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An increased fraction of circulating 
miR‑363 and miR‑16 is particle bound 
in patients with chronic lymphocytic leukaemia 
as compared to normal subjects
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Abstract 

Objectives:  In vitro culture studies have shown that miR-363 is enriched in extracellular vesicles from chronic 
lymphocytic leukaemia cells. We wondered whether miR-363 was detectable in plasma, which is an essential precon-
dition for further studies to assess its usefulness as a biomarker. Using samples from two clinical trials: one enrolling 
patients with advanced disease and the other asymptomatic patients with early stage disease, we determined plasma 
miR-363 levels and secondly investigated the distribution of this miRNA between plasma and particle bound fractions 
in patients and normal subjects.

Results:  Advanced disease (n = 95) was associated with higher levels of miR-363 than early stage disease (n = 45) or 
normal subjects (n = 11) but there was no association with markers of prognosis. The distribution of specific miRNA 
between particle bound and plasma protein fractions was investigated using size exclusion chromatography on 
plasma from patients (n = 4) and normal subjects (n = 3). ~ 20% of total miR-16 and miR-363 is particle bound in 
patients while there was no detectable particle bound material in normal subjects. Our work demonstrates that miR-
363 levels are raised in chronic lymphocytic leukaemia patients and raises the possibility that distribution of circulat-
ing miRNA between plasma fractions differs in health and disease.
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Introduction
MiRNA in plasma associate with either particles or 
plasma protein fractions [1]. In plasma extracellular 
vesicles (EV), defined as particles ≤ 1  µm in diameter, 
are heterogeneous and comprise exosomes, which have 
a diameter ~ 100 nm, and are derived through fusion of 
multi-vesicular bodies with the plasma membrane and 
the larger microvesicles, which might represent blebs 
derived from the plasma membrane [2]. Exosomes carry 

a cargo of protein, mRNA and miRNA and have estab-
lished roles in normal innate and acquired immunity and 
in cancer biology [3–6] and exert some of their effects 
through transfer of their cargo (protein, mRNA and 
miRNA) from one cell to another [7, 8].

Intracellular levels of specific miRNA predict clini-
cal outcome in the low grade B cell lymphoprolifera-
tive disorder, chronic lymphocytic leukaemia (CLL) [9]. 
MiRNA signatures that allow distinction between CLL 
patients and normal subjects have also been determined 
[10, 11]. Circulating miRNA have been detected in CLL 
patients and one study suggested that miR-363 levels 
were elevated in this disease but not other lymphopro-
liferative conditions i.e. hairy cell leukaemia or myeloma 
[10]. Measurement of circulating miR-363 from a small 
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number of patients suggested that levels of this miRNA 
increased in line with increasing clinical stage [10]. Oth-
ers have focused on characterising EV miRNA and dem-
onstrated a CLL-specific signature [11].

Proliferation of B-cells is driven by two major path-
ways, firstly through the B-cell receptor following 
engagement by antigen [11] and secondly through CD40, 
following activation by CD40L, a T-cell surface marker 
[12]. Both routes enhance EV secretion by CLL cells. EVs 
produced by CD40L stimulated CLL cells are enriched 
in miR-363, suggesting that this miRNA is specifically 
selected into the particles [12]. EVs from CD40L stimu-
lated CLL cells, when taken up by autologous CD4+ 
helper T-cells in  vitro, perturb immune synapse forma-
tion and T-cell motility [12] and miR-363 knockdown in 
CLL cells altered the effects of CLL EVs on T-cells. This 
work suggests that EVs produced by CLL cells in the 
tumour microenvironment (TME) have roles in com-
munication with either T-cells or, as suggested by others, 
stromal cells [13, 14]. The TME is the site at which CLL 
cells proliferate and survive to resist the effects of chemo-
therapy [15]. A hypothesis generated by these studies is 
that miRNA enriched in EVs produced in the TME might 
be biomarkers of disease activity or response to therapy if 
detectable in the circulation.

Because miRNA are detectable in the circulation it is 
believed that they have potential as readily measurable 
biomarkers in cancer [16–18] and indeed there may be 
disease specific signatures for each type of tumour [17]. 
In order to investigate the potential of miR-363 as a bio-
marker from the TME we firstly determined plasma 
levels and association with prognostic markers and sec-
ondly, investigated the distribution between particle and 
plasma protein fractions.

Main text
Materials and methods
Patient samples
Plasma samples from normal subjects (n = 11) were 
obtained after informed consent was obtained (Leices-
ter Research Ethics Committee 06/Q2501/122). Plasma 
samples were obtained through the UK CLL Trials 
Biobank (University of Liverpool) (North-West Eng-
land Research Ethics Committee 14/NW/1014) from 
CLL patients enrolled in two clinical trials: the ARCTIC 
trial which was funded by the NIHR Health Technology 
Assessment Programme (NIHR HTA project number 
07/01/38; ISRCTN16544962) (University of Leeds) [19] 
(n = 100) and CLEAR [A trial looking at using antibiot-
ics for chronic lymphocytic leukaemia (http://www.cance​
rrese​archu​k.org/about​-cance​r/find-a-clini​cal-trial​/a-trial​
-looki​ng-using​-antib​iotic​s-for-chron​ic-lymph​ocyti​
c-leuka​emia-the-clear​-trial​)] (n = 50). For ARCTIC, a 

trial investigating advanced disease requiring treatment, 
median age was 63 years, interquartile range 58–67 years 
and M:F was 69:31. 48 patients had unmutated immuno-
globulin genes, 36 mutated and 16 not determined. 14 
patients showed 11q23 deletion and 4 patients 17p dele-
tion by FISH interphase cytogenetics. Clinical informa-
tion has not yet become available for patients enrolled 
in CLEAR, a trial enrolling asymptomatic patients with 
early stage disease. It was not possible to complete pro-
cessing of 5 ARCTIC samples and 2 CLEAR samples, 
either because miRNA isolation failed or RT-PCR failed, 
and these cases were, therefore, excluded from the study.

Size exclusion chromatography
An ÄKTA Prime (GE Healthcare, Little Chalfont, UK) 
with a sephacryl S-500 resin chromatography column 
(0.9 × 30 cm, 19.1 ml bed volume) was employed to frac-
tionate plasma samples. Before injection, the column 
was equilibrated with phosphate buffered saline (PBS) 
(pH 7.4) (25  ml) solution at 0.5  ml/min at room tem-
perature. Platelets were depleted from fresh plasma by 
two rounds of centrifugation. The sephacryl column was 
then injected with 7  ml of undiluted plasma and eluted 
at room temperature for approximately 1  h with PBS 
solution at a flow rate of 0.5  ml/min. A total of 31–37 
fractions of 4  ml each were collected. The column was 
flushed with 75  ml of PBS solution at 0.5  ml/min (3.75 
column volumes) between plasma fractionation to elimi-
nate carryover. Protein molecular weight standard BSA 
(67 kDa; GE Healthcare) was used. Fractions were stored 
at 4 °C before use.

MiRNA isolation and quantitative RT‑PCR
QIAzol Lysis Reagent (Qiagen, Hilden, Germany, Cat No. 
79306) was added to ultra-centrifuged plasma samples. 
The upper, aqueous phase was extracted, and ethanol was 
added to provide appropriate binding conditions for all 
RNA molecules from approximately 18 nucleotides (nt) 
upwards. The sample was then applied to the RNeasy 
MinElute spin column (MiRNeasy Kit, Qiagen, Cat No. 
217004) and RNA eluted in RNase-free water.

To assess recovery and stability of RNA, each sam-
ple was spiked with an identical amount of synthetic 
UniSp2 RNA (Exiqon, Vedbaek, Denmark, #203203). 
Patient samples were taken into heparinised tubes but 
heparin is an inhibitor of enzymatic reactions. Therefore, 
plasma samples were treated with heparinase I (H2519; 
Sigma, St. Louis, MO, USA) according to the manufac-
turer’s instructions. Extracted miRNA were then reverse 
transcribed using Universal cDNA synthesis kit (Exiqon, 
#203301) according to the manufacturer’s protocol. The 
template RNA samples were diluted to a concentration 
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of 40  ng/µl using nuclease free water. The reaction was 
incubated for 60 min at 42 °C before termination.

Standard curves (Fig.  1) were constructed using syn-
thetic oligonucleotide templates (Sigma, St. Louis, 
MO, USA) for miR-16 (UAG​CAG​CAC​GUA​AAU​AUU​
GGCG), miR-363-3p (5′-AAU​UGC​ACG​GUA​UCC​AUC​
UGUA), miR-142-3p (5′-UGU​AGU​GUU​UCC​UAC​UUU​
AUGGA) and let-7a-5p (5′-UGA​GGU​AGU​AGG​UUG​
UAU​AGUU) (ThermoFisher, Waltham, MA, USA).

Quantitative PCR reactions were performed using 
SYBR green and miRNA-specific primers (Exiqon, hsa-
miR-363-3p LNA PCR primer set #204726, hsa-miR-
142-3p LNA PCR primer set #204291, hsa-let-7a-5p 
LNA PCR primer set #206084, hsa-miR-16-5p LNA 
PCR primer set #205702) according to the manufac-
turer’s instructions. cDNA produced in the RT reaction 
was amplified in MicroAmpTM optical 96-well reac-
tion plates in triplicate 10  µl reactions on an Applied 
Biosystems 7900HT Thermocycler. Concentration and 
quality of nucleic acids were checked using NanoDrop® 
ND-1000 spectrophotometer (NanoDrop Technologies, 
Wilmington DE, USA).

Results
Plasma MiR‑363 levels are elevated in patients as compared 
to normal subjects
Levels of miR-363 were compared between normal sub-
jects (n = 11) and CLL patients with early stage (CLEAR) 
(n = 48) or advanced (ARCTIC) disease (n = 95). Levels in 
patients vary over ~ 1000-fold, from 104 to 107 copies/µl, 
and were significantly higher in patients with advanced 
disease as compared to patients with early stage disease 
(P = 0.0091, Mann–Whitney test) or normal subjects 
(P = 0.0313) (Fig.  2a) while there was no significant dif-
ference between normal subjects and patients with early 
stage disease. Immunoglobulin gene mutational status is 
an established CLL prognostic marker but for patients 
with advanced disease there was no significant differ-
ence in miR-363 levels between those with mutated or 
unmutated immunoglobulin genes (Fig. 2b). Cytogenetic 
aberrations are associated with clinical outcome. Dele-
tion of 17p and 11q23 are both associated with reduced 
overall survival as compared to patients with normal 
karyotypes [20]. Analysis of ARCTIC data showed there 
was no significant difference in miR-363 levels in patients 
with either 17p deletion (n = 4) or 11q23 (n = 14) dele-
tion as compared to those with a normal karyotype. 
Similarly neither gender nor Binet clinical stage were 

Fig. 1  Standard curves for quantitative RT-PCR. Standard curves were constructed for mir-363, miR-16, miR142 and let-7a. Using known numbers of 
copies of each oligonucleotide as template RT-PCR was carried out and Ct values obtained. Trend line was interpolated using GraphPad Prism v6.0
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associated with significant differences in amounts of 
miR-363 (Fig. 2c, d).

We compared outcomes for patients with miR-363 
levels greater than the median for the group with those 
whose miR-363 level was less than that of the median 
(Fig.  2e, f ). There was no significant difference between 
these groups in either overall or progression free survival.

Therefore, miR-363 levels are higher in patients with 
advanced disease but there is no association between 
higher levels and prognostic markers or clinical 
outcome.

Circulating miR‑363 distribution between plasma protein 
and particle bound fractions
Others have shown that, in single donors, miR-16 and 
miR-363 co-fractionate with plasma protein fractions 
whereas let-7a and miR-142 co-fractionate with large 
protein complex/particle fractions [1]. We wished to 
investigate miR-363 because of our previous work includ-
ing having established that there are higher circulat-
ing levels in patients as compared to normal subjects. 
Based on the work of Arroyo et  al. [1] miR-16 acted as 
a control for plasma protein bound miRNA whereas 
miR-142 and let-7a were controls for more particle 
bound miRNA. Total amounts of let-7a and miR-142 
(0.8 × 104 ± 0.3 × 104 and 0.3 × 104 ± 0.08 × 104 copies/
µl respectively, mean ± SEM) were much lower than for 
miR-16 (4.1 × 104 ± 2.6 × 104 copies/µl). In normal sub-
jects miR-363 was highly expressed (10.6 × 104 ± 4.6 × 104 
copies/µl) and was detectable in the small protein frac-
tions (97% in fractions 13–31) (Fig.  3). As expected 
there were greater amounts of total miRNA in patients: 
miR-16 (30.5 × 104 ± 14.8 × 104 copies/µl) and miR-363 
(55.0 × 104 ± 23.7 × 104 copies/µl) and to a lesser extent 
for miR-142 (1.8 × 104 ± 0.8 × 104 copies/µl) and let7a 
(1.3 × 104 ± 0.4 × 104 copies/µl).

Increased levels of miR-363 due to EV release by acti-
vated CLL cells in the TME might lead to an increased 
proportion of circulating and particle bound miRNA. 
In order to determine the distribution of miR-363 in 
patients (n = 4) and normal subjects (n = 3) between par-
ticle bound and plasma protein fractions we carried out 
size exclusion chromatography followed by quantitative 
RT-PCR.

We confirmed that in normal subjects miR-16 co-
fractionated with the plasma protein fractions (96% in 
fractions 14–31) (Fig. 3) but let-7a and miR-142 were dis-
tributed more evenly across particle bound and plasma 
protein fractions (50 and 56% respectively in fractions 
1–13). There were significant differences in distribution 
in patients as compared to normal subjects. Patients 
showed relatively more miRNA in the early eluting large 

Fig. 2  MiR-363 levels and clinical outcome. a Mir-363 levels are 
compared between healthy volunteers (HV) (n = 11), asymptomatic 
patients enrolled in the CLEAR clinical trial (n = 48) and patients, 
who met the criteria for treament, enrolled in the ARCTIC clinical 
trial (n = 95). Mean ± SEM are indicated. There was no significant 
difference (Mann–Whitney test) between HVs and CLEAR patients 
but there were significant differences between HVs and ARCTIC 
(P = 0.0313) patients and between CLEAR and ARCTIC patients 
(P = 0.0091). b MiR-363 levels of ARCTIC patients with mutated and 
unmutated immunoglobulin heavy chain genes are compared. 
Mean ± SEM are indicated. There was no significant difference 
(Mann–Whitney test) between groups. c MiR-363 levels of ARCTIC 
patients are compared by gender. Median and interquartile ranges 
are indicated. There was no significant difference (Mann–Whitney 
test) between groups. d MiR-363 levels of ARCTIC patients are 
compared by Binet clinical stage. Binet A indicates progressive stage 
A disease. Median and interquartile ranges are indicated. There was 
no significant difference (Mann–Whitney test) between groups. e, 
f Kaplan–Meier survival curves of ARCTIC patients. Patients were 
grouped into those with miR-363 levels above the median (black line) 
and those with levels below the median (grey line). There was no 
significant difference (Log-Rank (Mantel-Cox) test) in e overall survival 
or f progression free survival
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protein/particle fractions than normal subjects. For miR-
16 21% was in fractions 1–13, which is significantly more 
than in the later fractions (P = 0.0061, Mann–Whitney 
test) and similarly for miR-363 23% was present in the 
early fractions, which was again significantly more than 
in the later fractions (P = 0.033). These differences were 
not observed for miR-142 or let-7a.

Discussion
There is a wealth of data to show that the tumour 
microenvironment (TME), which for CLL can be either 
lymph node or bone marrow, is essential for driving 
leukemic cell proliferation and mediates survival in the 
face of chemotherapy. By contrast circulating leukemic 
cells are predominantly non-dividing and quiescent. A 
reasonable hypothesis is that a marker of leukemic cell 
activity in the TME will be useful in guiding clinical 
decisions.

Our focus has been on miRNA, oligonucleotides with 
essential roles in regulating gene expression [21]. MiRNA 
are part of the cargo of EVs and we [12] and others [22] 
have proposed that they mediate some aspects of inter-
cellular communication in the TME. MiRNA are also 
readily detectable in the blood and patterns of miRNA 
can be diagnostic for specific cancers [23] including CLL 
[11]. Circulating miRNA also hold promise as predictive 
biomarkers in cancer [24, 25] and in CLL [10].

Others have investigated the distribution of specific 
miRNAs between plasma protein and particle bound 
fractions [1]. In the normal subjects that these authors 
investigated the majority of miRNA were found in the 
plasma protein and not the particle fractions and they 
demonstrate that Argonaute2 co-purifies and stabilises 
these miRNA. A minority of miRNA, in normal subjects, 
associated with particles.

We focused on miR-363 because our work suggested 
enrichment in EVs following stimulation of leukemic 
cells by CD40L/IL-4 [26] and that particle bound miR-
363 perturbs several functions of autologous CD4+ 
T-cells in vitro [12]. Others showed, in a small number of 
patients, that circulating miR-363 levels associated with 
clinical stage of CLL [10]. In normal subjects miR-363 
appears to belong to the majority of miRNA that are pre-
dominantly in plasma protein fractions.

Our study is the first to investigate changes in the 
distribution of miRNA between protein and particle 
fractions of plasma in a disease. Four miRNA were inves-
tigated miR-363, miR-142, miR-16 and let-7a. In addi-
tion to miR-363, miR-16 is elevated in the plasma of CLL 
patients as compared to normal subjects (or patients with 
myeloma or hairy cell leukemia) [10] and might have a 
function in the development of this condition [27]. Like 
miR-363 in normal subjects miR-16 is predominantly in 
plasma protein fractions [1] but let-7a and miR-142 are 
mostly present in the particle fractions. In our group of 
normal subjects we demonstrate presence of the major-
ity of miR-363 and miR-16 in plasma protein fractions 
confirming the previous work [1]. We did not find a clear 
separation of miR-142 or let-7a between plasma pro-
tein and particle fractions in normal subjects, although 
at least 50% was present in particle bound fractions. 

Fig. 3  Distribution of selected miRNA between plasma protein 
and particle bound fractions of plasma. Between 31 and 37 plasma 
fractions were obtained by size exclusion chromatography from 
either healthy volunteers (panels to the left) or patients (panels to 
the right) as indicated on the x-axis. Fractions 1–13 are designated 
early particle containing fractions (grey shaded area). UniSp2 RNA 
spike-in was employed as a control and quantitative RT-PCR Ct values 
obtained are shown (red squares and right-y-axis). For each individual 
miRNA tested (mir-363, miR-16, miR142 and let-7a) the percentage of 
the total amount of miRNA in each fraction is plotted (blue squares 
and left-y-axis) of each individual graph. Percentage of total within 
fractions 1–13 is presented within the grey shaded area
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However, patients show a clear increase in levels of par-
ticle bound miR-363 and miR-16, which is not observed 
for miR-142 or let-7a.

We speculate that enrichment of miR-363 and miR-
16 in EVs from CLL cells in the TME is reflected in 
increased circulating and particle bound miRNA in 
patients as compared to normal subjects. This represents 
a new parameter for defining differences between normal 
subjects and patients and it will be interesting to discover 
if this principle applies to other cancers.

Limitations
We found a > 1000-fold difference in plasma levels of 
miRNA. Biological heterogeneity is likely to contribute 
to this but unavoidable differences in sample processing 
might also play a part. We made every effort to process 
samples from normal subjects and patients in exactly the 
same manner but it is known that sample handling can 
affect the results of miRNA assays [28] and there is una-
voidable variability in the collection of patient samples.
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