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Abstract
Accurate, automated white matter hyperintensity (WMH) segmentations are needed for large-scale studies to understand contributions
of WMH to neurological diseases. We evaluated Bayesian Model Selection (BaMoS), a hierarchical fully-unsupervised model
selection framework for WMH segmentation. We compared BaMoS segmentations to semi-automated segmentations, and assessed
whether they predicted longitudinal cognitive change in control, early Mild Cognitive Impairment (EMCI), late Mild Cognitive
Impairment (LMCI), subjective/significant memory concern (SMC) and Alzheimer’s (AD) participants. Data were downloaded from
the Alzheimer’s disease Neuroimaging Initiative (ADNI). Magnetic resonance images from 30 control and 30 AD participants were
selected to incorporate multiple scanners, and were semi-automatically segmented by 4 raters and BaMoS. Segmentations were
assessed using volume correlation, Dice score, and other spatial metrics. Linear mixed-effect models were fitted to 180 control, 107
SMC, 320 EMCI, 171 LMCI and 151 AD participants separately in each group, with the outcomes being cognitive change (e.g. mini-
mental state examination; MMSE), and BaMoS WMH, age, sex, race and education used as predictors. There was a high level of
agreement between BaMoS’WMH segmentation volumes and a consensus of rater segmentations, with a median Dice score of 0.74
and correlation coefficient of 0.96. BaMoS WMH predicted cognitive change in: control, EMCI, and SMC groups using MMSE;
LMCI using clinical dementia rating scale; and EMCI using Alzheimer’s disease assessment scale-cognitive subscale (p < 0.05, all
tests). BaMoS compares well to semi-automated segmentation, is robust to different WMH loads and scanners, and can generate
volumes which predict decline. BaMoS can be applicable to further large-scale studies.
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Introduction

Cerebral small vessel disease is an important cause of cogni-
tive decline. White matter hyperintensities of presumed vas-
cular origin (WMHs) can be detected on magnetic resonance
imaging (MRI) using T2-weighted Fluid Attenuated Inversion
Recovery (FLAIR) sequences, and represent one type of ce-
rebrovascular damage which are common in Alzheimer’s dis-
ease (AD). WMHs are associated with brain atrophy (Barnes
et al. 2013; Fiford et al. 2017) and cognitive decline
(Carmichael et al. 2010), but their mechanistic role in AD is
unknown (Prins and Scheltens 2015). As AD is an insidious,
multifactorial syndrome, which is highly variable from person
to person, efforts are therefore turning towards large-scale
clinical data sets to provide insights into disease mechanisms
and progression (Masters et al. 2015). Examples of these
datasets are the Alzheimer’s disease Neuroimaging Initiative
(ADNI) and UK Biobank, which include demographic infor-
mation, magnetic resonance images (MRI) and many more
variables. Big data may revolutionise AD research and our
understanding of WMHs, however the size of these datasets
necessitates the use of automated methods to derive new var-
iables from MRI, such as WMH volume. Drawing correct
inferences relies on choosing a well validated method that is
reliable, accurate, and adaptable to data from multiple sites. If
we succeed, WMH from large-scale datasets may prove valu-
able in understanding whether WMHs play a causative role in
cognitive impairment and dementia, and the mechanisms un-
derlying this link. In this paper, we assess a WMH segmenta-
tion method, BayesianModel Selection (BaMoS) (Sudre et al.
2015), against human rater estimates (rater guided semi-
automated segmentation) of WMH and test whether BaMoS
derivedWMHmeasurements can predict change in neuropsy-
chological test scores.

Classification of WMHs is complex, as, whilst they are
clearly visible on MRI in many individuals, they are extreme-
ly heterogeneous in nature. They range from large confluent
WMH deep in the white matter (WM), to spherical punctate
lesions and periventricular lesions. Manual delineation of
WMH is one method to assess WMH. However, this process
is time-consuming, requires training and is still variable in
volume estimation, especially in areas of diffuse WMH.
Whilst manual delineation is impractical for large scale stud-
ies, such segmentations provide essential ‘gold standards’
against which to test automatedWMH segmentation methods.
Manual segmentations are important because humans are able
to easily identify bright regions of artefact, which FLAIR im-
aging is especially susceptible to (Bakshi et al. 2000).
However, human-generated WMH estimates remain liable to
inconsistencies and error; therefore in order to ensure an algo-
rithm is properly assessed, it is important to compare it to a
reliable and meticulously generated manual standard, from
multiple raters segmenting sufficient numbers of individuals.

Techniques which incorporate human decision making and
computerised thresholds to automatically draw boundaries
are useful in speeding up the manual segmentation process.
Such a technique is used in this study as a gold standard: the
technique uses both intensity thresholds and manual decision
making and delineation as part of the protocol. As this
operator-intensive technique used is not fully manual it is
referred to as ‘semi-automated’.

No automated WMH segmentation method is likely to be
completely accurate, so it is essential to quantify the measure-
ment error though comparison to a gold standard and assess
whether the expected associations are detected between
WMH volume and clinically relevant measures such as neu-
ropsychological test scores. Numerous automated WMH seg-
mentation methods exist, and each has their own strengths and
limitations (Caligiuri et al. 2015; Dadar et al. 2017). In this
study, we assess BaMoS, which has previously compared well
to a small number of gold standard human estimates, and to a
larger dataset of existing automated segmentations (Sudre
et al. 2015). BaMoS has undergone methodological improve-
ments since 2015, and this paper serves as a better, more in-
depth assessment of the algorithm. We include a larger set of
gold standards produced by multiple raters, an extensive ex-
amination of errors, and an assessment of the cognitive asso-
ciations of BaMoS-generated WMH volumes. First, we will
explore whether BaMoS performs well against human semi-
automated estimates of WMH volume in a subset of 60
ADNIGo and ADNI2 control and AD patients. Secondly,
we will investigate whether BaMoS-generated WMH vol-
umes are associated with changes in cognition in a large set
of ADNIGo and ADNI2 controls, early MCI (EMCI), late
MCI (LMCI), Subjective/Significant Memory Concern
(SMC) and AD patients. We chose to use newly-enrolled sub-
jects from ADNIGo (EMCI) and ADNI2 (controls, SMC,
EMCI, LMCI and AD) datasets since the same imaging pro-
tocols are used for these two phases of ADNI and together
these datasets encompass individuals from normal aging
through to clinical AD. The purpose of this work is threefold:
i) present a robust semi-automated protocol for the segmenta-
tion of WMH; ii) evaluate an existing automated WMH seg-
mentation algorithm against this new gold standard; iii) vali-
date the possibility of applying the automated WMH segmen-
tation algorithms to large-scale studies.

Methods

Participants

Data used in this study were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (http://
www.loni.usc.edu/). Data from phases ADNIGo and ADNI2
were used in this paper. Launched in 2003, ADNI is a
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multicentre, private/public funded longitudinal study investi-
gating healthy adults, MCI and AD patients, and is led by
Principle Investigator Michael W. Weiner, MD. Its primary
goal is to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological
markers, and clinical and neuropsychological assessment can
be combined to measure AD progression. For up-to-date in-
formation, see www.adni-info.org.

Written informed consent was obtained as approved by the
Institutional Review Board at each participating centre.
Participants took part in baseline clinical, neuropsychometric
and MRI assessments, and periodical assessments thereafter,
the frequency of which varied dependent on the diagnostic
group. To assess how BaMoS estimated WMH affects longi-
tudinal cognitive change the Mini-Mental State Examination
(MMSE), Clinical Dementia Rating (CDRGlobal), Trails A (a
measure of processing speed), Trails B (a measure of execu-
tive functioning) and the Alzheimer’s disease Assessment
Scale cognitive subscale (ADAS-Cog) were investigated
(please see http://adni.loni.usc.edu/wp-content/uploads/2008/
07/ADNI_GO_Procedures_Manual_06102011.pdf and
https://adni.loni.usc.edu/wp-content/uploads/2008/07/adni2-
procedures-manual.pdf).

For semi-automated protocol development, MRI from 20
type 2 Diabetes and control patients were supplied by Utrecht
University. WMH had been segmented on these scans already
and therefore provided a dataset against which the semi-
automated protocol could be assessed. All patients were over
the age of 50 and had varying burdens ofWMH (Reijmer et al.
2013). This study was approved by the medical ethics com-
mittee of the University Medical Center Utrecht, the
Netherlands, and written informed consent was obtained from
all participants.

Image Acquisition and Assessment

All baseline 3T T1-weighted and 3T T2-weighted FLAIR
images were downloaded for ADNIGo and ADNI2 patients
on 6th November 2014. The ADNIMRI protocol is described
in detail elsewhere (Jack et al. 2008). Axial 3T FLAIR was
acquired with voxel sizes of 0.85994 × 0.8594 × 5 mm.
Following acquisition, each image underwent quality control
at the Mayo Clinic (Rochester, MN) which included protocol
compliance check, inspection for clinically significant medi-
cal abnormalities, and image quality assessment.

For semi-automated segmentation, T1-weighted images
were registered to T2 FLAIR images, as WMH are clearer,
and more easily viewed on T2 FLAIR. T1-weighted images
were co-registered to FLAIR using Reg-Aladdin in NiftyReg
(https://github.com/KCL-BMEIS/niftyreg) (Modat et al.
2014). All FLAIR images for semi-automated segmentation,
including the protocol adaptation, training and test sets were
visually assessed for motion and significant artefact.

NiftyMIDAS software was used for segmentation, allowing
simultaneous viewing and segmentation of the FLAIR and
T1-weighted image (T1 co-registered to FLAIR).
NiftyMIDAS has recently been made open source as part of
NifTK (https://github.com/NifTK/NifTK) (Clarkson et al.
2015).

Utrecht images were acquired on a 3 T Philips scanner,
voxel sizes for FLAIR were 0.958 × 0.958 × 3 mm. The 3D
T1-weighted scan was registered to the T2 FLAIR. All images
were bias corrected. Semi-automated WMH segmentations
were produced by trained raters.

Semi-Automated Segmentation

Initial Protocol Development (Utrecht Scans)

For this study, a semi-automatedWMH segmentation protocol
was developed to provide a human-derived gold standard for
WMH segmentation. The segmentation process is referred to
as ‘semi-automated’ (rather than manual) due to the use of
computerised thresholds for segmentation, whereby a given
voxel is included if it exceeds a predetermined intensity value
(% of median brain intensity). Raters must decide which
voxels are considered as WMH, by placing a threshold ‘seed’
in a voxel of a lesion considered to be WMH by the rater. The
extent of the lesion is then determined by the thresholds and
manual interventions by removing voxels which are errone-
ously segmented as WMH by the thresholds.

Initial rules for thresholds and classification of WMH were
developed by referring to an existing set of manual WMH seg-
mentations from type 2 Diabetes patients and controls scanned in
Utrecht. These 20 segmentations were viewed on their corre-
sponding FLAIR and T1-weighted images. Inspection of these
manual WMH segmentations and consultation of the literature,
led to rules for the location and appropriate thresholds for WMH
delineation, as well as window values for viewing scans. General
rules included ensuring potential voxels of WMH were hyperin-
tense on FLAIR and hypointense on T1, dismissing artefact (by
consulting both T1 and T2 FLAIR), and avoiding commonly
hyperintense areas (including the corticospinal tracts, normal
appearing septal and corpus callosal regions and normal
appearing corona radiata, in addition to posterior regions of the
frontal horn of the lateral ventricles) (Gawne-Cain et al. 1997;
Wardlaw et al. 2015).

Segmentation of ADNI2/go

A total of 80 scans were used in the ADNI2/Go semi-
automated segmentation stage. There were three phases to
the ADNI2/Go semi-automated segmentation process; adap-
tation of the protocol to ADNI2/Go scans (11 unique scans),
training raters (9 unique scans), and segmentation of the
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assessment set by all raters (60 unique scans), see Fig. 1. There
were 4 raters. At each stage of the semi-automated segmenta-
tion process (protocol adaptation, training raters and automat-
ed assessment) different scans were used in each set of images.

Adaptation of Protocol

The protocol required adaptation for ADNIGo and ADNI2
images, due to the thicker T2 FLAIR slices, and some ventric-
ular ghosting artefacts. ADNI scans were also acquired at
multiple sites using different scanners, as opposed to the
Utrecht dataset. Multiple scanner models exist across the sites
in ADNI. For the methods comparison we chose to restrict the
sample segmented to the most popular model types from the
three main ADNI scanner manufacturers, Signa HDxt
(General Electric (GE) medical systems), “Achieva”
(Philips) and “Triotim” (Siemens). To adapt the protocol from
Utrecht scans to ADNI2/Go, 11 scans (5 GE, 3 Philips and 3
Siemens) were used. These 11 participants were chosen to
reflect a variety of WMH loads using WMH values from
University California Davis (http://www.loni.usc.edu/ see
ADNI2_Methods_UCD_WMH_Volumes_20131218.pdf).

Following ADNI pre-processing of the T1, and registration
of T1s to FLAIR space (both detailed above), the images for
semi-automated segmentation were not processed any further.
Raters began segmentation without prior information, other
than thresholds required for segmentation. The defining char-
acteristics of this semi-automated protocol were the use of two
thresholds (defined as a % of median brain intensity), with a
higher intensity threshold for WMH with uncertain fuzzy
boundaries, and a lower threshold for WMH with definite
boundaries. The higher threshold was used in areas where
WMH are likely to be developing, for WMH which may have
a bright core, surrounded by diffuse (possibly developing)
hyperintensity, and so-called confluent hyperintensities.
High thresholds were also used in regions where some
hyperintensity is considered clinically normal (e.g.
periventricular caps and corticospinal tracts) (Gawne-Cain
et al. 1997). A lower threshold was used for lesions that are
less bright, which have defined boundaries, so-called punctate
WMH. A manual freehand approach with no threshold was
also possible in cases where the rater was certain of a WMH,
but which was not picked up by the thresholds. In such cases
where abnormal signal was apparent on both imaging modal-
ities (T1 and FLAIR), extra care was taken to avoid temporal
lobe artefacts and vascular flow artefacts. Thresholds were
based on the median whole brain intensity, which was calcu-
lated using a brain mask generated using BMAPS on the T1-
weighted image and then copied to the FLAIR image (Leung
et al. 2011). BMAPS is a multi-atlas automated brain segmen-
tation tool which identifies brain images from a template li-
brary which match well to the novel target. The templates are
propagated, thresholded and fused together to create an auto-
mated brain segmentation on the target image.

A high (low) threshold was set at 130% (120%) of median
brain intensity for Siemens and Philips. GE scanners tended to
produce scans with a hyperintense posterior brain region;
therefore for this scanner type the thresholds were increased
to 145% and 130%. For viewing FLAIR scans maximum
viewing intensities were 238% for Siemens and Philips and
340% for GE scanners.

Choice of Segmentation Assessment Set

The assessment set was composed of 60 individuals, 30 con-
trols and 30 AD patients, who had not been used during pro-
tocol development. There were 10 controls and 10 AD pa-
tients from each of the three scanner types (Siemens, Philips
and GE scanner).

The assessment set was segmented by 4 raters after being
trained by practicing on 9 images. Rater 1, who developed the
protocol, trained raters 2 and 3. Rater 2 trained rater 4. Raters
were blinded to each other’s segmentations. Raters were ac-
cepted when they segmented with a mean volume difference
of less than 15% compared to the reference (rater 1) on the

Fig. 1 Flowchart of process from initial protocol (developed on 20
Diabetes Mellitus and controls subjects from Utrecht (DM2)), through
to BaMoS segmentation assessment set. At each stage different subjects’
scans were used. ADNI2/Go = Alzheimer’s Disease Neuroimaging
Initiative Phases 2 and GO.
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training set of 9 images, inclusive of small volumes. All raters
were accepted. The assessment set was blinded to raters in
terms of the subject identity, diagnosis, other raters’ segmen-
tations and scanner type. Rater 1 segmented the dataset again
to obtain intra-rater reliability.

Consensus Segmentations

Consensus segmentations were generated using combinations
of rater segmentations. These consensus segmentations were
used to look for specific differences in each rater’s perfor-
mance, for example, rater 1 would be compared to a consensus
combination of 2, 3, and 4; rater 2 would be compared to a
consensus of 1, 3 and 4, etc. A consensus combination of all 4
raters’ segmentations was used for the comparison with
BaMoS. Consensuses were generated using majority voting:
first, majority voting was used for consensus sets of three out
of four raters (raters 1–2-3, raters 1–2-4, raters 2–3-4 and
raters 1–3-4), then majority voting using each of the 4 con-
sensus sets were obtained for the overall consensus.

Automated Segmentation

Supratentorial WMH were estimated on the baseline scan.
WMH were segmented jointly using T1-weighted and T2-
FLAIR sequences rigidly coregistered in T1 space. BaMoS
models the data as a multivariate mixture of Gaussians and
can be used for segmentation of pathological tissue types (e.g.
WMH). The model is able to jointly model normal and unex-
pected observations. Each anatomical tissue class (grey matter,
white matter, cerebrospinal fluid, non-brain) is modelled as a
mixture of Gaussians whose number is automatically and dy-
namically determined using a split and merge strategy. Both
skull-stripping and atlases are obtained as a result of the label-
fusion GIF framework (Cardoso et al. 2015). Skull stripping
was incorporated in the automated segmentation as part of the
BaMoS pipeline. Furthermore, a bias field correction is applied
at the initialisation step of the split and merge process following
the additive modelling described by Van Leemput et al (Van
Leemput et al. 1999). In order to enhance sensitivity to the
outliers, an initial outlier map is derived after convergence of
the initial (1 component per tissue class) Gaussian mixture
model. This enhancement of sensitivity was added to the initial
BaMoS method and presented in its longitudinal extension
(Sudre et al. 2017). After convergence of the model, candidate
lesion voxels are selected from the outlier part of the model
based on their “outlierness” (distance from normalcy) com-
pared to healthy (inlier) white matter. Correction for false pos-
itives was lastly automatically applied to discard regions of
muscle, fat, skin, choroid plexus or other wrongly classified
tissue based on clinical knowledge of WMH. In order to in-
crease sensitivity to smallerWMH lesions where partial volume
effect was more likely to happen, a two-step, two-threshold

detection of candidate lesions was adopted: after the use of
the initial threshold for lesion outlierness to detect the bulk of
the lesions, a lower threshold (2/3 of initial value) was further
used to include small clusters of hyperintensity (less than 60
voxels). Furthermore, the classification of candidate lesion con-
nected components was performed in two consecutive steps:
first with a 18 neighbourhood followed by a 6 neighbourhood
definition in order to avoid discarding regions of mixed origin
(artefacts + true lesion). Specific, user-defined BaMoS param-
eters, and software needed to produce segmentations reported,
are listed in the supplementary section.

All WMH segmentations were checked by a trained WMH
rater for gross errors. This quality control step was used to
further develop robust improvement to the post-processing
step, contributing to a better handling of artefacts and their
differentiation from true WMH. Where there were image du-
plicates the best segmentation was chosen.

BaMoS segmentations are run in T1 space and volumes
obtained by integrating the probabilistic map of WMH. The
semi-automated segmentations are performed in FLAIR
space. To account for this, we re-ran BaMoS segmentations
in T2 FLAIR space to generate binarised segmentations for
the 60 individuals in the assessment set that would be compa-
rable to the semi-automated segmentations. The assumption
that T1 space segmentations generated in the full dataset
would be more-or-less equivalent to the T2 FLAIR segmen-
tations from the assessment set was tested (see below, statistics
section).

Statistical Methods

Group Demographics

Stata SE v13 (Stata Corp.) was used to perform statistical tests
and analyse data. To look for differences in baseline variables
between diagnostic groups, linear regression was used for
continuous variables. Median WMH volumes were reported
from T1 space BaMoS segmentations, as opposed to T2
FLAIR space segmentations (see above). To look for differ-
ences between groups in sex and presence of an APOE ε4
allele, Fisher’s exact test was used. For group differences in
race, Pearson’s chi squared was used. Demographics were
also assessed in the subset used for the WMH methods
comparison.

Assessment of Semi-Automated Segmentation
and BaMoS

We performed two sets of analyses to examine the agreement
between WMH volumes resulting from raters using semi-
automated segmentation. Firstly, we assessed intra-rater reli-
ability from the intraclass correlation coefficient (ICC) for
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agreement between the two sets of segmentations by rater 1.
Then we assessed the inter-rater reliability by calculating the
ICC comparing rater 2, 3 and 4’s segmentations with rater 1,
and then by comparing each rater to consensus combinations
of the remaining raters’ segmentations. To compare volumes
between raters, WMH volumes were log transformed to the
base 2 (log2WMH), asWMH values were skewed. A paired t-
test was used to compare the mean log-transformed volume
between raters compared to rater 1.

To assess the agreement between semi-automated segmen-
tation and BaMoS, we calculated the intraclass correlation
coefficient (ICC) for agreement between BaMoS and each
rater’s semi-automated segmentation, and to a consensus com-
bination of the four raters. To compare volumes between raters
and BaMoS, WMH volumes were log transformed to the base
2 (log2WMH), as WMH values were skewed. A paired t-test
was used to compare the mean log transformed volume from
BaMoS with each rater’s. Similarly, a paired t-test was used to
compare BaMoS and the consensus segmentation of all four
raters. We used a Bland-Altman plot to graphically compare
BaMoS’ WMH estimates with the estimates of rater 1; the
difference between the volumes from the two techniques
was plotted against the average of the two volumes. The mean
difference between the two techniques, and the 95% limits of
agreement (mean difference ± 1.96*standard deviation of dif-
ferences), were also calculated and plotted.

In order to evaluate overlap between segmentations, we
used the Dice score coefficient (DSC) expressed as the ratio
between twice the volume of overlap and the sum of segment-
ed volumes. To further understand the origin of disagreement
between segmentations, discrepancies were separated into two
categories following the description given byWack et al. 2012
(Wack et al. 2012). Detection error (DE) corresponds to the
volume of segmented lesion for which the full extent of the
corresponding connected component of segmented voxels is
completely absent from one of the compared segmentations.
Outline error (OE) corresponds to differences in the specific
voxels segmented within the same lesion between two seg-
mentations. For a given cluster of connected lesion voxels, the
lesion is considered the same across the two segmentations if
their intersection is not empty: they share at least one segment-
ed voxel. DE and OE were further divided into false positives
(FP) and false negatives (FN) for completeness of the assess-
ment. Details and illustration of these subtypes of error can be
found in the first section of the online resource and online
tools that can be used to compare segmentations are listed in
the supplementary section.

We compared the volumes between BaMoS-generated
WMH estimated in T1 space and BaMoS-generated WMH
estimated in FLAIR space.We log-transformedWMHvolumes
to the base 2, and assessed whether there were differences in
mean volumes using a t-test. The intra-class correlation coeffi-
cient was used to assess correlation between the two methods.

Lastly, we investigated differences in BaMoS’ performance
according to different scanner types. Using linear regression,
we modelled each overlap metric separately (Dice, OEFP,
OEFN, DEFN, DEFP), predicted by scanner type (Philips,
Siemens or GE) and adjusted for each rater providing the
reference segmentation (rater 1, rater 2, rater 3, rater 4,
consensus).

Diagrammatic Representation of WMH Regional
Distribution

In order to represent the regional distribution of WMH, the
white matter and deep greymatter volume was divided into 36
regions using the method described in (Sudre et al. 2018). In a
first stage, the volume encompassed between the ventricular
surface and the cortical sheet is divided into equidistant layers
using the solution to the Laplace equation solved on this vol-
ume. Second, the lobar parcellations of the gray matter obtain-
ed from the GIF software are propagated onto the white matter
+deep grey matter volume to separate the region into lobes.
Basal ganglia, thalamic and infratentorial regions are consid-
ered separately. The layer and lobar divisions lead to a total of
36 regions (4 × 9) that were then used to visually represent the
spatial distribution of WMH differences between BaMoS and
the consensus in the shape of bullseye plots. In these plots,
each angular segment corresponds to a different lobar region
while the concentric layers represent the equidistant extracted
layers with the distance from the ventricular surface increasing
with the radius. To represent the spatial distribution of differ-
ences between BaMoS and the consensus, OEFP, OEFN,
DEFP and DEFN were displayed in the bullseye plots as pro-
portions of total error and as proportions of true positive
WMH volume. To further illustrate locations of errors, differ-
ence maps were overlaid on images randomly selected from
individuals with a low (<2 ml), medium and high (>6 ml)
WMH load.

Associations of BaMoS Derived WMH to Baseline,
and Change in Neuropsychology

We fitted multilevel linear mixed-effects regression models
for repeated measures of cognition (MMSE, ADAS-Cog,
Trails A, Trails B and CDRGlobal). We used the global score
of the Clinical Dementia Rating, and the total 13 elements of
the ADAS-Cog. Interval in years between baseline scan and
each cognitive examination date was included as a fixed ef-
fect, in order for the resulting coefficient to represent change
in cognition per year (outcome). Models were fitted separately
in each diagnostic group. Covariates were included as main
effects and as interaction terms with interval. These included
WMH, age, sex, years of education, APOE ε4 carrier status
(presence/absence of an ε4 allele) and race, similarly to
Carmichael et al. (2010). The fitting of the models in this
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manner allowed these covariates to affect mean MMSE and
how this changed over time. Race was a binary covariate
coding white race vs non-white race; there were insufficient
numbers to investigate the effect of each race on the outcome.
Models were run using log2WMH as a predictor. Participant-
level random effects for intercept and time since baseline
MMSE measurement were included to permit between-
participant heterogeneity in baseline MMSE and between-
participant heterogeneity in change in MMSE. Models were
run using other neuropsychological tests in place of the
MMSE (ADAS-Cog, Trails A, Trails B and CDRGlobal).
Unstructured covariance of the random effects was used to
allow for a correlation between baseline psychological test
score and rate of change in score. A separate residual variance
was fitted for each diagnostic group.

Results

Participants

Of 1010 downloaded ADNI scans, 10 failed WMH segmen-
tation quality control, 2 had incomplete data, 65 were dupli-
cate scans, and 3 participants had no baseline diagnostic in-
formation. After quality control of WMHs, 22 cases were re-
processed with the appropriate modifications, as per the re-
processing step.

BaMoS Comparison Subset

The characteristics of the 60 control and AD individuals
chosen for the semi-automated comparison section of
the study can be seen in online resource Table 1.
There were no differences in age, race, WMH volume
or gender distribution between controls and AD patients.
Controls were less likely to be APOE ε4 carriers than
AD participants and had significantly higher cognitive
scores than AD participants.

Neuropsychological Assessment Subset

929 participants were included in the section of the
study assessing BaMoS WMH volume’s correlation with
neuropsychology. Participants had a baseline scan and
on average 3 to 5 cognitive assessments; the AD group
had the shortest follow up time and fewer visits than
the other groups (see Table 1). All groups overlapped in
age, though the EMCI group were slightly younger than
the other groups, and the AD group marginally older.
There was no difference in sex distribution, and partic-
ipants were not racially diverse, the majority were
white, with the second largest group being black
African Americans. As expected, prevalence of the

APOE ε4 allele was greater in the EMCI, LMCI and
AD groups than the SMC and control group. Baseline
cognitive scores were similar between controls and
SMC, and were poorer in EMCI, LMCI and AD groups.
ADs had the largest volume of WMH. notably median
WMH values were similar between the BaMoS compar-
ison subset and larger set (although these comparisons
were not formally tested).

Semi-Automated Comparisons

There was a high level of agreement between semi-
automated segmentations, indicated by the volumes, cor-
relation coefficient, inter-rater reliability and overlap
measures, see Table 2. The median segmentation vol-
umes for all raters varied from the lowest of 5.62 ml
(rater 4) to highest of 6.07 ml (rater 2), no significant
difference in WMH volumes was detected between each
segmentation compared to rater 1. A very high intraclass
coefficient of 0.97 was achieved between the semi-
automated segmentations, indicating good inter-rater
reliability.

Dice scores for segmentations were high compared to rater
1, ranging from amedian of 0.88 (rater 1 compared to rater 2) to
0.94 (rater 1 compared to rater 3); with significantly greater
overlap between raters 1 and 3, compared to 2 and 4. Dice
scores of each rater compared to consensus estimates of the
remaining 3 raters also showed excellent overlap, with median
Dice scores of over 0.9. Further investigation of the overlap
measures showed that compared to rater 1 and consensus esti-
mates, raters 2 and 4 had a higher median OEFP and DEFP,
indicating slight over segmentation compared to the reference
segmentation. For rater 2 this was an OEFP of 122.5 voxels on
average compared with rater 1 with analogous statistics for rater
3 of 53.5 and for rater 4 of 81 voxels. Compared with rater 1 the
percentage of OEFP/FP was 64.9%, for rater 3 this was 66.2%,
and for rater 4 this was 71.4%. Comparable statistics for OEFN/
FN were 59.2% for rater 2 compared with rater 1, 44.9 for rater
3 compared with rater 1, and 63.1% for rater 4 compared with
rater 1. For rater 2, an average DEFP of 56 voxels was calcu-
lated compared with rater 1 with analogous statistics of 21.5
voxels for rater 3 and 30.5 voxels for rater 4.

The intra-rater reliability was also high, with an intraclass
coefficient of 0.98 comparing rater 1’s first and second seg-
mentation see Table 3. A median dice score of 0.91 also
showed excellent spatial overlap. In contrast to raters 2 and
4, the second segmentation of rater 1 showed a tendency to
under-segment (indicated by a high OEFN), this was also
reflected in the slightly lower median volume in the second
segmentation compared to the first, although there was no
overall significant difference in volumes between the first
and second set of segmentations (p = 0.4).
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BaMoS Comparisons

There was an excellent agreement between the automated and
semi-automated volumes; with a strong correlation of vol-
umes between BaMoS and each rater, and BaMoS and the
consensus of all 4 raters, ranging from 0.88 (rater 2) to 0.96
(raters 1, 3, and consensus), see Table 4. There was no statis-
tically significant difference in estimated volumes between the
raters, consensus and BaMoS.

BaMoS’ segmentations overlapped well with each rat-
er and the consensus segmentations, with median dice
scores between 0.72 and 0.74 for all the raters. There
was no difference in BaMoS’ performance between the
raters in any spatial comparison metric. There was also
no clear pattern in outline error between BaMoS and the
semi-automated segmentations; the proportion of OEFP
to OE was 52.0%, suggesting that BaMoS tended to
both under- and over-segment true positive lesions in
roughly equal measure. As a proportion of FP, OEFP
was on average 56.0% and OEFN/FN was on average
82.5%. However, DEFN (64 voxels on average com-
pared with consensus; DEFN/FN 15.4%) was much
lower than DEFP (215 voxels on average compared
with consensus; 42.4% DEFP/FP). This indicated that
whilst BaMoS tended not to have any issues missing

WMH segmentations, the algorithm more often classi-
fied hyperintense voxels that would not be classified
as lesion by a human operator as WMH than it missed
lesions (DEFP/DE = 80.6%). A confusion matrix demon-
strating overall results for the consensus segmentations
against BaMoS is shown in Table 5.

T1-space BaMoS segmentations had a median vol-
ume of 4.38 ml (IQR 3.10–8.32), whilst FLAIR space
BaMoS had a slightly higher median volume of 5.56 ml
(3.88–11.18). There was no significant difference be-
tween volumes in T1 space and T2 FLAIR space (t =
1.56, p = 0.12). BaMoS segmentations performed in T1
space compared well to those run in T2 FLAIR space,
with a correlation coefficient of 0.87 (95%CI 0.67–
0.94).

GE scanners were associated with greater WMH volumes
than Philips and Siemens for both BaMoS and the semi-
automated consensus, see online resource Table 2. Analyses
on the log-transformed volumes showed this GE-related dif-
ference was significant. Both Siemens and GE scanners were
associated with a significantly higher Dice score than Philips’
scanners. OEFP and OEFN were significantly lower for
Siemens than Philips’, and significantly higher than Philips
for GE scanners. There were no differences between scanner
performance for DEFN, and DEFP.

Table 1 Subject demographics and basic imaging information for the
ADNI cohort. Demographics are shown for controls, Early Mild
Cognitive Impairment (EMCI), Late Mild Cognitive Impairment
(LMCI), Subjective/Significant Memory Concern (SMC) and
Alzheimer’s disease (AD). Values are mean (SD) unless stated in the

table, White matter hyperintensity (WMH) is reported as median, (inter-
quartile range). Abbreviations: Mini-mental state examination (MMSE),
Clinical Dementia Rating Global score (CDRGlobal), Trails A and Trails
B and Alzheimer’s disease Assessment scale cognitive subscale (ADAS-
Cog)

Controls SMC EMCI LMCI AD Group difference (p value)

N 180 107 320 171 151

Age at baseline, years 73.4 (6.2) 72.3 (5.5) 71.0 (7.5) 72.4 (7.6) 74.9 (8.0) <0.001

Male (%) 46 43 54 56 56 0.08

Percentage APOE ε4 carriers 33 36 47 60 71 <0.001

Years of education 16.5 (2.5) 16.8 (2.5) 16.0 (2.6) 16.5 (2.5) 15.7 (2.8) <0.001

Race(%) Asian 1.11 0.00 1.25 0.58 3.31 0.2
Native Hawaiian or Pacific 0.00 0.00 0.31 0.58 0.00

Black or African American 9.44 2.80 3.44 3.51 3.97

American Indian or Alaskan 0.00 0.00 0.31 0.00 0.00

White 87.78 94.39 91.56 94.74 91.39

More than one race 1.11 2.80 2.19 0.58 1.32

Race Unknown 0.56 0.00 0.94 0.00 0.00

Follow up time 3.3 (1.5) 2.1 (0.9) 3.5 (1.8) 2.9 (1.6) 1.2 (0.7) <0.001

Number of visits 5.3 (1.5) 4.1 (1.1) 5.9 (2.2) 5.5 (2.0) 3.6 (1.1) <0.001

Baseline MMSE 29.0 (1.3) 29.0 (1.3) 28.3 (1.6) 27.6 (1.8) 23.1 (2.1) <0.001

Baseline CDRGlobal 0 (0) 0 (0) 0.5 (0.03) 0.5 (0.03) 0.8 (0.3) <0.001

Baseline ADAS-Cog 9.0 (4.4) 8.9 (4.3) 12.7 (5.5) 18.8 (7.2) 31.1 (8.5) <0.001

Baseline Trails A 33.3 (10.4) 34.3 (13.0) 36.9 (14.8) 42.3(19.0) 60.8 (33.4) <0.001

Baseline Trails B 81.8 (43.4) 86.5 (41.0) 99.0 (50) 121.6 (70.2) 195.5 (86.2) <0.001

Baseline WMH (ml) 3.4 (4.8) 3.4 (4.4) 3.8 (6.1) 3.7 (8.1) 5.8 (9.0) <0.001
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Bland Altmann

The Bland Altmann plot (Fig. 2) shows a good distribution of
points overall above and below the mean difference line, with
the mean difference close to zero. BaMoS tends to slightly
overestimate volume at small and medium loads indicated
by points above the line at lower volumes (<10 ml), whereas
at larger volumes BaMoS tends to underestimate WMH vol-
ume compared to rater 1 (>15 ml).

BaMoS Comparisons by Location

OEFP (over-segmentation of true positive lesions) is a major
contributor of the total volume of error between BaMoS and
consensus per individual, as indicated in Fig. 3 by bullseye a,
compared to bullseyes c, e and g. This widespread association
may be mainly driven by OEFP as a large proportion of total
error at small volumes, because when OEFP volume is con-
sidered as a proportion of true lesion volume (bullseye b),
OEFP has a reduced predominance, affecting a few regions,
particularly the subcortical, parietal, and frontal regions.
Observation of the difference maps (Fig. 4) shows that

OEFP (in blue), is prevalent at all lesion loads, and to a larger
degree in the left hemisphere (right-hand side of images and
bullseyes). The periventricular caps are affected by OEFP in
the low load example, perhaps explaining the bullseye asso-
ciation in the frontal lobes.

OEFN, denoting under-segmentation of true positive le-
sions by BaMoS, contributes to overall error in a few key
areas pointed out by the bullseye c, namely the frontal and
subcortical regions. When considering the volume of OEFN
in consideration of TP volume it does not appear to be influ-
ential; suggesting that OEFN may be contributing most to
error at larger lesion loads. OEFN is indicated by yellow in
the difference maps and is present at all lesion volumes, par-
ticularly in the right hemisphere, which is also clear in
bullseye c (left on image and on bullseye).

DEFP, denoting bright areas mistaken for lesions, contrib-
ute to error across the brain (bullseye e); however, when con-
sidered as a proportion of true lesion volume, FP appears as an
issue at small volumes in the subcortical, occipital and tempo-
ral regions (bullseye f). DEFP is denoted by green in the
difference maps (Fig. 4), and it is noticeable that it tends to
be picked up in the subcortical regions at all loads.

Table 2 Table comparing semi-automated segmentations between
raters. Values are reported as median (inter-quartile range). Section A
shows the median volumes, upper and lower quartiles of WMH volume
from each rater, with (p value) showing statistical difference in each
volume compared to rater 1. Inter-rater reliability (Intra-class
coefficient) is shown between all raters with 95% confidence intervals.
Section B of the table shows each raters performance compared to rater 1,
correlation of WMH volumes using intra class correlation coefficient
(ICC)with 95% confidence intervals, Dice scores of overlap, outline error
false positive (OEFP) which, for a given shared WMH lesion, denotes
voxels included in the segmentation which are not in the reference;

outline error false negative (OEFN) which denotes, for a given shared
WMH lesion, voxels which are included in the reference and not the
segmentation; detection error false positive (DEFP) which denotes voxels
included in the segmentation and not the reference (false positive lesions),
and detection error false negative (DEFN) denoting lesions included in
the reference and not the segmentation (missed lesions). Section C com-
pares each rater to a consensus of the three remaining raters, using the
metrics from section B. Statistical tests are shown for differences between
each spatial metric for each rater. There were 10 controls and 10 AD
patients from each of the three scanner types (Siemens, Philips and
General Electric scanners)

A. Rater 1 Rater 2 Rater 3 Rater 4 Test between raters

WMH Volume (ml) 5.70 6.07 5.96 5.62

(3.12–12.60) (3.37–14.19) (3.16–12.11) (3.14–12.33)
(0.63) (0.93) (0.91)

Inter-rater reliability 0.974 (0.96–0.98)

B. Semi- Automated Comparison to Rater 1

ICC 0.956 (0.92–0.98) 0.998 (0.99–0.99) 0.992 (0.99–0.99)

Dice Score 0.88 (0.84–0.92) 0.94 (0.91–0.97) 0.89 (0.87–0.93) <0.001

OEFP 122.5 (45–407.5) 53.5 (8–147) 81 (36.5–255.5) 0.01

OEFN 49.5 (13.5–145.5) 38 (4.5–129) 61 (16.5–205.5) 0.07

DEFP 56 (31.5–89.5) 21.5 (5.5–50) 30.5 (14–52) <0.001

DEFN 17 (6–77) 22.5 (7.5–51.5) 25 (8.5–106) 0.3

C. Semi-Automated Comparison to Consensus

ICC 0.997 (0.99–0.99) 0.944 (0.87–0.97) 0.995 (0.99–0.99) 0.992 (0.99–0.99)

Dice Score 0.93 (0.9–0.95) 0.90 (0.86–0.94) 0.93 (0.89–0.95) 0.91 (0.88–0.94) 0.01

OEFP 42.5 (10–126.5) 106 (35–312) 44.5 (17.5–88.5) 76.5 (22–173.5) <0.001

OEFN 68 (30–233) 42.5 (14.5–114) 72 (28.5–226) 65.5 (21–199) 0.07

DEFP 16 (6–73.5) 52 (30–80.5) 25.5 (10.5–80) 27 (14–46) 0.002

DEFN 23.5 (12–44.5) 13.5 (3.5–78.5) 26 (18.5–56.5) 22.5 (8–78) 0.3

437Neuroinform (2020) 18:429–449



DEFN, exemplifying lesions missed by BaMoS, are un-
common compared to the other error types, and hardly con-
tribute to total error (bullseye 3 g). On the difference maps
they are denoted in red. A missed lesion is apparent in right
parietal lobe in Fig. 4 (left on image from medium load case
and bullseye), this is indicated on the bullseye on DEFN/TP,
showing this region is vulnerable over numerous participants.

Associations of BaMoS Derived WMH to Baseline,
and Change in Neuropsychology

After fitting the initial models, the residuals were calculated
and plotted (using the qnorm function in Stata) to check for
model fit and outliers in cognitive scores. Due to ceiling ef-
fects, residuals were skewed in all tests apart from ADAS-
Cog, this affected all groups apart from AD. To counteract
this skew, models were rerun using bootstrap with 2000 iter-
ations, for controls, early MCI, late MCI and SMC groups, for

MMSE, CDRGlobal, Trails A and B. Twenty-three outliers
were identified from residual plots and the cognitive scores
underlying the outliers were investigated for each participant.
Five outliers were judged to be genuine errors in data collec-
tion or entry, with the remaining 18 outliers assessed likely to
be caused by sudden deteriorations or fluctuations in cognitive
abilities (see online resource Table 3). The covariance struc-
ture was changed to independent where necessary (as partic-
ipant baseline score was not sufficiently correlated with par-
ticipant decline in that score) in controls CDRGlobal, LMCI
CDRGlobal, SMC MMSE, SMC CDRGlobal, SMC Trails A
and SMC Trails B.

Controls

Significant deterioration in MMSE, CDRGlobal, and Trails B
were detected in controls over the course of the study (see
Table 6). No overall change over time in ADAS-Cog and
Trails A was observed. Controls with greater WMH values
performed worse on Trails A at baseline. A doubling of base-
line WMH volume also predicted a greater decline in MMSE,
of 0.07 points per year; this represents a 70% increase in
MMSE decline compared to the average change of −0.1 points
per year. A doubling of WMH volume predicted a borderline
significant worsening of 0.12 ADAS-Cog points per year,
compared to no overall average change.

SMC

SMC participants did not show any change over time in Trails
A, Trails B and ADAS-Cog, but did decline in MMSE and
CDRGlobal. Increased WMH volume was borderline associ-
ated with higher MMSE score and poorer baseline ADAS-
Cog score. A 0.11 points per year increase in MMSE decline
was predicted in those with double the average baselineWMH
volume, a 73% increase in MMSE decline compared to the
average annual decline of 0.15 points per year.

EMCI

EMCI participants declined in performance in MMSE,
ADAS-Cog and Trails B over the course of the study. No
differences over time were seen in CDRGlobal and Trails A.
There were no significant correlations between baseline
WMH volume and baseline neuropsychology. A doubling of
baseline WMH volume predicted a 0.07 point greater
annualised decline in MMSE, a 30% increase in MMSE de-
cline compared with the average MMSE decline of 0.23
MMSE points per year. A worsening of 0.18 on ADAS-Cog
was observed for a doubling of WMH volume, compared to
an average change of 0.61, indicating a 30% increase in
decline.

Table 3 Table comparing semi-automated segmentations between rater
1’s first and second segmentation. Values are reported as median (inter-
quartile range), unless stated. Section A shows the WMH volume from
the first and second segmentation rounds, and (p value) showing statisti-
cal differences between these WMH volumes. Intra-rater reliability (intra
class correlation coefficient) with 95% confidence intervals is reported.
Section B of the table shows Dice scores of overlap, outline error false
positive (OEFP) which, for a given shared WMH lesion, denotes voxels
included in the segmentation which are not in the reference; outline error
false negative (OEFN) which denotes, for a given shared WMH lesion,
voxels which are included in the reference and not the segmentation;
detection error false positive (DEFP) which denotes voxels included in
the segmentation and not the reference (false positive lesions), and detec-
tion error false negative (DEFN) denoting lesions included in the refer-
ence and not the segmentation (missed lesions). There were 10 controls
and 10ADpatients from each of the three scanner types (Siemens, Philips
and General Electric scanners)

A. Rater 1 Rater 1

First segmentation Second segmentation

Volume 5.70 5.31

(3.12–12.60) (2.73–11.00)

(0.4)

Intra-rater reliability 0.976 (0.92–0.99)

B. Comparison to first segmentation

Dice Score 0.91

(0.86–0.94)

OEFP 34.5

(12.5–100.5)

OEFN 149

(69–373)

DEFP 7.5

(4–24)

DEFN 24

(9–55)
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LMCI

LMCI participants experienced decline over time in all the
neuropsychological tests investigated. Greater baseline
WMH volume was borderline associated with lower baseline
MMSE score. A doubling of WMH volume predicted a 0.03
increase in CDRGlobal change per year, a 33% increase in
CDRGlobal deterioration, compared to the average change of
0.09 CDRGlobal points per year.

AD

AD participants declined over time in all neuropsychology
tests. Baseline WMH volume was found to be neither

associated with baseline neuropsychology, nor change in
neuropsychology.

Results before Bootstrapping and Outlier Removal

Results before bootstrapping and outlier removal are seen in
online resource Table 4. Results are very similar both with and
without bootstrapping and before outlier removal. Outliers
may be due to errors in data collection or entry (see online
resource Table 3). A few minor changes were present after
outlier removal and bootstrapping; with bootstrapping/outlier
removal the relationship between WMH volume and change
in Trails B changes to trend level from p < =0.05 for controls
and EMCI. With bootstrapping/outlier removal the

Table 4 Table comparing semi-automated segmentations from each
rater, and consensus of the 4 raters, to BaMoS automated values. Values
are reported as median (inter-quartile range), unless stated. Volumes from
each rater, the consensus, and BaMoS are reported, with (p value) show-
ing difference compared to BaMoS. Correlation coefficients are given for
each method compared to BaMoS using intra class correlation coefficient
(ICC) with 95% confidence intervals. Spatial metrics of the following are
given for to compare BaMoS with each rater/consensus as the reference;
Dice scores of overlap, outline error false positive (OEFP) which, for a
given shared WMH lesion, denotes voxels included in the segmentation

which are not in the reference; outline error false negative (OEFN) which
denotes, for a given sharedWMH lesion, voxels which are included in the
reference and not the segmentation; detection error false positive (DEFP)
which denotes voxels included in the segmentation and not the reference
(false positive lesions), and detection error false negative (DEFN)
denoting lesions included in the reference and not the segmentation
(missed lesions). Statistical tests are shown for differences between each
spatial metric for each rater. There were 10 controls and 10 AD patients
from each of the three scanner types (Siemens, Philips and General
Electric scanners)

BaMoS Rater 1 Rater 2 Rater 3 Rater 4 Semi-automated Consensus Test (BaMoS vs raters)

Volume 5.56 5.70 6.07 5.96 5.62 5.61
3.88–11.18) (3.12–12.60) (3.37–14.19) (3.16–12.11) (3.14–12.33) (2.94–11.94)

(0.94) (0.58) (0.87) (0.97) (0.83)

Comparison to BaMoS

ICC 0.958 0.875 0.958 0.944 0.959
(0.93–0.97) (0.78–0.93) (0.93–0.97) (0.91–0.97) (0.93–0.98)

Dice Score 0.73 0.74 0.73 0.72 0.74 >0.9
(0.63–0.81) (0.66–0.81) (0.64–0.8) (0.66–0.8) (0.66–0.82)

OEFP 261.5 219.5 263 245.5 250 0.5
(144.5–490) (136.5–420) (145–502) (152.5–481) (150–498)

OEFN 234.5 306.5 255 260.5 226 0.3
(114–544.5) (147–738.5) (124–527.5) (121.5–640) (120–543.5)

DEFP 197 169 203.5 196 210 0.2
(144.5–255.5) (114–220.5) (151–255) (147.5–273) (150–264)

DEFN 48.5 53 47 45 26 0.8
(11.5–147.5) (33–120) (13–131) (18–108.5) (8–73.5)

Table 5 Confusion matrix showing overall differences between BaMoS and the semi-automated consensus segmentations in the 60 semi-
automatically segmented individuals.

BaMoS

No Lesion Lesion

Semi-automated consensus No Lesion NA 35.0 (OE:22.1 / DE:12.9)

Lesion 27.6 (OE:23.8 / DE:3.8) 114.0

Figures represent sum over 60 subjects in mls. NA not applicable, OE outline error, DE detection error
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relationship between WMHs and baseline MMSE in LMCI
and SMC changed to p < =0.05 from trend level.

Discussion

Findings from this Study

In this study, we assessed the performance of BaMoS, an
automated approach to WMH estimation. We have found
BaMoS’ WMH estimates to agree well with gold standard
semi-automated segmentations, and that BaMoS’ WMH
values have the ability to predict cognitive change over time
in control, EMCI, LMCI and SMC individuals. The success of
BaMoS’ ability to estimate volumes over several scanner
types, which match well to human ratings and which are also
able to predict neuropsychological test outcomes, demonstrate
the algorithm’s potential to be applied to large scale data sets,
inform disease processes underlying dementia, and to poten-
tially contribute to clinical practise with further research.

Context of Findings

WMH volumes produced by BaMoS were able to predict
cognitive change over time in controls, EMCI, LMCI and
SMC participants. Our results are consistent with previous
studies, which have found higher baseline WMH in controls
is related to lower baseline cognition (Mosley et al. 2005) in
controls and greater cognitive decline (De Groot et al. 2002),
as well as in a model including controls, MCI and AD subjects
from ADNI phase 1 (Carmichael et al. 2010). Others have
found that lesion progression is related more to progression
of cognitive decline (Silbert et al. 2008; Van Dijk et al. 2008),

and that WMH in combination with atrophy relates to poorer
cognition (Swardfager et al. 2018; van der Flier et al. 2005). In
this study WMH was also a predictor of cognitive decline in
SMC individuals, as was found by Benedictus (Benedictus
et al. 2015). BaMoS-generated volumes had strong predictive
power for cognitive change, a doubling of WMH was associ-
ated with a > 70% increase in MMSE decline in controls and
SMC. That such large effects sizes for cognitive change were
predicted by automated volumes is promising; further useful
insights may be gained by using BaMoS segmentations in
future studies. Of note, we did not find that WMH was asso-
ciated with baseline cognition nor changes in cognition in AD
subjects which may appear discrepant compared with results
fromADNI phase 1 (Carmichael et al. 2010). This may be due
to the manner in whichmodels are fitted, with our study fitting
separate models for each diagnostic group.

BaMoS’ correlation coefficient of 0.96 and median Dice
score of 0.74 indicates a good agreement compared to the
semi-automated consensus segmentation; a Dice score ex-
ceeding 0.7 is considered the benchmark of a good

Fig. 2 Bland Altmann of BaMoS
generated WMH volumes
compared to consensus of 4 raters
WMH volumes. The difference
between the two volumes is
plotted on the y axis and the mean
of the two volumes is plotted on
the x axis. The mean difference
between the two volumes is
represented by the black line, and
the 95% limits of agreement are
the dotted line (mean difference ±
1.96*standard deviation of the
mean difference)

�Fig. 3 Bullseye plots showing ratios of spatial metrics as a proportion of
total error (a, c, e and g) and as a proportion of true positive white matter
hyperintensity (WMH) volume (b, d, f and g). Each concentric ring of the
bullseye represents a cortical WM layer from each lobe, with the inner-
most ring representing the inner cortical layer (closest to the midline
ventricles), and the outer ring representing the cortical layer nearest the
grey matter. A and b report outline error false positive (OEFP) denoting
voxels included in the segmentation (BaMoS) which are not in the refer-
ence (consensus). C and d represent outline error false negative (OEFN),
voxels which are included in the reference and not the segmentation.
Bullseyes e and f show detection error false positive (DEFP) denoting
voxels included in the segmentation and not the reference (false positive
lesions). g and h show detection error false negative (DEFN) denoting
lesions included in the reference and not the segmentation (missed
lesions)
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segmentation (Caligiuri et al. 2015). This ranks BaMoS well
compared to other WMH segmentation tools in the literature,
although comparing Dice scores across studies is problematic

due to differences between studies in scanner types, image
acquisition and study populations (Caligiuri et al. 2015).
Other WMH segmentation tools which have been tested in
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healthy control and AD populations have achieved similar
average Dice scores to BaMoS; Seghier 0.64; de Boer 0.72;
Yoo 0.76; Griffatini 0.76; Wang 0.78; and Yang 0.81 (de Boer
et al. 2009; Griffanti et al. 2016; Seghier et al. 2008; Wang
et al. 2012; Yang et al. 2010; Yoo et al. 2014). However, few
studies have used data frommultiple sites. Samaille et al. used
information from several sites as in our study (Dice score of
0.72), and Dyrby et al. from 10 sites (Dice of 0.56) (Dyrby
et al. 2008; Samaille et al. 2012). The most comparable study
to ours is from Dadar et al., who also investigated ADNI2/Go
participants over a range of scanner types and achieved a Dice
score of 0.72, similar to our study (Dadar et al. 2017). In 2017,
The Medical Image Computing and Computer Assisted
Intervention Society, held a conference challenge in which
segmentation algorithms were compared to manual WMH
estimates, results of which ranged from Dice scores
0.23 to 0.80, with a mean score of 0.64. In this chal-
lenge a previous version of BaMoS achieved a Dice
score of 0.68. Notably BaMoS is disadvantaged by the
Dice metric, as larger WMH volumes lead to higher
Dice scores, and BaMoS in this study has estimated a
lower volume than other studies on similar participant
groups; the median value in the comparison subset was
just over 5 ml (5.3 ml), whilst other studies generally
report values under 5 ml as at the lower end of WMH
burden, with medium loads between 5 and 20 ml
(Dadar et al. 2017; Griffanti et al. 2016). Taking into
consideration the lower volumes estimated and multisite
nature of this study, BaMoS performs excellently.
Whilst BaMoS achieves a comparable WMH perfor-
mance to that in the literature, the focus of this study
is to demonstrate the similarity of BaMoS to human
ratings of WMH and feasibility to large multisite studies
and not to compare it to existing techniques, for which
it has already been extensively validated (Sudre et al.
2015).

To better understand any proposedWMHsegmentationmeth-
od, it is important to have multiple complementary metrics to
assess its performance compared to the gold standard. The
Dice score alone is unable to tell us about over- or under-seg-
mentation, nor any information about the location of errors,
which is important to consider as some regions are more difficult
to segment than others. We employed a variety of metrics to
assess the performance of BaMoS compared to the gold stan-
dard, including spatial overlap metrics, difference maps and
bullseye plots (Sudre et al. 2018). We found that whilst errors
are common across the brain, they are found more in some re-
gions due to biases in both the semi-automated protocol and
BaMoS. BaMoS was most consistently vulnerable to errors in
subcortical regions, both over-, and under-segmenting in this
area, and more prone to false positives lesions here too. Such
issues were also seen in the temporal and occipital lobes. Other
problematic regions were the parietal lobes and frontal lobes,

likely due to the presence of diffuse dirty white matter in the
parietal lobes and difficulties segmenting periventricular caps.
BaMoS also appeared to over-segment at lower volumes com-
pared to the gold standard and under-segment at higher volumes.
However, the bias towards under-segmentation at higher vol-
umes compared to consensus may rather be an issue caused by
the semi-automated segmentation protocol; thresholds for semi-
automated segmentationwere based onmedian brain intensity, in
individuals with higherWMHvolume themedian brain intensity
would be higher, therefore causing greater inclusion of borderline
hyperintense voxels at higher volumes. A further systematic
cause of difference between protocols may be due to bias correc-
tion; FLAIR images were bias corrected by BaMoS preceding
WMH segmentation but were not viewed as bias corrected by
raters during semi-automated segmentation. The bias correction
difference is apparent on the left vs right hemisphere, with more
included in the consensus on the left, (visible on left side of
images from the highest load- Fig. 4). It is necessary to under-
stand how and why differences with respect to human segmen-
tation arise in order for methods to be improved.

WMHsegmentation is challenging for both humans and com-
puters. To tackle this we generated a superior gold standard,
using segmentations from four raters who each segmented 60
participants. Using information from multiple raters reduced the
risk of the algorithm being penalised as a result of human error.
Such a rigorous generation of a gold standard is uncommon in
the literature, algorithms are usually compared to segmentations
from one or two raters of 20–30 participants (Anbeek et al. 2004;
Beare et al. 2009; Wang et al. 2012; Yoo et al. 2014). Some
authors have generated superior gold standards; Griffatini used
3 raters, and Admiraal Beehoul and Dyrby segmented a larger
proportion of the dataset (100% in the case of Dyrby) (Admiraal-
Behloul et al. 2005; Dyrby et al. 2008; Griffanti et al. 2016).
Raters in this study agreed well in their WMH estimates, achiev-
ing mean Dice scores of 0.90–0.93 and mean correlation coeffi-
cients of 0.994–0.997 when comparing each rater to consensus
estimates. Although efforts were taken to make the semi-
automated segmentation as objective as possible, each rater nat-
urally developed subtle tendencies to include or exclude WMH
in their segmentation. There were similarities between raters
which reflected who taught whom the segmentation protocol.
Raters 1 and 3 were highly similar, whilst raters 2 and 4 were
most similar; rater 1 trained 3 (and 2), and rater 2 trained rater 4.
Differences arose because raters 2 and 4 were more likely to
include WMH, than raters 1 and 3. These individual differences
demonstrate the inherent difficulty of the WMH segmentation,
the need for a well generated gold standard, and the need for
frequent retraining of manual segmentors, even when using a
structured protocol incorporating semi-automated thresholding.

Direct comparison between semi-automated and auto-
mated methods is hindered by differences in T1-
weighted and T2 FLAIR image resolution; semi-
automated segmentation occurs in FLAIR space, whilst
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the algorithm segments in T1-weighted volumetric
space. FLAIR space is preferable for human rater seg-
mentation because WMH are more clearly visible on
FLAIR than on T1, and resampling issues arise when
the thicker slice FLAIR is registered to the T1.
However, the most accurate automated segmentations
can be obtained in T1 space. The segmentations used
in the neuropsychology assessment were generated by
BaMoS in T1 space, whilst FLAIR space segmentations
were used for method comparison. BaMoS’ volumes in
FLAIR space correlated well with T1 space segmenta-
tions, so it is valid to assume that they are functionally
equivalent, and that our assessment of FLAIR space
segmentations is relevant to those generated in T1
space. Differences between methods were also found
to be scanner dependent; individuals scanned with GE
Scanners had higher WMH volumes and greater differ-
ences in outline error (OEFP, OEFN) than Philips and
Siemens. It is difficult to pinpoint the reason for the
observed difference; GE scanners may have a hyperin-
tense bias present which leads to greater inclusion of

WMH, or they may be more sensitive to a particular
lesion type which is poorly detected by Philips and
Siemens. Notably, the semi-automated protocol
recognised a general hyperintensity in GE images in
the posterior white matter, and raised the thresholds
for segmentation for this scanner type compared to
Philips and Siemens. Interestingly, individuals scanned
with a GE scanner had higher WMH volumes detected
by both BaMoS and the semi-automated segmentation,
indicating both methods classified the increased
hyperintensity as lesion, withstanding the bias correction
unique to BaMoS, and the higher thresholds implement-
ed for GE scanners from the semi-automated protocol.
FLAIR has not been as widely used as T1-weighted
MRI sequences, especially for quantitative analysis.
Increased research using FLAIR, and volumetric
FLAIR, in the coming decade, will likely progress our
knowledge of differences between scanner types, under-
standing of the pathology underlying hyperintense sig-
nal, and improve comparability between semi-automated
and automated methods.

Fig. 4 Images showing differences in spatial metrics between BaMoS
automated segmentation and consensus of all 4 raters, in subjects with
low, medium and high WMH loads. FLAIR images are shown in the left
column, with difference maps overlaid in the right column. Blue voxels
signify outline error false positive (OEFP) which, for a given shared
WMH lesion, denotes voxels included in BaMoS which are not in the
consensus. Yellow represents outline error false negative (OEFN) which

denotes, for a given sharedWMH lesion, voxels which are included in the
consensus and not in BaMoS. Green represents detection error false pos-
itive (DEFP) which denotes voxels included in BaMoS and not the ref-
erence (false positive lesions). Red represents detection error false nega-
tive (DEFN) denoting voxels included as lesion in the consensus and not
BaMoS
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Strengths of this Work

The strengths of this paper lay notably in the existence
of multiple rater WMH estimates that enabled the com-
parison of a total of 300 segmentations from 60 partic-
ipants. We developed the protocol for semi-automated
segmentation in collaboration with UMC Utrecht. No
harmonisation of protocols exist for WMH classifica-
tion, as has been achieved with hippocampal segmenta-
tions (Boccardi et al. 2015). More research is required
to validate WMH protocols across institutions. Further,
we investigated the performance of BaMoS using a
number of comparison metrics that allowed a greater
understanding of the origins of discrepancies between
methods, and where differences were most likely to oc-
cur. We studied participants scanned at multiple sites,
allowing the algorithm to be assessed using images
from multiple scanners. We did not adjust for multiple
comparisons in tests of WMH and cognition, as our
tests were hypothesis driven and answering different
questions. We adjusted for multiple covariates in analy-
ses with cognitive outcomes, such as race, years of ed-
ucation, age, sex and APOE ε4 status, as per
Carmichael et al (Carmichael et al. 2010), however,
we did not adjust for cardiovascular risk. Whether head
size is related to change in cognition is yet unresolved
and we did not adjust for this covariate in our analyses.
Some studies have suggested larger head size is protec-
tive against cognitive decline (Guo et al. 2013;
Perneczky et al. 2010), another provides opposing evi-
dence for head size effect on atrophy rate (Fiford et al.
2017). How head size associates with cognition is a
complex question related to theories of cognitive re-
serve, which deserves thorough investigation. Since the
relationship of WMH to cognition is well-established
(Prins and Scheltens 2015), and the purpose of this
study was to assess how WMH volumes from a novel
automated technique relate to cognitive change, we did
not investigate total intracranial volume (head size) ef-
fects. We noted that the subcortical area was most prone
to discrepancies which may be explained by a lower
signal-to-noise ratio in this region.

Limitations of this Work

The semi-automated segmentation set consisted only of
controls and AD patients; any difference in the perfor-
mance of the algorithm that may exist in other diagnos-
tic groups could therefore not be tested. We appreciate
this investigation included only older controls and
groups considered to be potentially prodromal/
preclinical AD or clinical AD subjects. Therefore, our
study is not an assessment of the ability of BaMoS to

segment WMH in other diseases (such as neuroinflam-
mation) or in paediatric cases. Additionally, although
not a goal of our work, it is important to appreciate
that the ADNI population is not sufficiently ethnically
diverse to understand the confounding effect of ethnicity
on the WMH-cognitive relationship. We used Dice
scores as one statistic to describe spatial overlap of seg-
mentations. The Dice score is useful to evaluate the
delineation of anatomical structures where the range in
size and shape is relatively limited and is a widely used
metric for validation of segmentation frameworks.
However, for pathological lesions such as WMH, the
Dice score is imperfect due to its dependence on shape
and size of targeted elements. The cost of a single-voxel
error decreases when the overall size of the object to
segment increases leading to higher Dice scores in
datasets with higher lesion loads. To alleviate the Dice
limitations, distance metrics (such as Hausdorff or
Average distance) are often used in conjunction to pro-
vide a different perspective on the performance. These
metrics are however not really applicable in the case of
very low out-of-plane resolution. Instead, we chose sta-
tistics which were appropriate for the thick-slice FLAIR
imaging data we used in this study and tried to describe
precisely the distribution of disagreements.

We note that whilst BaMoS did predict cognitive de-
cline in controls, EMCI, LMCI, SMC, it did not do so
in AD subjects. Whether this reflects that WMH in AD
is inherently different and truly less related to cognitive
decline, or whether cognitive decline in AD is driven by
other factors, or whether BaMoS was less accurate in
this large AD sample is unclear. We only considered
WMH where there was hyperintensity on FLAIR and
some evidence of hypointensity on T1. Other patholo-
gies of the white matter were not included in this study.
The semi-automated segmentation used thresholds that
were determined relative to median brain intensity. The
reported values in this publication may not be suitable
for other studies where the acquisition protocol is very
different or the disease or age groups are very different
to those included here. In contrast, for the automated
segmentation, since the thresholds are based on mea-
sures of outlierness with respect to healthy tissues, the
default values can be used over a wide range of acqui-
sition settings. Diffusion imaging can be used to identi-
fy specific tracts and artefacts associated with those
tracts. However, only a proportion of individuals (GE
scanners only) had diffusion imaging in ADNI2/Go so
the assumptions made about hyperintense areas being
associated with tract-based artefacts, such as those com-
monly found in the corticospinal tracts, may be incor-
rect. We did not assess the accuracy of segmentations
according to lesion type (such as diffuse lesions vs.
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punctate lesions where partial volume characteristics
may differ). This may be a further area for assessment
and algorithmic development.

Conclusions

In conclusion, we have assessed the performance of BaMoS
and found it matches very well to human generated WMH
segmentation methods, and to be predictive of change
in neuropsychology scores in controls, SMC, EMCI and
LMCI. Our method was meticulously compared to ‘gold
standards’ and found to perform well over multiple sites
and scanners. We can therefore confidently apply
BaMoS to large-scale multi-site studies, and, with more
research, this algorithm may be of potential clinical use.
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