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Abstract: The multi-domain non-structural protein 3 (NSP3) is an oncogenic molecule that has been
concomitantly implicated in the progression of coronavirus infection. However, its oncological role
in lung cancer and whether it plays a role in modulating the tumor immune microenvironment is
not properly understood. In the present in silico study, we demonstrated that NSP3 (SH2D3C) is
associated with advanced stage and poor prognoses of lung cancer cohorts. Genetic alterations of
NSP3 (SH2D3C) co-occurred inversely with Epidermal Growth Factor Receptor (EGFR) alterations
and elicited its pathological role via modulation of various components of the immune and inflam-
matory pathways in lung cancer. Our correlation analysis suggested that NSP3 (SH2D3C) promotes
tumor immune evasion via dysfunctional T-cell phenotypes and T-cell exclusion mechanisms in lung
cancer patients. NSP3 (SH2D3C) demonstrated a high predictive value and association with therapy
resistance in lung cancer, hence serving as an attractive target for therapy exploration. We evaluated
the in silico drug-likeness and NSP3 (SH2D3C) target efficacy of six organosulfur small molecules
from Allium sativum using a molecular docking study. We found that the six organosulfur compounds
demonstrated selective cytotoxic potential against cancer cell lines and good predictions for ADMET
properties, drug-likeness, and safety profile. E-ajoene, alliin, diallyl sulfide, 2-vinyl-4H-1,3-dithiin,
allicin, and S-allyl-cysteine docked well into the NSP3 (SH2D3C)-binding cavity with binding affini-
ties ranging from –4.3~–6.70 Ă and random forest (RF) scores ranging from 4.31~5.26 pKd. However,
S-allyl-cysteine interaction with NSP3 (SH2D3C) is unfavorable and hence less susceptible to NSP3
ligandability. In conclusion, our study revealed that NSP3 is an important onco-immunological
biomarker encompassing the tumor microenvironment, disease staging and prognosis in lung can-
cer and could serve as an attractive target for cancer therapy. The organosulfur compounds from
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A. sativum have molecular properties to efficiently interact with the binding site of NSP3 and are
currently under vigorous preclinical study in our laboratory.

Keywords: NSP3 (SH2D3C); NSCLC; tumor microenvironment; immune infiltrations; dysfunctional
T-cell phenotypes; in silico study; pharmacokinetics; organosulfur compounds

1. Introduction

Lung cancer is the second most commonly diagnosed cancer, with an estimated
2.2 million new cases (11.4%) worldwide, and remains the leading cause of cancer deaths,
with an estimated 1.8 million deaths (18%) in 2020 [1]. With higher incidences and mortal-
ity rates in men than in women, the global burden of lung cancer is ranked first in men,
whereas, in women, it ranks second behind breast cancer [1,2]. This pattern is largely
attributed to air pollution and increased tobacco consumption [3,4]. Histologically, the
majority (80%) of lung cancers are non-small-cell lung cancer (NSCLC) while the remain-
ing 20% are small-cell lung cancer (SCLC) [5,6]. NSCLC is further divided into three
pathological subtypes of lung adenocarcinoma (LUAD), squamous cell carcinoma, and
large-cell carcinoma, with LUAD being the most common subtype [7,8]. Despite advances
in treatment strategies such as chemotherapy, immunotherapy, radiotherapy, and surgery,
the prognosis of lung cancer is still disappointing with fewer than 20% of patients reaching
an overall 5-year survival period [9,10].

A tumor-driven immune imbalance plays an important role in tumor initiation and
progression. The tumor microenvironment (TME) is a complex system that encompasses
various stroma cell types, immune cell types, and other extracellular components [11].
Interactions among components of the TME play pivotal roles in tumor occurrence and
progression [12]. In addition, the efficacy of immune checkpoint blockades is regulated
by the interplay between components of the TME [13,14]. It was initially thought that
tumor immune infiltration was strictly associated with tumor-induced immune suppres-
sion. However, increasing evidence suggested that both genetic and epigenetic alterations
within the TME mediate tumor immune evasion and tumor progression via distinct mecha-
nisms involving T-cell anergy and dysfunctional T-cell phenotypes in various cancer types.
In addition, tumor infiltrations of immunosuppressive cells, such as cancer-associated
fibroblasts (CAFs), M2-macrophages, and regulatory T (Treg) cells, are known to mediate
tumor evasion of immune cells by inhibiting the activities of cytotoxic T cells via a T-cell
exclusion mechanism [15,16]. Previous studies reported that CAFs induce the formation of
a pre-metastatic niche and increase metastasis in lung cancer patients [17]. CAFs decrease
drug sensitivity by blocking the delivery of drugs and thus contribute to the poor prognosis
of cancer patients [18,19].

Non-structural protein 3 (NSP3) is a multi-domain, multifunctional protein that is an
essential component of the replication/transcription complex (RTC), responsible for the
synthesis and processing of RNA, and interference with the innate immune system of host
cells [20,21]. NSP3 has been implicated in cancer progression and metastasis [22,23]. It
is a key component in coronavirus replication and has thus played a pivotal role in the
coronavirus disease 2019 (COVID-19) pandemic. It thus could be an attractive target for the
development of therapeutic strategies for treating cancer and coronavirus infections [24].

In drug discovery pipelines, natural products, particularly medicinal plants, serve
as an important source of natural therapeutic agents for treating several diseases [25–28].
Garlic (Allium sativum L. of the Amaryllidaceae family) is an aromatic herbaceous annual
spice with various biological activities [29–33]. It contains hundreds of phytochemicals,
among which sulfur-containing compounds are of therapeutic interest in the field of
oncology [32,34–41]. Previous studies appraised the uses of in silico approaches to assessing
biomarkers and the prognostic relevance of genes and gene signatures in a diseased
condition based on the available clinical information of cohorts, and also aid in identifying
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drug-like molecules for targeted therapy [42–44]. In this study, we used a bioinformatics
approach to evaluate the effect of NSP3 expression as well as genetic and epigenetic
alterations on the TME with respect to tumor immune evasion mechanisms and prognoses
in lung cancer cohorts. In addition, we reported the drug-likeness, pharmacokinetics (PKs),
toxicity, and potential therapeutic properties of some sulfur-containing compounds from
A. sativum. Lastly, we also demonstrated the potential of the compounds to regulate the
activity of NSP3 using molecular docking studies of receptor−ligand interactions.

2. Materials and Methods
2.1. Differential Expression Analysis of NSP3 (SH2D3C) in Lung Cancer Cohorts

We used the Tumor IMmune Estimation Resource (TIMER2.0) algorithm (http://timer.
cistrome.org/ accessed on 23 July 2021) [45], and the Gene Expression Profiling Interactive
Analysis (GEPIA) database (http://gepia.cancer-pku.cn/ accessed on 23 July 2021) [46]
for the differential expression analysis of NSP3 (SH2D3C) in tumor vs. normal tissues
from various cancer types of The Cancer Genome Atlas (TCGA) database. In addition, we
used the TNMplot server [47] to conduct a differential gene expression analysis of NSP3
(SH2D3C) between the pathological free (normal), primary cancer, and metastatic lung
cancer tissues.

2.2. Prognostic Analysis of NSP3 (SH2D3C) in Lung Cancer Cohorts

To analyze the prognostic value of NSP3, the expression level and survival informa-
tion of lung cancer cohorts from GEO, EGA, and TCGA were integrated via PostgreSQL
server. We split the patient samples into high and low expression levels based on the
quantile expressions levels of the gene. The survival differences between the two groups
was visualized using the Kaplan−Meier survival analysis (https://kmplot.com/analysis/
accessed on 21 August 2021) [48]. The hazard ratio with 95% confidence intervals and
logrank p value are calculated.

2.3. Analysis of NSP3 (SH2D3C) Genetic Alterations Frequency and Co-occurrence in Lung
Cancer Cohorts

We explore the cancer genomic data set through the cBioPortal tool (http://www.
cbioportal.org/ accessed on 20 August 2021) [49,50] to analyze the types and frequencies of
NSP3 genetic alterations in lung cancer cohorts. The survival differences between cohorts
with and without alterations in NSP3 (SH2D3C) genome was also analyzed through the
server and visualized using the Kaplan−Meier plots. In addition, we analyzed the gene
mutation co-occurrence patterns between NSP3 (SH2D3C) and other genes in TCGA lung
cancer cohorts. Alteration co-occurrence was considered significant only at p < 0.05 and
q < 0.05.

2.4. Analysis of the SH2D3C Association with Immune and Immunosuppressive Cell Infiltration
in Lung Cancer

We explore the immune module of the TIMER algorithm (http://timer.comp-genomics.
org/ accessed on 5 August 2021) to comprehensively analyze correlations between NSP3
(SH2D3C) expressions and tumor infiltration levels of six immune cell types (B cells, cluster
of differentiation-positive (CD8+) T cells, CD4+ T cells, macrophages, neutrophils, and
dendritic cells (DCs)) and immunosuppressive cells (cancer-associated fibroblasts (CAFs), T
reg cells, and tumor-associated macrophages (TAMs)) in TCGA cohorts of lung cancer. We
used the Tumor Immune Dysfunction and Exclusion (TIDE) (http://tide.dfci.harvard.edu
accessed on 3 August 2021) tools [51] to analyze correlations of the expression, methylation,
and copy number alterations (CNAs) of NSP3 (SH2D3C) with cytotoxic T lymphocyte
(CTL) infiltration, dysfunctional T-cell phenotypes, and T-cell exclusion phenotypes in lung
cancer cohorts.

http://timer.cistrome.org/
http://timer.cistrome.org/
http://gepia.cancer-pku.cn/
https://kmplot.com/analysis/
http://www.cbioportal.org/
http://www.cbioportal.org/
http://timer.comp-genomics.org/
http://timer.comp-genomics.org/
http://tide.dfci.harvard.edu
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2.5. SH2D3C Interaction Network, Functional Enrichment, and Disease-Specific
Associations Analysis

The protein−protein (PPI) interaction network of NSP3 was constructed and an-
alyzed via the search tool for retrieval of interacting genes/proteins (STRING) server
(http://string-db.org/, v10.5 accessed on 21 July 2021) [52]. The official gene symbols
of NSP3 were loaded to the single protein modules of the server and analyzed for both
predictive and known interactions in Homo sapiens under the confidence search of 0.70 and
at p < 0.05. In addition, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
and gene ontology (GO) of the biological process enrichment of the network was down-
loaded via the server and was further confirmed using the Enrichr platform, an online gene
set enrichment analysis (GSEA) server [53,54]. The enrichment plots were generated using
the ImageGP (http://www.ehbio.com/ImageGP/ accessed on 27 August 2021) platform.
Analysis and visualization of the gene−gene interaction (GGI) network of the NSP3 was
performed through the GeneMANIA platform, a real-time multiple association network
integration algorithm for predicting gene functions [55]. The gene disease-specific asso-
ciations of NSP3 was analyzed at the confident levels of 0.4 by using the OPENTARGET
platform (https://www.targetvalidation.org/ accessed on 27 August 2021), a bio-web al-
gorithm that integrates genetic, omic, and chemical data to identify the involvement of
genes in diseases and aid systematic drug target identification and prioritization [56].

2.6. SH2D3 Knockdown (shSH2D3C) Efficacy and Gene Expression Correlation Analysis
in NSCLC

We evaluated the efficacy of SH2D3 knockdown (shSH2D3C) in association with the
expression of a number gene. A total of 58 samples are classified into two groups by
the median value of shSH2D3C and target genes. Results were presented in the form
of predictivity and descriptivity. The predictivity is defined as the fold change (FC) of
shSH2D3C efficacy between samples of high and low expression of the gene. Descriptivity is
defined as the FC of gene expression between samples of high and low shSH2D3C efficacy.

2.7. In Silico Analysis of the Druglikeness, Pharmacokinetics, and Pharmacology of Some
Organosulfur Small Molecules from Allium Sativum

We analyzed the drug-likeness, pharmacokinetics, and medicinal chemistry of six
organosulfur small molecules from A. sativum (E-ajoene, alliin, diallyl sulfide, 2-vinyl-
4H-1,3-dithiin, allicin and S-allyl-cysteine) using the SwissADME algorithm [57]. We
used the blood−brain barrier (BBB) Prediction Server (https://www.cbligand.org/BBB/
accessed on 21 July 2021), which operates based on the support vector machine (SVM)
and LiCABEDS algorithms to analyze the BBB permeation ability of the compounds [58].
We evaluated the in silico cytotoxicity of the compounds against the cancer cell lines and
normal cell lines by using the Cell Line Cytotoxicity Predictor (CLC-Pred) modules of the
computer-aided Prediction of Biological Activity Spectra (PASS) web resources [59] created
based on the training set of data on cytotoxicity retrieved from ChEMBLdb (version 23).

2.8. In Silico Acute Toxicity Analysis of the Organosulfur Compounds

We predicted the 50% lethal dose (LD50) of the compounds for the different routes
of administrations (intraperitoneal, intravenous, oral, and subcutaneous) in rats using
the GUSAR software for quantitative structure-activity relationship (QSAR)/quantitative
structure-property relationship (QSPR) modeling [60]. The GUSAR software was devel-
oped based on training sets of data from the SYMYX MDL Toxicity Database, consisting
of approximately 104 chemical structures with data on acute rat toxicity represented by
the LD50 values (log10 (mmol/kg)). In addition, we also evaluated the ecotoxicity prop-
erties of the compounds using the bioaccumulation factor Log10(BCF), Daphnia magna
50% lethal concentration (LC50) -Log10(mol/L), Fathead Minnow LC50 Log10(mmol/L),
and Tetrahymena pyriformis 50% inhibitory growth concentration (IGC50) -log10(mol/L)
as indicators.

http://string-db.org/
http://www.ehbio.com/ImageGP/
https://www.targetvalidation.org/
https://www.cbligand.org/BBB/
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2.9. Molecular Docking of Receptor−Ligand Interaction between SH2D3C and the
Organosulfur Compound

The crystal structures of NSP3 (PDB: 6W6Y) were downloaded from the Protein Data
Bank (PDB) (https://www.rcsb.org/ accessed on 15 August 2021) in PDB file format and
subsequently converted into the Auto Dock PDBQT format using AutoDock Vina (ver. 0.8,
Scripps Research Institute, La Jolla, CA, USA) [61]. Three-dimensional (3D) molecular ball-
and-stick models of some organosulfur compounds from A. sativum (alliin, allicin, E-ajoene,
Z-ajoene, 2-vinyl-4H-1,3-dithiin, diallyl sulfide, and allyl methyl sulfide) were drawn
using the Avogadro molecular builder and visualization tool ver. 1.XX and subsequently
converted to PDB format using the PyMOL tool and then to PDBQT format using AutoDock
Vina. The receptor was prepared by pre-docking removal of water (H20) molecules and the
addition of hydrogen atoms (polar only) and Kolman charges [62,63]. Molecular docking
was performed using AutoDock Vina as described previously [42,62,64,65]. Docking
outcomes were visualized using the Discovery Studio Visualizer ver. 19.1.0.18287 (BIOVIA,
San Diego, CA, USA) [24].

2.10. Data Analysis

Spearman’s rank correlations were used to assess correlations between NSP3 expres-
sion and infiltration of immunosuppressive cells. A KM curve was employed to visualize
survival differences between lung cancer cohorts with high and those with low expression
levels of NSP3 (SH2D3C). The statistical significance of the differential expression of NSP3
between lung cancer tumor and adjacent normal tissue was evaluated using the Wilcoxon
test. Statistical significance was indicated by * p < 0.05; ** p < 0.01; *** p < 0.001.

3. Results
3.1. NSP3 (SH2D3C) Is Associated with Advance Stage and Poor Prognoses of Lung
Cancer Cohorts

Our differential expression profile of NSP3 (SH2D3C) between tumor and adjacent
normal tissue revealed that NSP3 (SH2D3C) has deregulatory expression in tumor samples
of TCGA cancer types (Figure 1A). However, our focus is on lung cancer, and we found that
NSP3 (SH2D3C) is expressed at a lower level in lung cancer tumors than the adjacent normal
tissue (Figure 1B). On a contrary note, we found that cohorts with metastatic lung cancer
exhibited higher NSP3 (SH2D3C) expression levels than the primary tumor (Figure 1C). Our
survival analysis also revealed that patients with higher gene expression levels exhibited a
shorter overall and progressive free survival duration than cohorts with lower expression
levels (Figure 1D). Furthermore, we queried the differential protein expression levels of
NSP3 (SH2D3C) between lung cancer tissue and disease-free tissue. Interestingly, we found
that lung cancer tumors exhibited higher intensity of NSP3 (SH2D3C) than the pathological
free tissue (Figure 1E). Moreover, cohorts with high mRNA expression levels of NSP3
(SH2D3C) exhibited shorter survival duration than cohorts with low mRNA expression
levels (Figure 1F). Collectively, our results suggest that NSP3 (SH2D3C) is associated with
the advanced stage and poor prognosis of lung cancer and thus could serve as a prognostic
biomarker of lung cancer progression and follow-up.

3.2. Genetic Alterations of NSP3 (SH2D3C) Are Associated with Poorer Prognosis and Inversely
Associated with EGFR Alterations in Lung Cancer Patients

We used the cBioPortal database to query the genetic alteration profile of NSP3
(SH2D3C) in 566 lung adenocarcinoma cases (TCGA, PanCancer Atlas) and found that
2.1% of the cohorts harbored genetically altered NSP3 (SH2D3C) (Figure 2A). However,
mutation and multiple alterations were the only genetic alterations of NSP3 (SH2D3C) in
lung adenocarcinoma cohorts (Figure 2B). Specific mutation profiling indicated that out of
the total NSP3 (SH2D3C) mutation in the database, 83.33% were missense (Figure 2B, C)
and only a few truncating mutations occur, while no in-frame or fusion mutations were
recorded (Figure 2C). Furthermore, we found that the genetic alterations of NSP3 (SH2D3C)
are associated with shorter overall survival (Figure 2D), disease-free survival (Figure 2E),

https://www.rcsb.org/
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and progression-free survival (Figure 2F) of the cohorts. We queried the co-occurrence of
NSP3 (SH2D3C) alterations with other genetic alterations and found that NSP3 (SH2D3C)
alteration is inversely associated with Epidermal Growth Factor Receptor (EGFR) alter-
ations in lung cancer, i.e., lung cancer patients with NSP3 (SH2D3C) alteration are devoid
of EGFR alterations (Figure 2G).
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3.3. NSP3 Elicits Its Pathological Role via Modulation of Various Components of the Immune and
Inflammatory Pathways in Lung Cancer

The GGI network revealed that the NSP3 gene interacts with a number of oncogenic,
immune, and inflammatory genes including AR, BCAR1, BCAR3, CAV1, CSRNP1, EFS,
EGFR, EPHB2, GIMAP6, ICAM2, IL7R, KIT, MET, MYO1G, NAALADL1, NEDD9, PTK2B,
RGL4, SEPTIN1, and TNNT (Figure 3A). Similarly, the PPI network analysis revealed
21 nodes, 48 edges, an average local clustering coefficient of 0.747 and a PPI enrichment
p-value of 0.000159 (Figure 3B). The nodes with the highest degree in the network included
SH2D3C (11), G3BP1 (8), EIF4G1 (7), PABPC1 (7), BCAR1 (5), CAPRIN1 (5), EIF4A1 (5),
and EIF4A2 (5) (Figure 3B). To analyze the functional enrichment of the gene network, we
examined the GO biological processes and KEGG pathways, and our results revealed the
biological enrichment of the vascular endothelial growth factor receptor (VEGFR) signaling
pathway, immune response-activating cell surface receptor signaling, Fc receptor signaling
pathway, cytoplasmic translational initiation, viral process, transmembrane receptor protein
tyrosine kinase signaling pathway, post-transcriptional regulation of gene expression,
regulation of substrate adhesion-dependent cell spreading, I-kappaB kinase/NF-kappaB
signaling, and Fc-gamma receptor signaling pathway involved in phagocytosis (Figure 3C),
while the KEGG pathway analysis revealed enrichment of Yersinia infection, shigellosis,
chemokine signaling pathway, human cytomegalovirus infection, bacterial invasion of
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epithelial cells, chronic myeloid leukemia, human immunodeficiency virus 1 infection, and
small cell lung cancer (Figure 3D). Collectively, our results suggested that NSP3 is involved
in the pathology of bacterial and viral infections, immune and inflammatory diseases, and
cell proliferation and lung cancer development.
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3.4. NSP3 (SH2D3C) Promotes Tumor-Immune Evasion via Dysfunctional T-Cell Phenotypes and
T-Cell Exclusion Mechanism in Lung Cancer Patients

We analyzed the relationship of NSP3 (SH2D3C) expression with tumor infiltration
by immune cells and found that NSP3 (SH2D3C) expression showed strong correlations
with the infiltration of six immune cell types, including the B cells (r = 0.292–0.3220
all p < 0.1 × 10–10), CD8+ T cells (r = 0.18–0.33 all p < 0.05), CD4+ T cells (r = 0.54–0.64
all p < 0.1 × 10–30), M1-macrophages (r = 0.295–0.44 all p < 0.1 × 10–10), neutrophils
(r = 0.34–0.40 all p < 0.1 × 10–10), and DCs (r = 0.35–0.59 all p < 0.1 × 10–10) (Figure 4A).
Interestingly, we found that NSP3 (SH2D3C) expression was inversely associated with
CTL levels in lung cancer patients (Figure 4B). In addition, we found that a higher ex-
pression profile of NSP3 (SH2D3C) in cohorts with higher CTL levels exhibited a shorter
survival period, while a lower expression profile of NSP3 (SH2D3C) in cohorts with
higher CTL levels exhibited a longer survival period, suggesting a correlation with dys-
functional T-cell phenotypes (Figure 4C). Furthermore, we queried associations of NSP3
(SH2D3C) expressions with infiltration levels of immunosuppressive cells and found
that NSP3 (SH2D3C) expression was positively correlated with tumor infiltration of
CAFs (r = 0.205–0.395 all p < 0.1 × 10−5), T reg cells (r = 0.231–0.143 all p < 0.05), and
M2 macrophages (r = 0.535–0.414 all p < 0.1 × 10–20) in LUAD and LUSC, respectively
(Figure 4D). Altogether, our findings strongly suggest that NSP3 (SH2D3C) promotes tu-
mor immune evasion via dysfunctional T-cell phenotypes and T-cell exclusion mechanisms
in lung cancer patients.
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Figure 4. Non-structural protein 3 (NSP3; SH2D3C) promotes dysfunctional T-cell phenotypes in lung cancer patients.
(A) Scatterplot showing correlations between NSP3 (SH2D3C) expression and infiltration of various immune cells in lung
adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). (B) Correlation analysis between NSP3 (SH2D3C)
expression and cytotoxic T lymphocyte (CTL) levels in lung cancer patients. (C) Kaplan–Meier plot of the overall survival of
lung cancer patients with different NSP3 (SH2D3C) and CTL levels. (D) Boxplot showing NSP3 (SH2D3C) expression corre-
lations with infiltration levels of immunosuppressive cells, including cancer-associated fibroblasts (CAFs), M2 macrophages,
and regulatory T cells in LUAD patients.
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3.5. NSP3 (SH2D3C) Methylation and Copy Number Alterations (CNA) Are Associated with
Infiltration of Immune Cells and Poorer Prognosis of Lung Cancer Cohorts

We evaluated the effect of CNA and methylation of NSP3 (SH2D3C) in lung can-
cer (Figure 5A–F), and the results revealed that NSP3 (SH2D3C) is hypermethylated in
tumors of lung cancer patients compared to the normal tissue (Figure 5D). In addition,
lung cancer patients with high methylation levels of NSP3 (SH2D3C) exhibited shorter
survival duration than cohorts with low methylation levels (Figure 5E). Analysis of CTL
level and methylation status of NSP3 (SH2D3C) revealed that cohorts with high levels of
NSP3 (SH2D3C) exhibited dysfunctional T-cell phenotypes and poor prognosis (Figure 5F).
Nevertheless, we found that the CNA of NSP3 (SH2D3C) are a risk factor for LUAD and
LUSC cohorts (Figure 5A). Analysis of the patients’ survival revealed that both LUAD and
LUSC patients with CNA of NSP3 (SH2D3C) exhibited shorter overall survival duration
than the cohort with low CNA (Figure 5B). In addition, we found that SCNA of NSP3
(SH2D3C) including deep deletion, arm-level deletion, arm-level gain, and high amplifica-
tion also mediated the infiltrations of the tumor-immune cells in both LUAD and LUSC
(Figure 5C). Collectively, these findings prove that hyper-methylation and copy number
alterations of NSP3 (SH2D3C) are associated with infiltration of immune cells and poorer
prognosis of lung cancer cohorts.
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Figure 5. Non-structural protein 3 (NSP3; SH2D3C) methylation and copy number alterations (CNA) are associated with
infiltration of immune cells and poorer prognosis of lung cancer cohorts. (A) Heatmap plot of the NSP3 (SH2D3C) expression
and T-cell profile in LUAD and LUSC cohorts. (B) Kaplan–Meier plot of the overall survival differences between high and
low CNA of NSP3 (SH2D3C) in LUAD and LUSC cohorts. (C) Boxplot showing the association between different somatic
copy number alterations and infiltration of various immune cells in LUAD and LUSC. (D) Boxplot showing differential
NSP3 (SH2D3C) methylation between lung cancer tumors and adjacent normal tissue. (E) Kaplan–Meier plot of the overall
survival differences between lung cancer cohorts with high and low methylation levels of NSP3 (SH2D3C). (F) Kaplan–Meier
plot of the overall survival of lung cancer patients with different NSP3 (SH2D3C) methylation status and CTL levels. The
“eye” sign represent the hidden view of the CTL, dysfunctional and risk plots of the cohorts.

3.6. SH2D3C Is Associated with Therapy Resistance in NSCLC

We evaluated the cross-correlation between the expression levels of SH2D3C and the
sensitivity of NSCLC cell lines to various clinical drugs. Our results revealed that high
expression level of SH2D3C is associated with the resistance of NSCLC cell lines to doxoru-
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bicin, mitoxantrone, GSK1070916, obatoclax mesylate, alisertib, NSC319726, mitomycin-C,
bleomycin, etoposide, pelitinib, and BX-912 (Figure 6A). Furthermore, we evaluated the
efficacy of SH2D3 knockdown (shSH2D3C) in association with the expression of a number
of target genes. Interestingly, we found that higher expression levels of the target genes
are associated with the low efficacy of shSH2D3C in NSCLC cell lines (Figure 6B). Analysis
of the biomarker relevance revealed a clinical predictive value (AUC > 0.5) of SH2D3C in
12 datasets of immunotherapy cohorts. Interestingly, SH2D3C achieved a higher clinical
predictive score in a larger number of datasets when compared with TMB, T-cell clonality,
and B-cell clonality with a clinical predictive score in 7, 8, and 8 datasets of immunotherapy
cohorts (Figure 6C). Summing up the results obtained so far, our study suggested that
SH2D3C is an important player in immune and inflammatory events in the carcinogenesis
of NSCLC. It is associated with response to therapy in NSCLC and thus serves as an
attractive target for exploration.

Biomedicines 2021, 9, x FOR PEER REVIEW 11 of 21 
 

We evaluated the cross-correlation between the expression levels of SH2D3C and the 
sensitivity of NSCLC cell lines to various clinical drugs. Our results revealed that high 
expression level of SH2D3C is associated with the resistance of NSCLC cell lines to doxo-
rubicin, mitoxantrone, GSK1070916, obatoclax mesylate, alisertib, NSC319726, mitomy-
cin-C, bleomycin, etoposide, pelitinib, and BX-912 (Figure 6A). Furthermore, we evalu-
ated the efficacy of SH2D3 knockdown (shSH2D3C) in association with the expression of 
a number of target genes. Interestingly, we found that higher expression levels of the tar-
get genes are associated with the low efficacy of shSH2D3C in NSCLC cell lines (Figure 
6B). Analysis of the biomarker relevance revealed a clinical predictive value (AUC > 0.5) 
of SH2D3C in 12 datasets of immunotherapy cohorts. Interestingly, SH2D3C achieved a 
higher clinical predictive score in a larger number of datasets when compared with TMB, 
T-cell clonality, and B-cell clonality with a clinical predictive score in 7, 8, and 8 datasets 
of immunotherapy cohorts (Figure 6C). Summing up the results obtained so far, our study 
suggested that SH2D3C is an important player in immune and inflammatory events in the 
carcinogenesis of NSCLC. It is associated with response to therapy in NSCLC and thus 
serves as an attractive target for exploration. 

 
Figure 6. Non-structural protein 3 (NSP3; SH2D3C) is associated with chemotherapy resistance in NSCLC. (A) Bar plots 
showing the sensitivity of various clinical drugs between samples with low and high expression levels of SH2D3C. (B) 
Scatter plot of the efficacy of SH2D3 knockdown (shSH2D3C) in association with the expression of a number gene. The 
predictivity is defined as the fold change (FC) of shSH2D3C efficacy between samples of high and low expression of the 
gene. Descriptivity is defined as the FC of gene expression between samples of high and low shSH2D3C efficacy. (C) Bar 
plot of the comparative biomarker relevance between the SH2D3C and standardized biomarkers. 

3.7. The Organosulfur Compounds in Allium sativum Exhibited Desirable Physicochemical and 
Pharmacokinetics Properties of a Drug-Like Candidate 
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showing the sensitivity of various clinical drugs between samples with low and high expression levels of SH2D3C. (B) Scatter
plot of the efficacy of SH2D3 knockdown (shSH2D3C) in association with the expression of a number gene. The predictivity is
defined as the fold change (FC) of shSH2D3C efficacy between samples of high and low expression of the gene. Descriptivity
is defined as the FC of gene expression between samples of high and low shSH2D3C efficacy. (C) Bar plot of the comparative
biomarker relevance between the SH2D3C and standardized biomarkers.
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3.7. The Organosulfur Compounds in Allium sativum Exhibited Desirable Physicochemical and
Pharmacokinetics Properties of a Drug-Like Candidate

Our in silico analysis of the drug-likeness, physicochemical, and pharmacokinetic
properties of the organosulfur small molecules from A. sativum (Table 1, Table S1, Figure S1)
revealed good predictions of the six compounds for ADMET properties, drug-likeness,
adherence to Lipinskís rules, and no alerts for PAINS (Table 1). Our analysis of the human
gastrointestinal absorption and blood−brain barrier penetration ability of the compounds
indicated that all the six compounds evaluated demonstrated BBB penetration ability
(Figure 7A), with E-ajoene allicin and diallyl disulfide having higher brain-penetrant scores.
QSAR modeling of acute toxicity in rats revealed estimated LD50 concentrations ranged
between 74.190~937.700 mg/kg, 50.130~772.600 mg/kg BW, 429.00~3155.00 mg/kg, and
25.850~798.300 mg/kg for intraperitoneal, intravenous, oral, and subcutaneous route of
administrations of the six compounds, respectively (Table 1), suggesting a high safety
profile of the compounds especially when administered via the oral route.

3.8. The Organosulfur Compounds from Allium sativum Exhibited Selective in Silico Cytotoxic
Activities against Cancer Cell Lines and Are not Cytotoxic to Normal Human Cell Lines

We used the in silico approach to evaluate the possible cytotoxic activities of E-ajoene,
alliin, diallyl sulfide, 2-vinyl-4H-1,3-dithiin, allicin and S-allyl-cysteine on cancer cell lines
as well as normal cell lines. Interestingly, we found that none of the compounds exhibit
cytotoxic activities on the normal human cell lines; however, our results revealed a very
strong cytotoxic activity (pa = 0.982) of allicin against leukemia cell line (HL-60), and strong
activity of E-ajoene on the liver (pa = 0.881) and breast (pa = 0.878) cancer cell lines. Alliin
was identified to be active against lung, liver, and pancreatic cancer cells (pa = 0.51~0.671).
2-vinyl-4H-1,3-dithiin demonstrated in silico cytotoxic activity against leukemia and brain
cancer cell lines (pa = 0.518~0.810), while S-allyl-cysteine demonstrated activity against the
lung and pancreatic cancer cell lines (pa = 0.519~0.739). Collectively, this study revealed
that the six organosulfur compounds in garlic evaluated in this study exhibited selective
cytotoxic activity on cancer cell lines and are not cytotoxic to normal human cell lines
(Figure 7B).

3.9. Molecular Docking Profile of NSP3 (SH2D3C) with Some Organosulfur Compounds in
Allium Sativum

Molecular docking studies revealed that E-ajoene, alliin, diallyl sulfide, 2-vinyl-4H-
1,3-dithiin, and allicin docked well into the NSP3 (SH2D3C) binding cavity with binding
affinities ranging –4.3~–6.70 Ă and random forest (RF) ranging 4.31~5.26 pKd (Table 2).
The complexes are bounded by a number of conventional H-bonding and alkyl interactions.
Furthermore, the complexes are stabilized by several hydrophobic contacts and van der
Waals forces with several amino acids, surrounding the compound backbones in the
receptor-binding pocket (Figures 8 and 9). However, S-allyl-cysteine interaction with NSP3
(SH2D3C) is unfavorable (Figure 8A) and hence the least ∆G (–4.30 Kcal/mol) and RF
(–4.31 pKd) values, respectively.
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Table 1. Drug likeness, medicinal chemistry, and physicochemical and ADMET properties of the organosulfur small molecules from Allium sativum.

Parameters Alliin Allicin E-Ajoene 2-Vinyl-4H-1,3-Dithiin Diallyl Sulfide S-Allyl-Cysteine

Formula C6H11NO3S C6H10OS2 C9H14OS3 C6H8S2 C6H10S C4H8S
M.W (g/mol) 177.22 162.27 234.40 144.26 114.21 88.17
Fraction Csp3 0.50 0.33 0.33 0.33 0.33 0.50

Num. rotatable bonds 5 5 8 1 4 2
Num. H-bond acceptors 4 1 1 0 0 0

Num. H-bond donors 2 0 0 0 0 0
Molar Refractivity 43.24 45.88 67.41 43.08 37.60 28.46

TPSA 99.60 Å2 61.58 Å2 86.88 Å2 50.60 Å2 25.30 Å2 25.30 Å2

Log Po/w (XLOGP3) –3.53 1.31 1.71 2.30 2.16 1.54
Log S (ESOL) 1.62 –1.34 –1.84 –2.12 –1.64 –1.21

Class Highly soluble Very soluble Very soluble Soluble Very soluble Very soluble
GI absorption High High High High High High
BBB permeant No Yes No Yes Yes Yes

Lipinski Yes; 0 violation Yes; 0 violation Yes; 0 violation Yes; 0 violation Yes; 0 violation Yes; 0 violation
Bioavailability score 0.55 0.55 0.55 0.55 0.55 0.55

Synthetic accessibility 3.21 3.60 4.33 3.91 2.34 1.92
Acute toxicity

IP LD50 (mg/kg) 347.700
(OECD:4)

77.750
(OECD:4)

74.190
(OECD:4)

31.610
(OECD:4)

937.700
(OECD:5)

162.90
(OECD:4)

IV LD50 (mg/kg) 772.600
(non-toxic)

54.520
(OECD:4)

141.600
(OECD:4)

66.460
(OECD:4)

50.130
(OECD:4)

61.150
(OECD:4)

Oral LD50 (mg/kg) 3155.00
(OECD:5)

468.200
(OECD:4)

1465.00
(OECD:4)

429.00
(OECD:4)

789.100
(OECD:4)

550.500
(OECD:4)

SC LD50 (mg/kg) 798.300
(OECD:4)

128.00
(OECD:4)

300.400
(OECD:4)

331.600
(OECD:4)

92.270
(OECD:3)

25.850
(OECD:4)

Ecotoxicity
Bioaccumulation factor Log10(BCF) 0.152 0.565 0.328 1.098 0.661 0.506

Daphnia magna LC50 -Log10(mol/L) 3.614 5.375 5.857 4.876 4.428 4.216
Fathead minnow LC50

Log10(mmol/L) –0.173 –1878 -2.122 –2.189 –1.902 –1.300

Tetrahymena pyriformis IGC50
-Log10(mol/L) –0.597 0.803 1.131 1.091 0.425 0.128
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Table 2. Docking profile of NSP3 (SH2D3C) with the organosulfur small molecule from Allium sativum.

S-Allyl-Cysteine E-Ajoene Alliin Diallyl Disulfide Allicin 2-Vinyl-4H-1,3-Dithiin

∆G (Kcal/mol) –4.30 –4.30 –6.70 –4.60 –4.10 –4.50
RF (pKd) 4.31 5.26 4.70 4.89 4.63 4.77

Hydrophobic
contact

ALA38 (3.60Ă)
VAL49 (3.86Ă)
ILE131 (3.71Ă)
ILE131(3.62Ă)
PHE132(3.61Ă)
PHE156(3.70Ă)

LEU126(3.68 Ă)
VAL155(3.62 Ă)
VAL155(3.76 Ă)
PHE156(3.67 Ă)
PHE156(3.66 Ă)

LEU126(3.75 Ă)
VAL155(3.71 Ă)
LEU160(3.60 Ă)

ALA38(3.89Ă)
LEU126(3.74 Ă)
ILE131(3.98 Ă)
PHE131(3.96)

VAL155(3.80 Ă)
LEU160(3.78 Ă))

ILE23 (3.6Ă)
VAL49(3.78 Ă)
LEU126(3.67)

ALA129(3.67 Ă)
VAL155(3.74 Ă)
PHE156(3.65 Ă)
LEU160(3.64 Ă)

LEU126 (3.65Ă)
PHE156(3.92 Ă)
ASP157 (3.97 Ă)
LEU160(3.83 Ă))

Conventional
H-bond VAL49 ASP157

ASP157,
PHE156,

ILE23,ALA21
PHE156
ASP157

Alkyl interaction

VAL155,
ALA129,

ALA38, ILE23,
ALA50,

PHE132, ILE131

ALA52, VAL49,
PHE156
LEU126
VAL155

VAL155
LEU126
PHE132,
LEU160,
ILE131,

ALA38, VAL49
ALA129

LEU126,
LEU160,
VAL155

ALA129,
LEU126,ILE23,

LEU160

LEU160,
ALA129,
VAL155,
LEU126

Van der Waals
forces

PHE156, ASP157,
LEU160, PRO125,
LEU126, ASP22,

ALA154, GLY130,
GLY47, GLY47

GLY48, ASP22,
LEU160, ILE23,

ALA15, PRO125,
ALA129

PRO125, ALA154,
GLY130, GLY48

PRO125, VAL49,
ALA154, ASP22

ASP22
VAL49
VAL154
VAL155

GLY130, ASP157,
PHE156, ALA154,

PRO125
VAL49
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Figure 9. Molecular docking profile on NSP3 (PDB: 6W6Y) with the organosulfur small molecule from Allium sativum.
Three- (3D) and Two- (2D) dimensional structure of the ligand−receptor interactions between NSP3 (SH2D3C) and (A) alliin,
(B) allicin, and (C) 2-vinyl-4H-1,3-dithiin.

4. Discussion

The impacts of cancer incidences and mortality are increasing at a global level. An
estimated 19.3 million new cancer cases and almost 10.0 million cancer deaths occurred in
2020 [1]. Messenger (m)RNA expressions play important roles in cancer cell progression
and survival, and comparative gene expression profiles between tumors and adjacent
tissues have been very useful in identifying potential cancer biomarkers [66,67]. Our
results suggest that NSP3 (SH2D3C) is differentially expressed in different cancer types
and thus could serve different prognostic purposes in different cancer types. As such,
different therapeutic approaches must be considered when targeting NSP3 (SH2D3C)
in different cancer types. Controversial roles of proteins in different cancer types have
been reported in previous studies; for instance, EPHB4 was described as an oncogene in
some cancers and as a tumor suppressor in other cancers [68–70]. These contradictory
findings suggest a complex role of NSP3 signaling in cancer, characterized by multi-domain
and multifunctional properties. Notwithstanding, NSP3 was proposed to be a promising
therapeutic target in both cancer and COVID-19. Specifically, our differential expression
and survival analyses strongly suggested that NSP3 (SH2D3C) is a potential biomarker of
advanced stages of lung cancer.

Genes with similar expression patterns share similar functions. Therefore, gene func-
tional enrichment analysis is important in an in silico approach and has been widely used
in the analysis of gene-related pathological processes [71,72]. Our interaction network
revealed a number of onco-functional genes including G3BP1, EIF4G1, PABPC1, BCAR1,
CAPRIN1, EIF4A1, and EIF4A2, and HIRA as the functional partners associated with
the immune-oncogenic roles of SH2D3C. Consequently, GO and KEGG pathway enrich-
ment analyses were conducted to identify functional processes and pathways that may
be mediated by these genes. Interestingly, our results suggested that NSP3-associated
networks were involved in several pathways and biological processes associated with



Biomedicines 2021, 9, 1582 17 of 22

bacterial and viral infections, immune and inflammatory diseases, and cell proliferation
and lung cancer development.

Tumor immune cell infiltrations are indicators of host immune responses to cancer
cells [73,74]. Several studies revealed that some tumors have a high level of infiltration
by cytotoxic T cells in a dysfunctional state and could not elicit tumor growth, while
in other tumors, immunosuppressive factors may prevent T cells from infiltrating the
tumors [75–77]. These immunosuppressive cells, including T reg cells, M2-TAMs, and
CAFs, are known to promote tumorigenic and metastatic properties by inhibiting T-cell
expansion, secreting cytokines, and remodeling the extracellular matrix (ECM) [78,79]. In-
terestingly, our analysis of gene expression correlations with tumor infiltrations of immune
cells and immunosuppressive cells revealed that NSP3 could regulate lung cancer tumor
evasion of immune cells via both T-cell exclusion and induction of dysfunctional T-cell
phenotypes. In addition, both genetic alterations and gene methylation of NSP3 were also
found to regulate dysfunctional T-cell phenotypes and are associated with the early death
of lung cancer patients. Altogether, our findings strongly suggest that NSP3 is an important
onco-immunological biomarker encompassing the TME, disease staging, and prognosis in
lung cancer, and can serve as an attractive target for cancer therapies. However, subsequent
development of NSP3 as a reliable therapeutic target in lung cancer requires preclinical
and clinical validation.

Drug-likeness is a complex balance of molecular properties and structural features
which determine whether a molecule is like known drugs [80,81]. Interestingly, our in
silico analysis revealed that the six organosulfur compounds from A. sativum are good
drug-like candidates and exhibited selective in silico cytotoxic activities against lung,
brain, liver, and pancreatic cancers with no cytotoxic effects on normal cell lines. The
compounds are BBB-penetrant and therefore will be very useful in treating glioblastomas
and other diseases associated with the central nervous system (CNS). Evaluation of toxicity
of natural products and active compounds is an important factor in the development of
drugs for therapeutic applications [82–84]. Our in silico acute toxicity and ecotoxicity
studies revealed that different routes of administration of the sulfur-containing compounds
produced different LD50 levels in rats. The overall analysis, however, revealed that the oral
route was the safest route for administering these compounds; this route should be well
tolerated when used for acute administration and is currently being employed for in vivo
evaluations of these compounds against lung cancer and glioblastomas in our laboratory.

Molecular docking has become an increasingly valuable tool for depicting the possible
interaction between a small-molecule drug candidate and a protein target during the
early stage of drug development [85–87]. Our molecular docking analysis indicated that
the organosulfur compounds of Allium sativum have the molecular properties to interact
efficiently with the binding site of NSP3 and are currently under rigorous experimental
validation in our laboratory. E-ajoene, alliin, diallyl sulfide, 2-vinyl-4H-1,3-dithiin, and
allicin docked well into the binding cavity of NSP3 (SH2D3C). Hydrogen bonds and other
noncovalent interactions, such as hydrophobic and ionic interactions and van der Waals
forces, play important roles in stabilizing ligand−protein complexes [88]. We found that
the interactions of the compounds with NSP3 predominantly involved hydrogen bonds,
van der Waals forces, π-alkyl, and various hydrophobic interactions. The van der Waals
forces created around the compound’s backbone with the several amino acids create a
strong cohesive environment, which further stabilized the complexes [89]. However, S-
allyl-cysteine interaction with NSP3 (SH2D3C) is unfavorable and hence less susceptible
to NSP3 ligandability. Altogether, our molecular docking experiments suggested that
the organosulfur compounds from A. sativum have the molecular properties to interact
efficiently with the binding site of NSP3. This interaction is under rigorous experimental
validation in in vitro as well as in vivo models of GBM and lung cancer.
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5. Conclusions

In conclusion, our in silico study suggested that NSP3 is an important onco-immunological
biomarker encompassing the tumor microenvironment, disease staging, and prognoses
in lung cancer and could serve as an attractive target for cancer therapies. Our molecular
docking experiments suggested that the organosulfur compounds from Allium sativum,
including alliin, allicin, E-ajoene, Z-ajoene, 2-vinyl-4H-1,3-dithiin, diallyl sulfide, and allyl
methyl sulfide, have molecular properties allowing them to efficiently interact with the
binding site of NSP3 and are currently under rigorous experimental validation in our
laboratory.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biomedicines9111582/s1, Figure S1: The bioavailability radar of organosulfur compounds
from Allium sativum; Table S1: The chemical structures of the main organosulfur compounds in garlic.
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