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Abstract: Background: Biliary atresia (BA) is the leading cause of pediatric liver failure and pediatric
liver transplantation worldwide. Evidence suggests that the immune system plays a central role in the
pathogenesis of BA. Methods: In this work, the novel immune-related genes between BA and normal
samples were investigated based on weighted gene co-expression network analysis (WGCNA) and
the deconvolution algorithm of CIBERSORT. Results: Specifically, 650 DEGs were identified between
the BA and normal groups. The blue module was the most positively correlated with BA containing
3274 genes. Totally, 610 overlapping BA-related genes of DEGs and WGCNA were further used to
identify IRGs. Three IRGs including VCAM1, HLA-DRA, and CD74 were finally identified as the
candidate biomarkers. Particularly, the CD74 biomarker was discovered for the first as a potential
immune biomarker for BA. Conclusions: Possibly, these 3 IRGs might serve as candidate biomarkers
and guide the individualized treatment strategies for BA patients. Our results would provide great
insights for a deeper understanding of both the occurrence and the treatment of BA.

Keywords: biliary atresia; children; WGCNA; immune-related genes; biomarkers

1. Introduction

Biliary atresia (BA) is one of the most severe hepatobiliary diseases of early infancy
with a prevalence of 1/19,000–1/5000 varied in different countries [1–4]. Typically, BA is
characterized by an inflammatory and fibrotic obliteration of the extrahepatic bile ducts,
leading to cholestasis and irreversible liver failure. Without any treatment, BA would lead
to death from end-stage liver disease in the first two years of life [5]. To date, BA remains
the leading cause of pediatric liver transplantation all over the world (32%) [6]. Therefore,
both the early screen technology and the accurate diagnosis for BA in the early stage are
urgently required for pediatrics.

The pathogenesis of BA is greatly complex and unclear to date. Currently, theories
of pathogenesis were proposed to include defects in embryogenesis, gene sequence fac-
tors, toxins, different viral infections, aberrant expression of immune cells, and immune
regulatory factors and susceptibility factors [5,7]. Among all the factors linked to the patho-
genesis of BA, the immune system is recognized as the core factor, which has been proved
by the infiltration of the liver by inflammatory cells and the overexpression of cytokines
and/or chemokines at the time of diagnosis [7–10]. We presume that the genes especially
immune-related genes (IRGs) might play a vital role in the occurrence of BA and serve as
biomarkers for this disease. Nevertheless, current studies mostly focused on the immune
cell levels rather than the gene-related research. Accordingly, it would be of great interest to
perform the corresponding gene level studies to identify the role of IRGs in the occurrence
of BA.

WGCNA (weighted gene co-expression network analysis) is a significantly useful
method that divides gene co-expression networks of complex biological processes into
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several characteristic modules and analyzes their association with clinical traits to reveal the
specific association between genes and clinical features [11]. In previous studies, WGCNA
has been widely used in hepatobiliary diseases. CIBERSORT is a computational tool
to estimate the abundances of member cell types in a mixed cell population [12] which
attracted great attention in studying cell heterogeneity. We expect that these computational
analytical methods of WGCNA and CIBERSORT would be significantly useful to explore
the diagnosis of genes and therapeutic biomarkers in the clinical practice of BA.

In this work, BA gene expression data were downloaded from the NCBI Gene Ex-
pression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo (accessed on
10 November 2021)). WGCNA was used to construct key modules and CIBERSORT
was applied to analyze the immune infiltration in BA. Moreover, we further explored and
verified the novel immune-related genes, which might serve as potential biomarkers for di-
agnosis and guide the personalized strategies for treating BA patients. Our computational
analytical results might provide great insights for understanding the occurrence of BA.

2. Materials and Methods

Data download and processing: GSE122340 and GSE46960 datasets were downloaded
from the NCBI GEO database. A total of specimens of 7 healthy controls and 171 infants
with BA were collected from dataset GSE122340. The detection platforms were based
on GPL16791. The dataset GSE46960 was based on the GPL6244 platform, containing
7 liver samples from healthy controls and 64 liver samples from BA patients. Moreover,
GSE122340 was employed as a training dataset and GSE46960 was used as the independent
validation cohort.

Identification and functional enrichment analysis of differentially expressed genes
(DEGs): DEGs were analyzed using the limma package in R (version 4.12, University of
Auckland, New Zealand). with the cutoff criteria of adjusted p-value < 0.05 and |log2
foldchange| > 1 [13]. Volcano plots and heatmaps were created using the ggplot2 package
in RTo explore the biological functions of DEGs, GO and KEGG pathway analyses were
conducted through the cluster Profiler package [14]. Specifically, p < 0.05 was considered
statistically significant.

Identification of key modules using WGCNA: WGCNA package in R was used to
construct the weighted gene co-expression network based on all the genes involved in
the training cohort [11]. WGCNA can detect highly relevant genes and aggregate them
into the same co-expression modules associated with clinical traits. Soft powers (β = 4)
were applied to the dataset GSE122340 to construct the scale-free networks. Then, the
hierarchical clustering dendrogram was built to aggregate genes with similar expressions
into the same co-expression module. Then the module-trait relations between modules
and clinical traits were explored for functional modules from the co-expression network.
Finally, the module with the largest correlation coefficient was considered to be the potential
module which was mostly correlated to clinical traits. The corresponding module with the
highest correlation coefficient was utilized in the next analysis.

Analysis of immune infiltration using the CIBERSOFT algorithm: Immune cell infiltra-
tion in BA was evaluated using CIBERSORT (https://cibersort.stanford.edu/ (accessed
on 20 January 2019)) which is a newly developed and superior tool for calculating the cell
proportion of complex tissues based on gene expression profiles [12]. The LM22 gene file
of CIBERSORT was used to define 22 immune cell subsets. During the data analysis, the
results were filtered according to p-value < 0.05, and the immune cell composition of each
sample was shown in the bar plot.

Identification and verification of hub immune-related genes: Considering the critical
role of the immune system in the pathogenesis of BA, IRGs may serve as biomarkers for BA.
After integrating the results of WGCNA and DEGs, the potential hub genes were obtained.
Then, IRGs were downloaded from the import shared database (http://www.immport.org/
(accessed on 24 March 2020)), which were subsequently overlapped with the potential hub
genes to indicate the candidate IRGs for BA. The receiver operator characteristic curve
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was plotted using the pROC package [15] in R.Subsequently, the area under the curve was
utilized to determine the hub genes which might discriminate BA from normal samples.
Finally, GSE46960 including 64 BA samples was used as a validation cohort to further
confirm the real hub IRGs.

PPI network construction and gene correlation analysis: To further investigate the
connection between candidate hub genes and other BA-related IRGs at the protein level,
the Search Tool for the Retrieval of Interacting Genes (STRING, https://string-db.org/
(accessed on 18 November 2021)) was used to construct the PPI network [16]. During the
analysis, the lowest interaction score was set as 0.4, and any isolated node in the network
was removed. Finally, the association between any two hub genes was capered based on
the corrplot package in R.

3. Results
3.1. Identification of DEGs

In the data set of GSE122340 as the training cohort, 650 DEGs were identified be-
tween the BA and normal. These DEGs were determined according to the criterion with
p-values < 0.05 and |log2FoldCharge| > 1. Among these DEGs, 504 genes were up regu-
lated and 146 genes were downregulated. The volcano plot of all DEGs and heatmap of the
top 50 DEGs are shown in Figure 1A,B. Under the same criteria, 485 DEGs were discovered
in GSE46960.
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Figure 1. Visualization of differentially expressed genes (DEGs). (A) Volcano map of the DEGs in the
training cohort. (B) Heatmap of the top 50 upregulated and downregulated genes.

3.2. Functional and Pathway Enrichment Analysis of DEGs

To further explore the function of DEGs associated with BA, the pathway enrichment
analysis of GO and KEGG was carried out using the Bioconductor package clusterProfiler
in R. In GSE122340, the GO enrichment analysis revealed that for BP, the BA-related genes
were mainly related to RNA splicing, nucleocytoplasmic transportation, and response to
a toxic substance. For CC, the BA-related genes were mainly involved in nuclear speck,
collagen-containing extracellular matrix, and blood microparticle. As for MF, the BA-related
genes were mainly relevant in tetrapyrrole binding, antioxidant activity, and heme-binding
(Figure 2A,B). As shown in Figure 2C,D, BA-related genes were mainly enriched in diabetic
cardiomyopathy, spliceosome, and chemical carcinogens DNA adducts pathways.

https://string-db.org/
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Figure 2. Functional and pathway analysis through GO and KEGG. (A) MF, BP, and CC in GO
categories of DEGs. (B) Circos plot indicating the relationship between genes and GO terms.
(C) KEGG analysis of DEGs. (D) Circos plot indicating the relationship between KEGG pathways.

3.3. Co-Expression Network Construction and Key Modules Visualization

Sample clustering was performed based on Pearson’s correlation matrices using the
average linkage method. No outliers were detected during the sample clustering (see
Figure 3A). When the correlation coefficient threshold was set as 0.9, the soft-thresholding
power was selected as four in Figure 3B. The correlation between genes and modules, and
between different genes were also analyzed. The modules with more genes clustered were
blue, purple, and black (Figure 3C,D). Subsequently, the relationship between modules
and traits was determined (see Figure 3E). A total of 7 gene modules were obtained. The
correlation between the blue module and the clinical phenotype was the highest (Pearson
correlation ratio: 0.31, p < 0.001) which suggested that the genes in the blue module were sig-
nificantly associated with the clinical phenotype of BA. Figure 3F shows the scatter plot of
gene significance in the blue module. It reveals that the blue module from WGCNA
has a significant correlation with gene significance of BA (correlation coefficient:0.78,
p < 1 × 10−200).

3.4. Immune Cell Profiling and Microenviroment Analysis of BA

Figure 4A summarizes the distribution of various immune cells in each sample in the
GSE122340 cohort. Different colors represented various types of immune cells. The height
of each color represented the percentage in the sample, and the sum of the percentage
of various immune cells was 1. These data demonstrated that the main infiltrating cells
include M2 macrophages, CD8+ T cells, naïve CD4+ T cells, memory resting CD4+ T
cells, memory activated CD4+ T cells, follicular helper T cells, regulatory T cells, naïve B
cells, and memory B cells. As shown in Figure 4B, the proportions of different infiltrated
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immune cell subpopulations were weakly or moderately correlated. For instance, there
was a positivecorrelation between CD8+ T cells and M1 macrophage with the correlation
coefficient of 0.7while NK cell resting and NK cell activated are negatively correlated
with the correlation coefficient of −0.64. As compared with normal samples, BA samples
generally contained a higher proportion for the memory B cells (p = 0.035), gamma delta T
cells (p = 0.035), and the resting dendritic cells (p = 0.044) (see Figure 4C).

1 

 

 

Figure 3. Correlated key module construction with BA through WGCNA. (A) Sample clustering
dendrogram of the GSE122340. (B) Clustering dendrograms of genes. Analysis of the scale-free fit
index (left) and the mean connectivity (right) for various soft-thresholding powers. (C) Dendrogram
of all differentially expressed genes (DEGs) based on a dissimilarity measure. (D) An eigengene
dendrogram identified groups of correlated modules. (E) Module–trait relationships between genes
and clinical traits of BA. Each cell contains the correlation coefficient and p-value. (F) Scatter plot of
gene significance in the blue module.
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Figure 4. The fraction of the immune cells in the BA and control groups. (A) The bar chart indicates
the distribution of the 22 subsets of immune cells. X-axis: each GEO sample; y-axis: percentage
of each kind of immune cell. (B) The correlation analysis of different immune cells. The red color
represents positive correlation and the blue color represents negative correlation. (C) The violin
graph shows the difference in immune infiltration between BA and normal groups. The BA group is
shown in blue and normal group is shown in red. p-value < 0.05.
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3.5. Identification of Significant IRGs for BA

Totally, 610 potential hub genes were overlapped with the immune-related genes
downloaded from the online database, which were obtained by integrating the results
of WGCNA and DEGs (see Figure 5A). Specifically, 30 differential IRGs were obtained
(Figure 5B). By integrating with the differential IRGs of the validation cohort (Figure 5C),
3 IRGs were finally identified for further analysis (Figure 5D). To further confirm the
hub IRGs to effectively distinguish BA and normal samples, ROC curves of the 3 genes
were plotted. These results revealed that all 3 IRGs could distinguish BA samples from
normal samples with AUC > 0.7 (Figure 6A,C,E). Moreover, 3 IRGs also showed significant
differences in the validation cohort GSE46960 (Figure 6B,D,F). Thus, VCAM1, HLA-DRA
and CD74 were finally identified as the candidate biomarkers of BA.
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Figure 5. The exploration of BA-related immune genes. (A) The overlapping genes of DEGs (bule)
and the blue module of WGCNA in GSE122340 (red). (B) The intersect genes in GSE122340 of the
overlapping genes obtained from the subfigure A (blue) and the immune genes (red) downloaded
from database (http://www.immport.org/). (C) The intersect genes of DEGs in GSE46960 (red) and
the immune genes (blue) downloaded from database (http://www.immport.org/). (D) Identification
of the target IRGs. Overlapping of immune genes in GSE122340 (red) and GSE46960 (blue).
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3.6. PPI Network Construction and Gene Correlation Analysis 

The PPI network for all 30 differential IRGs was constructed using the STRING tool. 

The corresponding result of the PPI network demonstrated that all 3 potential biomarkers 

Figure 6. ROC curves of the three hub IRGs in the training cohort and verification of the validation
cohort. (A) ROC curve of VCAM1 in GSE122340. (B) Differences in VCAM1 in GSE46960. (C) ROC
curve of HLA-DRA in GSE122340. (D) Differences in HLA-DRA in GSE46960. (E) ROC curve of
CD74. (F) Differences in CD74 in GSE46960.

3.6. PPI Network Construction and Gene Correlation Analysis

The PPI network for all 30 differential IRGs was constructed using the STRING tool.
The corresponding result of the PPI network demonstrated that all 3 potential biomarkers
had relationships with other proteins (Figure 7A). Therefore, these 3 potential gene changes
cause coding protein changes and lead to related protein changes which might induce
the occurrence of BA. Moreover, the interaction of the expression of the 3 hub genes was
calculated and CD74 was proven to have a strong positive correlation with HLD-DRA,
suggesting that the 3 hub genes might interact with each other (Figure 7B).
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4. Discussion

To date, BA is widely considered the leading cause of both pediatric liver failure
and liver transplantation worldwide [6,17,18]. Early screen technology and the accurate
diagnosis for BA in the early stage are urgently required for pediatrics. The immune system
is recognized as the core factor for BA. In recent years, biomarkers in the molecular levels
have attracted the most attention. Hirotaka demonstrated a high concentration of MMP-7
in BA and might serve as a useful marker for diagnosis [19,20]. Based on CIBERSOFT,
Zhang explored the microenvironment of BA and found that CXCL8 might serve as the
hub gene of BA with a small sample size [21]. In this work, comprehensive bioinformatics
was utilized to explore immune-related genes and microenvironment with a more updated
public database including more cases and more consistent clinical features. Three immune-
related genes were finally identified as the candidate biomarkers and a CD74 biomarker
was discovered for the first as a potential screening biomarker for BA.

VCAM-1 (vascular cell adhesion molecule-1), a cell adhesion molecule belonging to the
immunoglobulin supergene family, was identified as one of the immune biomarkers of BA
in this study. VCAM-1 is predominantly expressed on the surface of endothelial cells and
is critical to the adhesion of lymphocytes to target cells [22]. In our work, VCAM-1 levels
were significantly upregulated in the liver in BA patients compared with normal patients.
A prior clinical study demonstrated higher serum VCAM-1 levels in BA patients than in
normal controls. Moreover, the higher the degree of liver fibrosis in BA, the more significant
the difference in VCAM-1 expression levels [23]. Meanwhile, it was also expressed in the
hepatic parenchyma including the portal tract and the portal vein in BA patients, especially
with advanced cirrhosis which suggested that ongoing cirrhosis could be mediated by
VCAM-1 through humoral and cell-mediated immune interaction [24]. Therefore, VCAM-1
might play a key role in the occurrence and liver fibrosis progression and could be used as
a screening biomarker and prognosis predictor in BA patients.

HLA-DRA (human leukocyte antigen DR alpha chain) is a homo sapiens major his-
tocompatibility complex (MHC) class II antigen which might play an important role in
immunity by presenting peptides derived from extracellular proteins [25]. A previous study
showed that HLA-DR was expressed on hepatocytes and bile duct cells in BA patients but
was not present in control patients [26,27]. Subsequently, researchers found that it was also
abnormally expressed in microvilli of the bile duct in patients with BA and was inversely
associated with the short-term outcome after operation [27]. It is indicated that aberrant
HLA-DR expression may play a pathogenic role in cirrhosis progression in BA. Recently,
the role of HLA-DRA has attracted great attention in the diagnosis of tumors [25,28]. This
study found that the expression of HLA-DRA in the BA liver was aberrantly upregulated
which further indicates that HLA-DRA might play a pathological role in BA.

CD74 (MHC class II invariant chain) is a non-polymorphic type II transmembrane
protein. Initially, CD74 was thought to be an MHC class II chaperone expressed on classical
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antigen-presenting cells (APCs), such as dendritic cells and macrophages [29]. However,
more evidence supports that CD74 has many more biological functions in different situa-
tions. In recent years, CD74 has been recognized as a high-affinity cell membrane receptor
for macrophage migration inhibitory factor (MIF), contributing to the activation of the ERK
(extracellular signal-regulated kinase) pathway and Akt pathway [30,31]. Furthermore, the
role of MIF and its cell membrane receptor CD74 is mainly focused on the protection against
injury and healing promotion in different parts of the body including the kidney, lung, gut,
heart, and nervous system [31–36]. Therefore, activation of the MIF-CD74 pathway seems
to mainly correlate positively to protection against injury and healing promotion. However,
elevated levels of CD74 and MIF positively correlated with worsening inflammation of
lupus nephritis from the proinflammatory effects of MIF/CD74 signaling [30]. Our study
revealed that CD74 is significantly upregulated in BA compared with normal samples.
Moreover, this study is the first to identify the specific relationship between CD74 and the
occurrence of BA. However, it is unclear how CD74 impacts the progression of BA. We
propose that the MIF-CD74 pathway might play a significant role in BA which would be
an attractive and interesting area for future research. Furthermore, a strong correlation be-
tween CD74 and HLA-DRA was obtained at the transcriptional level. Hence, we assumed
that these three potential hub genes might affect each other in the occurrence of BA but the
specific mechanism needs to be clarified in future investigation.

We applied CIBERSORT to explore the microenvironment and correlation between
immune cell infiltration and BA. The immune cells differed significantly including memory
B cells, gamma delta T cells, and resting dendritic cells. B memory cells were rapidly
reactivated to produce antibodies and establish a second line of defense [37]. In the rhesus
rotavirus (RRV)-induced neonatal mouse model of BA (murine BA), B cell-deficient mice are
protected from developing BA [38]. However, if B cells were transferred into RRV-infected,
B cell-deficient mice, T cells, and macrophages would be reinstated and start biliary injury
again [39]. The latest study published in CELL revealed that hepatic B cell lymphopoiesis
remained intact after birth, which may also regulate the functions of myeloid cells, T cells,
and NK cells through MHC-mediated antigen presentation or soluble mediators apart
from producing autoantibodies. Through the depletion of B cells by an anti-CD20 antibody,
symptoms significantly improved compared with untreated RRV mice [40].

Gamma delta T cells are a kind of unique and conserved population of lymphocytes
that have attracted great interest in recent years due to their critical roles in many types
of immune response and immunopathology [41]. Recently, the ability of gamma delta T
cells to produce large amounts of IL17 has been explored [42,43]. The role of IL17-positive
gamma delta T cells has been evaluated in various models of infection and autoimmunity.
Similarly, gamma delta T cells were upregulated in liver samples of both BA patients
and murine models compared with healthy controls [44]. With suppression of the IL-17
production of gamma delta T cells by AM80, hepatic inflammation is ameliorated in mice
suffering from BA [45]. It is suggested that gamma delta T cells can produce IL17 and
might contribute to the inflammation and destruction of the extrahepatic and intrahepatic
bile ducts.

Dendritic cells are a family of relatively rare immune cell subtypes that establish unique
cellular networks and produce distinct cytokine signals with complementary functions in
antigen sensing and activation of T lymphocytes [46]. Dendritic cells were reported to exist
before developing any symptoms of BA and localize to bile ducts after RRV infection which
then modify T cell and natural killer cell activation and epithelial injury in experimental
BA [47]. Our study showed that the number of resting dendritic cells in the BA patients
was statistically lower than that in the healthy controls, while the activated dendritic cells
were upregulated compared with the healthy controls, suggesting that dendritic cells are
important in the development of BA and deserve further investigation.

This study has several limitations. A larger sample size is needed in future studies.
We should further validate the discriminative ability of the candidate biomarker genes in
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animal models and in our own cohort. Finally, functional and mechanism studies of the
hub genes identified here are needed.

5. Conclusions

In summary, the novel immune-related genes and microenvironment between BA and
normal liver were investigated based on WGCNA and CIBERSORT. Three IRGs includ-
ing VCAM1, HLA-DRA, and CD74 were finally identified as the candidate biomarkers.
Particularly, the CD74 biomarker was discovered for the first time as a potential immune
biomarker for BA. Possibly, these three IRGs might serve as candidate biomarkers and
guide the individualized treatment strategies for BA patients. CIBERSOFT analysis demon-
strated that three immune cell types might contribute to the pathogenesis of BA including
memory B cells, gamma delta T cells, and resting dendritic cells. Our results would provide
great insight for a deeper understanding of the occurrence and treatment of BA.
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