
phosphate levels Z5.52 mg/dL (1.78 mmol/L). In 1998, in a large
retrospective observational study of hemodialysis patients, such a
level of hyperphosphatemia was shown to be associated with a
significant increase in death from cardiovascular disease [1]. Later,
at the turn of the millennium, an intensive discussion started after
the introduction of oral phosphate binders which were not based
on calcium regarding the adverse potential of calcium loading of
the body as a synergistic trigger of morbidity from cardiovascular
disease [2–4]. Since then, both the stigmata of CKD-MBD, hyper-
phosphatemia and a positive calcium balance, have been accepted
as key inductors of the initiation and progression of cardiovascular
calcification in CKD.
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Historical background

Mortality increases in the early stages of CKD at a creatinine
clearance r60 mL/min [5,6]. As we have learnt that vessel
calcification is not just a simple passive process of calcium–

phosphate precipitation, but is a consequence of modified gene
expression with the active induction of phenotype transforma-
tion of smooth muscle cells into osteoblasts within the vessel
wall [7,8], attention on this process has increased and concen-
trated on the basic control and regulatory mechanisms involved
[9,10]. The aim of this research is to reduce the potentially lethal
sequelae of disturbed homeostasis in mineral metabolism in CKD
[11]. Multiple and recent epidemiological studies have documen-
ted associations between ionic and humoral abnormalities on the
one side, and morbidity and mortality on the other [12].

It was initially believed that progressive fibrosis of the
kidneys with a loss of normal parenchymal tissue was the
functional cause of decreasing excretory function (recognizable
by reduced urine production and solute clearance). It was also
believed that this was the underlying cause of the progressive
decrease in incretory capacity which results in reduced levels of
endogenous active vitamin D and compensatory increases in
parathyroid hormone (PTH) levels to ward off imminent hypo-
calcemia (Fig. 1).
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In addition, following the discovery of highly potent,
protective hormonal mechanisms which induce an increase
in phosphaturia (the so-called phosphatonins) and which thus
attenuate the development of hyperphosphatemia, the original
concept of an exclusive vitamin D–hypocalcemia perception in
the development of CKD-MBD has been modified over the last
decade to include a primarily phosphate regulated and reg-
ulating paradigm (Fig. 2) [13].

Recently, the COSMOS (Current Management Of Secondary
Hyperparathyroidism – a Multicenter Observational Study)
study results showed a 22% reduction in all-cause mortality
and a 29% reduction in cardiovascular mortality in patients
treated with phosphate binders. The open cohort, observa-
tional study consisted of 6,797 patients followed prospectively
for 3 years in 227 dialysis centers from 20 European countries.
Remarkably, the reduction in mortality was also shown in
patients treated with calcium-based phosphate binders,
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Figure 1. Classic interpretation of secondary hyperparathyroidism
due to loss of renal parenchyma and function. PTH, parathyroid
hormone; sHPT, secondary hyperparathyroidism. Note. From “CME
sHPT: Pathophysiologie des sekundären Hyperparathyreoidismus”, by
Floege and Ketteler, Copyright 2005, Thieme, [in German]. Adapted with
permission.
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Figure 2. Primary phosphate-based regulative mechanisms. CKD, chronic
vitamin D analogs for suppressing parathyroid hormone in end-stage renal
2009, Natl Clin Pract Nephrol 5, p. 24. Copyright 2008, Nature Publishing Gr
whereas more marked reductions were noted in patients
treated with combinations of phosphate binders [14].
Phosphate control mechanisms

The discovery of the phosphatonins, including fibroblast
growth factor 23 (FGF-23) [15,16] and Klotho [17] allowed new
insights into the pathogenesis of CKD-MBD. FGF-23 consists of
251 amino acids with a molecular weight of 26,000 Da and is
produced primarily in osteocytes [18]. As yet, the exact mechan-
isms which result in its secretion have not been completely
elucidated; however, it is generally accepted that increased
phosphate loading or hyperphosphatemia directly or indirectly
stimulates FGF-23. In addition, calcitriol stimulates the secretion
of FGF-23, and FGF-23 is bound into feedback loops which also
suppress the secretion of PTH and calcitriol [19–21].

FGF-23 can be detected via its intact and C-terminal
sequences, although, at present, certain differential diagnosis
cannot be deduced from the two assay targets. Remarkably, FGF-
23 values can increase by a factor of more than 1,000-fold in
end-stage renal disease, which can, at least in part, be inter-
preted as a weakening of the feedback loops and, in the case of
C-terminal assays, as cumulation in CKD. The production and
sensitivity of the receptor-coactivator Klotho is downregulated
in CKD as it is also under the direct negative influence of FGF-23.
Furthermore, Klotho expression is partially dependent on calci-
triol, which is progressively reduced in CKD [22,23].

In the presence of Klotho, FGF-23 binds to FGF receptors,
utilizing a dimeric receptor complex to induce specific signal
transduction. FGF receptors are detectable in most organs;
however, the coexpression of Klotho is specific to the kidneys
and parathyroid glands [24].

FGF-23 suppresses the expression of the sodium–phos-
phate (NaPi) cotransporters NaPi-2a and NaPi-2c in the prox-
imal renal tubules and augments phosphate excretion [25,26].
The original name “Klotho” (derived from Greek mythology)
illustrates the high expectations regarding new insights, as
decreasing Klotho levels in CKD could possibly explain the
premature aging of multiple organ systems. In fact, the
ficiency-Paradigm
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kidney disease; PTH, parathyroid hormone. Note. From “Calcimimetics or
disease: time for a paradigm shift?”, by J.B. Wetmore and L.D. Quales,
oup. Adapted with permission.
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discoverer of the Klotho gene describes phosphate as the
signaling molecule of aging [27].

Remarkably, Isakova et al [28] were able to show that an
increase in FGF-23 is detectable early in the development of
CKD, although serum phosphate levels were either low or
normal in these stages of CKD. At this point it remains
speculative and simultaneously still plausible that the increase
in FGF-23 could be interpreted as a protective mechanism
against phosphate overload in a scenario of already decreasing
renal clearance, although the exact trigger mechanism of this
regulatory process remains to be identified.

Calcimimetics reduce not only PTH, but also FGF-23 [29].
Chonchol et al [30] showed, in a double-blind randomized,
placebo-controlled study of 404 patients in CKD stages 3 and 4,
that treatment with cinacalcet suppressed PTH levels in these
patients. However, this positive effect was accompanied by an
increase in phosphate levels, which was probably caused by a
reduction not only in PTH, but also in FGF-23.

Isolated reduction of FGF-23 results in an increase in serum
phosphate. This was shown by Shalhoub et al [31] in a study of
rats with CKD which were treated with antibodies specific for
FGF-23. Partial normalization of bone parameters, i.e. PTH and
calcitriol, and osseus structure were observed; however, a
marked increase in serum phosphate, vessel calcification, and
mortality were also seen. Thus FGF-23 and PTH, in their roles
as phosphatonins, are indispensable in producing an adequate
reduction in renal phosphate reabsorption from initially 80–
90% to approximately 15% in advanced renal failure [32] and
therefore in a reduction in deleterious cardiovascular sequelae
of phosphate loading. These results confirm the hypothesis
that evolving hyperparathyroidism in the early stages of CKD
may have to be regarded primarily as a beneficial, adaptive
mechanism supporting the homeostasis of normal serum
phosphate levels and loads.

Data presented so far suggest that FGF-23 is the parameter
which increases first in CKD-MBD [33]. However, FGF-23 can
apparently induce left ventricular hypertrophy and therefore
potentially increase cardiovascular risk [34,35]. Activation of
renin-angiotensin-aldosterone system (RAAS) or the induction of
inflammation have also been suggested as relevant pathomechan-
isms [36]. Therefore FGF-23 should not be viewed as an isolated
laboratory parameter. Depending on the circumstances, FGF-23 is
on one hand physiologically protective, but, on the other hand,
pathophysiologically detrimental under extreme conditions [37]. It
currently remains obscure whether the interpretation and differ-
entiation of adaption or maladaption is acceptable on the basis of
the absolute size of FGF-23 levels or if we can assume a relatively
sharp distinction between maintained kidney function and term-
inal end-stage disease with the obligatory requirement of dialysis.

At present, there is no simple picture of FGF-23 regarding
monocausal associations and therapeutic aspects; FGF-23 corre-
lates with the progression of renal failure [38] and numerous
studies have identified an independent association between FGF-
23 and all-cause or cardiovascular prognosis [39–41], although
the quantitative prognostic power of FGF-23 in manifest end-
stage renal failure is inhomogeneous at the moment [42–44].
Interpretations of early phosphate reduction studies
in CKD

Surprisingly, and contrary to the expectation of a reduction
in vessel calcification in CKD stages 3b–4 by the attenuation of
the phosphate load as a result of treatment with oral phos-
phate binders, Block et al [45] showed the progression of
vasculature calcification in a placebo-controlled, direct com-
parison of phosphate binders, which was especially associated
with calcium-based phosphate binders. Although phosphate
excretion in urine was reduced by 22%, levels of PTH and FGF-23
remained substantially unchanged. Although the number of
patients was relatively small, with approximately 40 patients in
each of the four groups in the study, these results highlight our
incomplete understanding of this pathophysiology [46]. This
specific cohort did not have overt hyperphosphatemia, but had
serum phosphate levels just in the high normal range, showing a
reduction from 1.36 mmol/L (4.2 mg/dL) in both the active and
placebo groups to 1.26 mmol/L (3.9 mg/dL) with active treatment
and 1.32 mmol/L (4.1 mg/dL) for the group treated with a
placebo. Furthermore, FGF-23 was not highly stimulated overall
(mean 223 RU/mL). However, iPTH was moderately increased
[mean approximately 80.4 pg/mL (8.52 pmol/L)].

Differing reductions in FGF-23 while treated with various
phosphate binders highlight the complexity of these counter-
independent relations, with no significant reduction with
calcium-based binders compared with larger reductions in
FGF-23 with calcium-free binders in patients on hemodialysis
[47,48]. Furthermore, a study by Hill et al [49] of eight patients
in CKD stages 3b and 4 with average phosphate levels of
3.8 mg/dL (1.23 mmol/L) showed a neutral calcium and phos-
phate balance on an average diet containing approximately
1,000 mg calcium and 1,500 mg phosphate per day. Utilizing
calcium carbonate as the phosphate binder, this metabolic
study confirmed a small but significant reduction in phospha-
turia, while iPTH and FGF-23 remained unchanged. The
administration of calcium carbonate lead to a positive calcium
balance, while, and again unexpectedly, active intervention did
not affect the total phosphate balance.

At present we have insufficient data to recommend a target
range for FGF-23. In addition, there is no indication to
determine FGF-23 in daily clinical routine. However, it appears
plausible to evaluate an FGF-23-guided treatment approach in
the future and to favor treatment options which modulate the
biological mechanisms physiologically. At the moment, atten-
tion should focus on the selection of phosphate binders, the
differentiated utilization of calcimimetics and diligent admin-
istration of vitamin D or a selective vitamin D analog, account-
ing for bone status dynamics. The future challenge is the
recognition of optimal parameter combinations to further
adapt treatment options.
Conclusions and future perspectives

With respect to the question “Treatment of phosphate
retention — the earlier the better?” the results of the study of
Hill et al [49] possibly suggest that there is no early retention of
phosphate. However, a repeat study with a phosphate binder not
based on calcium may allow further insights into the mechan-
isms involved because the calcium content of the phosphate
binder may have confounded the results. According to the study
of Block et al [45], treatment with phosphate binders alone in the
early stages of CKD appears to have no persuasive cardiovascular
advantages, but patients at risk should possibly be identified in
the future by using FGF-23 ranges, which have not yet been
defined.
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The validity of these assumptions are supported by the
recently published DOPPS (The Dialysis Outcomes and Practice
Patterns Study) results [50], showing a 25% lower mortality
[hazard ratio (HR) 0.75; 95% confidence interval (CI) 0.68–
0.83] in patients prescribed phosphate binders when adjusted
for serum phosphate level and other covariates. Further
adjustment for nutritional indicators attenuated this associa-
tion (HR 0.88; 95% CI 0.80–0.97). However, this inverse
association was only observed for patients with serum
phosphate levels Z3.5 mg/dL (Z1.13 mmol/L). In the instru-
mental-variable analysis, the facility percentage of phosphate
binder prescription adjusted for case mix was associated
positively with a better nutritional status and inversely with
mortality (HR for 10% more phosphate binders 0.93; 95% CI
0.89–0.96). Further adjustment for nutritional indicators
reduced this association to an HR of 0.95 (95% CI 0.92–0.99),
thus showing once again the complexity of interactions
between phosphate loading and corporeal handling on one
hand, and the often overlooked aspect of nutritional status on
the other; this also questions the validity of the COSMOS
findings.

We also need to test the parallel (synergistic) administration
of NaPi-2b receptor inhibitors [51]. FGF-23 inhibits NaPi-2b
receptor activity and thus reduces intestinal phosphate absorp-
tion [52,53]. This option appears attractive as an in vitro analysis
of rats has shown that 490% of active phosphate absorption is
facilitated by the NaPi-2b transporter [54], which is intestinally
upregulated while receiving standard treatment with phosphate
binders or strict dietary phosphate restriction [55]. Therefore the
regulation of the NaPi-2b transporter plays a significant part in
phosphate homeostasis [53].

Excessive calcium supplementation appears to be deleter-
ious with respect to cardiovascular integrity. Indeed, a recently
published high quality meta-analysis of 11 randomized studies
consisting of 4,622 patients showed a 22% reduction in total
mortality for calcium-free versus calcium-based phosphate
binders (risk ratio 0.78; 95% CI 0.61–0.98) [56]. Furthermore,
direct and specific antagonism of FGF-23 effects in early CKD
should be avoided.

In our opinion, the indication for treatment should, for the
time being, not be based on a supposed and potentially false
assumption of inadequate phosphate retention, but on the
presence of visible hyperphosphatemia until the basic inter-
dependent mechanisms in CKD have been elucidated in more
detail.
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