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Abstract

Indole-3-acetic acid is a ubiquitous small molecule found in all domains of life. It is the pre-

dominant and most active auxin in seed plants, where it coordinates a variety of complex

growth and development processes. The potential origin of auxin signaling in algae remains

a matter of some controversy. In order to clarify the evolutionary context of algal auxin signal-

ing, we undertook a genomic survey to assess whether auxin acts as a signaling molecule in

the emerging model chlorophyte Chlorella sorokiniana UTEX 1230. C. sorokiniana produces

the auxin indole-3-acetic acid (IAA), which was present in both the cell pellet and in the super-

natant at a concentration of ~ 1 nM, and its genome encodes orthologs of genes related to

auxin synthesis, transport, and signaling in higher plants. Candidate orthologs for the canoni-

cal AUX/IAA signaling pathway were not found; however, auxin-binding protein 1 (ABP1), an

alternate auxin receptor, is present and highly conserved at essential auxin binding and zinc

coordinating residues. Additionally, candidate orthologs for PIN proteins, responsible for

intercellular, vectorial auxin transport in higher plants, were not found, but PILs (PIN-Like)

proteins, a recently discovered family that mediates intracellular auxin transport, were identi-

fied. The distribution of auxin related gene in this unicellular chlorophyte demonstrates that a

core suite of auxin signaling components was present early in the evolution of plants. Under-

standing the simplified auxin signaling pathways in chlorophytes will aid in understanding

phytohormone signaling and crosstalk in seed plants, and in understanding the diversification

and integration of developmental signals during the evolution of multicellular plants.

Introduction

Auxin is a phytohormone that contributes to the execution of nearly all complex growth and

development processes in seed plants, including gravitropism, phototropism, and cell expan-

sion and differentiation. Indole-3-acetic acid (IAA) is the most potent and best-studied auxin

in higher plants, and in Arabidopsis thaliana it is predominantly synthesized from tryptophan

via the two-step TAA/YUC pathway: Tryptophan Aminotransferase of Arabidopsis 1 (TAA)

converts tryptophan to indole-3-pyruvic acid (IPyA), and YUC, a family of flavin-dependent
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monooxygenases, converts IPyA to indole-3-acetic acid (IAA)[1]. Tryptophan-independent

auxin biosynthesis has also been reported to proceed via a cytosolic indole synthase, but the

enzymology of this pathway remains largely undefined [2].

Polar auxin transport regulates intracellular auxin concentrations, and proceeds through plant

tissues via PIN proteins [3], whereas intracellular auxin transport between organelles proceeds

through PILs (PIN-like proteins)[4]. In its protonated state, auxin can freely diffuse into the cell,

where the more neutral pH cytoplasmic results in its deprotonation; therefore, the intracellular

concentration of auxin is mediated primarily by efflux proteins of the ATP binding cassette family

(specifically, ABCB4) and an auxin-specific amino acid permease like protein, AUX1 [5][6].

Three protein types acting in sequence mediate auxin perception in seed plants: TRANSPORT

INHIBITOR RESPONSE 1/AUXIN SIGNALING F-BOX PROTEINS (TIR1/AFB), subunits of a

SCF-type E3 ubiquitin ligase and Auxin/INDOLE ACETIC ACID (Aux/IAA) transcriptional

repressors. Auxin coordinates the interaction between TIR1/AFB and Aux/IAA proteins, targeting

Aux/IAA proteins for 26S proteasome mediated degradation, which in turn derepresses the tran-

scription of auxin response factors (ARFs) (reviewed by Wang and Estelle 2014). An additional

auxin sensing pathway is mediated by ABP1, a cupin domain containing protein which effects

rapid, nontranscriptional auxin responses including ion fluxes at the plasma membrane [7][8].

Molecular studies of plant hormone signaling in algae have revealed a surprisingly sophisti-

cated repertoire of plant hormone signaling orthologs [9]. The detection of auxin in the cells

and tissues of charophytes and chlorophytes has been widely reported, however, the specific

roles and mechanisms of auxin signaling in these algae remain obscure and a matter of dispute

[10][11][12]. We now describe the molecular foundation for development of a new unicellular

model for phytohormone signaling in algae. We analyzed the genome sequence of Chlorella sor-
okiniana UTEX 1230 to identify putative orthologs for auxin-active genes, and analyzed their

evolutionary relationships with orthologs from other sequenced algae and plants. We thus iden-

tified candidate genes that mediate the synthesis, transport, and perception of IAA by this

organism. Of particular note, C. sorokiniana encodes an ortholog for auxin-binding protein 1

(ABP1) in which the auxin binding residues, as well as the zinc coordinating residues essential

for auxin binding, as identified in corn [13], are conserved. The functionality of this suite of

genes is supported by our detection of IAA within the cell pellet and its secretion into the cul-

ture medium. This indicates a functional IAA biosynthesis and efflux pathway, with molecular

mechanisms analogous to those of higher plants [14]. The observation of IAA secretion also

raises the possibility that this molecule serves as an extracellular signal, allowing coordination of

cellular processes across a population of cells, or within the context of a biofilm. Though a

homozygous null mutation in ABP1 was previously thought to be embryo lethal in Arabidopsis,

subsequent studies have demonstrated that a homozygous null ABP1 mutant is not embryo

lethal and that the previously described lethal phenotype was an artifact of the tDNA insertion,

which disrupted the neighboring gene, an essential mitochondrial transcription factor [4].

However, despite the viability of homozygous null ABP1 mutants in Arabidopsis, ABP1 remains

the only candidate auxin receptor identified by this study in the absence of canonical TIR1/AFB

components. This indicates that ABP1 could function as a primitive auxin receptor prior in evo-

lutionary time to the recruitment of more specialized proteins to the auxin signaling pathway.

Materials and methods

Genomic data availability

All sequence data and gene identifiers used in this study are available at NCBI under BioPro-

ject PRJNA343632
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Phylogenetic analyses

We used an in silico approach in order to identify putative orthologs for auxin signaling in

Chlorella and in other chlorophytes. Putative auxin signaling orthologs and outgroups were

selected from representative chlorophytes, charophytes, and plants, including seed plants,

ferns, and mosses. Reciprocal BLAST searches on the genome revealed candidate genes, which

were aligned with Clustal Omega (except for ABP1, which was aligned with Expresso) [15] and

verified by phylogenetic analysis using MEGA 6.06 using the LG+I substitution model [16].

Outgroups for these analyses were selected based on the similarity of primary protein

sequences and similar domain structure, enzymatic functions, or transport functions.

ABP1. ABP1 was identified in the genome via reciprocal BLAST search with the Z. mays
ortholog of ABP1 [13]. The outgroup, GLP1, was selected due to its structural similarity as a

comparatively short (145 AA) protein with a cupin domain[17].

AUX1. AUX1 is an amino acid permease like transporter specific for auxin transport [18].

The outgroup, ANT1, is an aromatic amino acid transporter in plants [19]. Amino acid perme-

ases tend to be highly conserved, and the substrates of AUX1 and ANT1 are of similar struc-

ture (small aromatic amino acids or amino acid-derived molecules).

ABCB4. ABCB4 is an ATP binding cassette transporter [7][8]. The outgroup is annotated

in Arabidopsis as a p-coumaric acid transporter, and was chosen because it transports a small,

aromatic molecule (as is IAA) and contains a highly conserved ATP-binding cassette domain

[20].

PILS. PILS (PIN-like proteins) are recently discovered auxin transport proteins which are

similar in structure and function, but phylogenetically distinct from the PIN polar auxin trans-

porters in plants [6]. In order to identify the distinct lineages of PIN and PILS proteins, PILS

proteins from representative plants and algae were aligned, with PIN proteins as the outgroup

[5].

IBR5. Identified in Arabidopsis as a mutant with altered indole-3-butyric acid responses

[21], IBR5 is a MAP kinase phosphatase which is conserved across vascular and nonvascular

plants and algae. MKP2 was chosen as an outgroup because both proteins contain MAP kinase

phosphatase domains that are involved in complex plant hormone signaling networks [22].

Structural modeling

CsABP1 was structurally aligned to the PDB structure of Zea mays ABP1 bound with napthale-

neacetic acid (NAA), PDB accession 1LRH using SWISSMODEL on default settings [23]. This

alignment was further investigated in PyMol v. 3.2, which was used to investigate the conserva-

tion of the auxin binding and zinc coordinating residues in CsABP1.

IAA measurements

A C. sorokinana UTEX 1230 culture was obtained from the University of Texas Culture Collec-

tion of Algae. Initial cultures were grown to saturation and 50 mL cultures were inoculated at

a starting cell density of 5 × 106 cells/mL in Bold’s Basal Medium [24]. After two days of

growth with either constant illumination or a 16h light: 8h dark photoperiod, cells were har-

vested. The supernatant was taken to dryness in a rotary evaporator (Büchi Rotavapor R-215,

New Castle, DE) and the residue dissolved in 1 mL methanol. Cell pellets were extracted with a

solution of 80% acetonitrile/1% glacial acetic acid, which was evaporated under N2 (N-Evap

112 Nitrogen Evaporator, Organomotion Associates Inc., Berlin, MA) and dissolved in 1 mL

methanol. IAA was quantified via LC/MS/MS as described in [25]. In place of a deuterated

standard, we used a standard curve of IAA ranging from 1 pM to 1 μM.

Auxin signalling in Chlorella sorokiniana
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Results and discussion

Conservation of tryptophan dependent IAA biosynthesis, transport, and

signal transduction pathways in Chlorella sorokiniana
A detailed survey of the C. sorokiniana genome sequence revealed the presence of numerous

orthologs to higher plant IAA biosynthetic enzymes, transporters, and signal transduction

components, as indicated in Fig 1, with specific gene designations detailed in Table 1.

In contrast to higher plants, a tryptophan specific transaminase was not identified with

high confidence, however three putative general amino acid transaminases were identified

(Table 1). This finding of a limited number of general amino acid transaminases agrees with

prior knowledge that most microbial transaminases are relatively nonspecific in their activity.

It also suggests that the transaminases proliferated and became more specified in their function

Fig 1. A model for auxin biosynthesis, transport, and signaling in Chlorella. Putative pathways of IAA biosynthesis in C.

sorokiniana include (1.) the indole-3-pyruvic acid (IPyA) pathway: A tryptophan transaminase first converts Trp to IPyA

and flavin monooxygenase (Yucca) converts IPyA to indole-3-acetic acid (IAA); (2.) The indole-3-acetamide (IAM)

pathway: Primarily a pathway in phytopathogenic bacteria, IAM has been detected in all plants tested; furthermore, plants

encode an amidase that converts IAM to IAA; (3.) The indole-3-acetaldehyde (IAAld) pathway. In the IAAld pathway,

IPyA is converted to IAAld by a decarboxylase, and indole-3-acetaldehyde oxidase converts IAAld to IAA. Efflux and

import functions are associated with the presence of specific transporters and the ABP1 receptor and associated

downstream signaling components are present, as specified in Table 1.

https://doi.org/10.1371/journal.pone.0205227.g001
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throughout higher plant evolution. Similarly, C. sorokiniana encodes genes for the formation

of IAA by three different routes (Fig 1 and Table 1): CsAMI1 for indole-3-acetamide hydrolase

[26], CsYUC for indole-3-pyruvate monooxygenase [27], and CsAAO1 for indole-3-acetalde-

hyde oxidase. The amino acid sequence of CsYUC is closest to Arabidopsis YUC5 and YUC7,

which are expressed in roots [27], though no reciprocal BLAST hit was found. Arabidopsis
TAA does not return a transaminase specific for tryptophan: the three putative orthologs listed

in Table 1 are hits for the general amino acid transaminase family, as suggested by their expect

values. However, most microorganisms have a limited number of amino acid transaminases

able to interact with multiple amino acids. For instance, E. coli has four major transaminases,

each of which can interact with 3–6 amino acids [28]. Similarly, S. cerevisiae has four multisub-

strate transaminases which participate in fusel alcohol formation via the Ehrlich pathway with

two of these transaminases: Aro8p and Aro9p, neither of which have specific orthologs in C.

sorokiniana, being broad substrate specificity transaminases for the aromatic amino acids [29].

Arabidopsis encodes eleven YUC family flavin containing monooxygenases whose expression

is tissue dependent, reiterating the theme of proliferation and recruitment of enzymes to spe-

cific pathways and locations throughout the course of plant evolution. It does not contain any

PIN orthologs.

Conservation of IAA transporters

Arabidopsis contains at least four classes of auxin transporters (Fig 1 and Table 1): PIN pro-

teins, which are efflux transporters that mediate polar auxin transport [5]; PILS (PIN-like)

transporters, which control intracellular auxin gradients [6]; ATP binding cassette (ABCB)

transporters whose directionality depends on the concentration of auxin [7], and AUX1/Like-

AUX1 (LAX) transporters [18], which are plasma membrane-localized auxin permeases that

resemble aromatic amino acid permeases. C. sorokiniana encodes at least one putative ortholog

for three of the four families of transporters: PILS, AUX1, and ABCB type transporters (Figs 2,

3 and 4 and Table 1).

The redundancy of auxin related genes in the Arabidopsis genome suggests a multitude of

functions that can be finely modulated and thus, it is possible that the single auxin related genes

Table 1. The Chlorella sorokiniana genome encodes putative orthologs for the biosynthesis, transport, sensing, and signal transduction of auxin.

Functional category Gene name Arabidopsis accession Chlorella accession Percent identity Expect Specific function

Receptor ABP1 AT4G02980 sca021.g104100.t1� 39 9e-35 Receptor

Amino acid

transaminases

TAA1 AT1G70560 sca134.g100350.t1^

sca110.g101700.t1^

sca003.g105450.t7^

25 7e-04 C. sorokiniana general transaminases

Biosynthesis YUC AT2G33230 (YUC7) sca096.g103150.t1● 27 3e-14 Indole-3-pyruvate monooxygenase

AMI1 AT1G08980 sca003.g101900.t1� 39 3e-75 Indole-3-acetamide hydrolase

AAO1 AT5G20960 sca130.g100900.t1 29 4e-119 Indole-3-acetaldehyde oxidase

Transport PILS AT1G71090 (PILS2) sca099.g100650.t1� 32 2e-21 PIN-like intracellular auxin transporters

ABCB4 AT2G47000 sca090.g105800.t1� 39 0.0 Auxin-specific ABC-type transporters

AUX1 AT2G38120 sca028.g105050.t1� 34 1e-21 Aromatic amino acid permease like auxin

transporter

Signal transduction TMK1 AT1G66150 sca128.g101450.t1 26 2e-35 Activates Rho-like GTPase signaling

ROP2 AT1G20090 sca139.g104200.t1 32 4e-22 Rho-like GTPase signaling

Arabidopsis queries were used to identify BLASTP hits in the draft C. sorokiniana genome. Reciprocal hits are denoted with an asterisk (�). Three newly discovered

putative transaminases, not specific to tryptophan, are denoted by the diamond (^). AtYUC and the putative CsYUC genes, denoted with a bullet (●). are not perfectly

reciprocal hits, even though AtYUC queries return CsYUC and CsYUC queries against Arabidopsis return AtYUC among the top 10 hits.

https://doi.org/10.1371/journal.pone.0205227.t001
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in C. sorokiniana control a range of physiological processes. The presence of PILs-like intracel-

lular orthologs and the absence of PIN orthologs, which mediate extracellular polar auxin trans-

port, are consistent with a unicellular lifestyle. Though PILs are intracellular in plants, both

Multiloc2 and TargetP predict that it may localize to the secretory pathway, with Multiloc2 pre-

dicting ER or Golgi localization. These suggest a potential role for CsPIL in intercellular

Fig 2. Phylogenetic analysis indicates sequence conservation of PILS. PILS (PIN-like) transporters, similar to but distinct from PIN

proteins, mediate intracellular auxin transport. Putative orthologs and outgroups were identified by reciprocal BLAST searches, aligned

with Clustal Omega and analyzed using the LG+I substitution model in MEGA 6.06.

https://doi.org/10.1371/journal.pone.0205227.g002
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signaling. The later appearance of PIN proteins in plants and in algae with differentiated organs

is consistent with their participation in activities related to a multicellular lifestyle.

ABP1 mediated signal transduction

In higher plants, auxin is perceived by at least two types of receptors: the SCF/TIR1/AFB co-

receptors, responsible for transcriptional responses to auxin, and ABP1, a cupin domain con-

taining protein whose signaling primarily effects rapid, nontranscriptional auxin responses

Fig 3. Phylogenetic analysis indicates sequence conservation of AUX1. AUX1, an AAP-like transporter specific for

auxin transport, is compared with ANT1, an aromatic amino acid transporter in plants. Putative orthologs and

outgroups were identified by reciprocal BLAST searches, aligned with Clustal Omega and analyzed using the LG+I

substitution model in MEGA 6.06.

https://doi.org/10.1371/journal.pone.0205227.g003

Fig 4. Phylogenetic analysis indicates sequence conservation of ABCB4. An ABCB transporter, is compared with a

p-coumaric acid transporter which also transports a small organic molecule. Putative orthologs and outgroups were

identified by reciprocal BLAST searches, aligned with Clustal Omega and analyzed using the LG+I substitution model

in MEGA 6.06.

https://doi.org/10.1371/journal.pone.0205227.g004
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such as cell expansion and ion fluxes at the plasma membrane [3]. Using Arabidopsis auxin

sensing components as queries in BLAST searches, we determined that C. sorokiniana does

not contain orthologs to the SCF/TIR1/AFB co-receptors nor to the auxin responsive tran-

scription factors (ARF). However, it does contain a highly conserved ortholog to ABP1

(Table 1 and Fig 5).

ABP1 is a putative auxin receptor first discovered in cell fractions from maize coleoptiles

[30]. It was characterized as an auxin receptor in the early 1990s, and the protein structure was

solved in 2001. Woo et al. (2001) crystallized ABP1 with and without the synthetic auxin

napthaleneacetic acid (NAA) [13]. The structure determined that the auxin binding region fea-

tures a cluster of hydrophobic amino acids that bind the aromatic ring(s) of auxin, as well as

three histidines and a glutamic acid which coordinate a zinc ion which interacts with the car-

boxylate moiety of IAA. We identify ABP1 as the putative auxin receptor in Chlorella species.

Structure-based sequence alignment by Expresso [15] followed by pairwise structural align-

ment by SWISSMODEL [23] (Fig 6) revealed 42% identity and a high degree of structural sim-

ilarity between Z. mays ABP1 and C. sorokiniana ABP1.

The auxin binding pocket is almost completely conserved, except for a phenylalanine to

methionine substitution and a glutamic acid to serine substitution. Additionally, the histi-

dines and glutamic acid residues coordinating the zinc atom were completely conserved

(Fig 6). This high degree of conservation in key residues suggests a functional role for the

ABP1 ortholog in Chlorella. In Arabidopsis, auxin-bound ABP1 is essential for the activa-

tion of Rho-dependent GTPases (ROPs), mediated by plasma membrane associated trans-

membrane kinases (TMKs) [31]. C. sorokiniana encodes both ROP and TMK orthologs

for this signaling pathway (Table 1 and Fig 1). Additionally, C. sorokiniana encodes an

Fig 5. Phylogenetic analysis indicates sequence conservation of ABP1. ABP1, a putative IAA receptor, compared

with GLP1, a similarly short (145 AA) cupin domain protein. Putative ABP1 ortholog and outgroups were identified

by reciprocal BLAST searches, aligned with Expresso and analyzed using the LG+I substitution model in MEGA 6.06.

https://doi.org/10.1371/journal.pone.0205227.g005
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ortholog for IBR5 (Fig 7), a recently identified TIR-interacting indole butyric acid recep-

tor, but putative functions and interactions for IBR5 in C. sorokiniana remain undefined

[21].

The presence of ABP1 and IBR5 and the absence of AUX/IAA signaling components sug-

gests that non-AUX/IAA mediated signaling pathways in plants may have originated in algae,

and that their function broadened and diversified as plants colonized land.

Synthesis and secretion of IAA into the culture medium

Under the conditions tested, C. sorokiniana produces (per 50 ml culture) approximately 2 ng

of IAA in the cell pellet and secretes 9 ng into the culture supernatant, resulting in a superna-

tant concentration of approximately 1 nM (Fig 8).

In Arabidopsis, the TIR1/AFB receptors perceive IAA at a Kd of 84 nM [32], and purified Z.

mays ABP1 has a Kd of 100 nM for IAA [33]. However, C. sorokiniana has been reported to

grow as a biofilm in biofuel and waste remediation biotechnology, and we have observed bio-

film growth in glass Erlenmeyer growth flasks, in agreement with prior reports [34,35]. In a

biofilm context, the concentration of IAA in the extracellular matrix between cells would be at

least 2 orders of magnitude higher than that observed in our bulk planktonic cultures, placing

the in situ IAA concentration well within the physiologically relevant range when compared to

IAA concentrations in higher plant tissues.

Fig 6. Multiple sequence and structural alignment reveal a high degree of structural conservation between Z. mays ABP1 and C. sorokiniana ABP1. A

SWISSMODEL structural alignment on automated mode aligned CsABP1 with the ZmaABP1 crystal structure co-crystallized with the synthetic auxin naphthalenacetic

acid (NAA). The resulting model revealed almost complete conservation of the auxin binding pocket (A), and complete conservation of the histidines and and glutamic

acid residues that coordinate the zinc atom (B) that stabilizes the carboxylate moiety of IAA/NAA. The red structure represents Zea mays, and the blue structure

represents Chlorella sorokiniana. Z. mays residues are indicated first, with C. sorokiniana residues following the slash.

https://doi.org/10.1371/journal.pone.0205227.g006
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Conclusions

The conservation of many auxin synthesis, transport, and signaling related orthologs in Chlo-
rella sorokiniana and other unicellular algae demonstrates that a core set of genes required for

auxin signaling were present in unicellular chlorophytes, and the production and secretion of

IAA into the medium shows that the synthesis and secretion pathways are operative. However,

it must be emphasized that the specific function(s) of IAA in algae are currently poorly

defined, and while our work provides a foundation upon which new studies can be built, we

can currently only speculate as to the functions of auxin synthesis, secretion, and signaling in

unicellular chlorophytes.

A number of possible functions for auxin as an inter- or intracellular signaling molecule are

conceivable. First, given our demonstration that IAA is a secreted molecule, one possibility is

that IAA signaling evolved as a population-density dependent mediator of quorum sensing in

algae, analogous to bacterial and fungal quorum sensing molecules. Another possibility is that

IAA acts as a regulator of biofilm initiation and development, whereby the molecule is consti-

tutively secreted and maintained at a high concentration in biofilms, and at a much lower con-

centration when cells are not adhered to a substrate. Still another possibility is that IAA acts as

an interspecies signaling molecule, allowing algae to communicate with members of mixed

biofilm communities.

From the perspective of the evolution of multicellularity and pattern formation in the green

plant lineage, this work provides compelling evidence that the molecular machinery necessary

for auxin signaling was present in the unicellular ancestors of higher plants, and was thus

Fig 7. Phylogenetic analysis indicates sequence conservation, suggesting bona fide IAA signaling orthologs in

Chlorella. IBR5, identified as a MAP Kinase Phosphatase with roles in auxin signaling, is compared with MKP2, which

also contains a MAP kinase phosphatase domain and participates in other phytohormone signaling pathways. Putative

auxin signaling orthologs and outgroups were identified by reciprocal BLAST searches, aligned with Clustal Omega

(except for ABP1, aligned with Expresso) and analyzed using the LG+I substitution model in MEGA 6.06.

https://doi.org/10.1371/journal.pone.0205227.g007
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available for elaboration and specification of auxin signaling pathways during the evolution of

land plants.
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