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Contribution of target alteration, 
protection and efflux pump in achieving high 
ciprofloxacin resistance in Enterobacteriaceae
Ram Prosad Chakrabarty1,2, Munawar Sultana1, Saadlee Shehreen1,3, Selina Akter1,4 and M. Anwar Hossain1* 

Abstract 

The study aims at revealing the comprehensive contribution of target alteration, target protection and efflux pump 
to the development of high level of ciprofloxacin (CIP) resistance in Enterobacteriaceae bacteria of environmental, 
clinical and poultry origins. Antibiotic susceptibility test was used to detect CIP resistant (CIPR) isolates and MICCIP 
was determined by broth microdilution method. The presence of qnrS gene was identified by PCR and Southern blot 
hybridization (SBH) confirmed their location. Checkerboard titration demonstrated the effect of NMP on CIP action. 
PCR followed by sequencing and in silico analysis revealed the contribution of mutations in acrR, marR and gyrA to 
CIPR development. Out of 152 isolates, 101 were detected as CIPR. Randomly selected 53 isolates (MICCIP 4–512 µg/
mL) were identified as Escherichia spp. (26), Enterobacter spp. (7), Klebsiella spp. (5) and Salmonella spp. (15) and of 
them 31 isolates carried qnrS. qnrS harboring 18 highly CIPR isolates (MICCIP: 256–512 µg/mL) were selected for further 
study. SBH confirmed 7 isolates harbored qnrS gene in plasmids. The acrA, acrB and tolC were present in all 18 isolates 
and NMP had an additive (12-isolates) or synergistic (6-isolates) effect on CIP action. Most isolates contained double 
amino acid (aa) substitutions (S83L and D87N) in QRDR of GyrA resulting in an altered conformation of putative CIP 
binding pocket. However, some isolates contained single (S83L or S83Y) or no aa substitution but showed high CIPR 
implicating that the concerted action of three mechanisms is responsible for high CIPR with the most significant role 
of efflux pump.
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Introduction
Ciprofloxacin (CIP) is a second generation fluoroqui-
nolone and extensively used in the treatment of a wide 
range of infections caused by Enterobacteriaceae, and 
Pseudomonas aeruginosa (Kaplan et  al. 2013; Oliphant 
and Green 2002). CIP usually exerts its effect by binding 
with targets such as DNA gyrase and DNA topoisomer-
ase IV. However, frequent reports about the emergence 
of CIP resistance have created a conundrum regarding 
its use (Boyd et al. 2008; Lautenbach et al. 2004). So far, 
the emergence of resistance to CIP can be attributed to 
three known mechanisms such as protection of targets 

with Qnr protein, enhanced efflux pump expression 
and alteration in the quinolone-resistance determining-
region (QRDR) of target enzymes (Alekshun and Levy 
2007; Hooper 2001). Among these mechanisms, target 
alteration has been reported to be responsible for a high 
level of resistance to CIP whereas efflux pump and Qnr 
protein mediated mechanisms attributed to a low level 
of resistance (Jacoby 2005; Strahilevitz et al. 2009). Most 
of the previous studies focused on either single mecha-
nism in many organisms or all three mechanisms in a 
single type (Kuo et al. 2009; Li et al. 2011; Lindgren et al. 
2003; Tran and Jacoby 2002; Tran et al. 2005; Vanni et al. 
2014). However, high resistance to this drug is emerging 
swiftly among Enterobacteriaceae leaving this drug inef-
fective against many infections and increasing the cost 
of treatment. Furthermore, insufficient comprehensive 
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studies on CIP resistance mechanisms within highly 
resistant isolates would impede the attempts to increase 
the potency and decrease the resistance emergence by 
modifying the existing current drug or designing new 
one. Therefore, this investigation focused on address-
ing this fundamental gap in our knowledge by unveiling 
the contribution of different prevailing mechanisms to 
the development of high level of CIP resistance among 
multidrug resistant Enterobacteriaceae bacteria isolated 
from clinical waste water (CWW), urinary tract infection 
(UTI) and cloacal swabs of poultry (CSP) origins in Bang-
ladesh for public health interest.

Materials and methods
Screening and selection of ciprofloxacin resistant 
Enterobacteriaceae isolates
A total of 152 presumptively identified MDR Enterobac-
teriaceae bacteria previously isolated from samples of 3 
different origins such as CWW (24 isolates), UTI (61 iso-
lates) and CSP (67 isolates) (Additional file  1: Table S1) 
were selected for initial screening of CIP resistance by 
the modified Kirby-Bauer disc diffusion method (Barry 
et al. 1985) and an organism was reported as susceptible, 
intermediate or resistant to CIP based on the diameter of 
zones of inhibition (Cockerill 2011).

Identification of the Enterobacteriaceae isolates
All the isolates were identified on the basis of their 
growth phenotypes, Gram staining and biochemical 
properties according to the methods described in the 
“Manual of Methods for General Bacteriology (American 
Society for Microbiology (ASM) 1981)”. The biochemi-
cal results were used to identify the isolates presump-
tively using the tool BioCluster (Abdullah et  al. 2015). 
The identification of the isolates was further verified by 
ARDRA (Amplified ribosomal DNA restriction analysis) 
grouping of 16S rRNA gene amplicons amplified using 
27F and 1492R primers (Additional file  1: Table S2). 
The digestion was done using the AluI (Promega, USA) 
restriction enzyme. The resulting digestion products 
were resolved by agarose gel electrophoresis using 1.5% 
agarose (w/v) gel running for 90 min at 70 V and the gel 
was viewed using Alpha Imager HP Gel-documentation 
system (Cell bioscience, USA). The restriction patterns 
were analyzed to cluster the genetically related isolates 
using the tool Phoretix 1D (Totallab, UK). The experi-
mental controls used were uncut experimental DNA, 
digestion of commercially supplied control DNA and 
no-enzyme “mock” digestion. Two different size mark-
ers, 1  kb (Promega, USA) and 100  bp (Promega, USA) 
DNA ladders were used to analyze different restriction 
fragments. 16S rRNA gene amplicons of selected isolates 
representative of each genotype were sequenced followed 

by phylogenetic analysis to find out their close relatives 
(Nandi et  al. 2013). The 16S rRNA gene sequences of 
the selected isolates have been deposited in the Gen-
Bank database (accession no. KT825916–KT825923). 
The GenBank accession numbers of previously identi-
fied isolates such as 26N, 28N, E36, E40, G3, G4 and 77 
are KC542889.1, KC542890.1, KJ544200.1, KJ544201.1, 
KJ544205.1, KJ544206.1 and KF188422.1 respectively.

Determination of MIC
The MIC of CIP (Wako Pure Chemical Industries Ltd, 
Japan) for the selected CIP-resistant Enterobacteriaceae 
isolates was determined by broth microdilution assay 
according to the Clinical and Laboratory Standards Insti-
tute (CLSI) guidelines (Wikler 2009). Microtiter plates 
were prepared by double dilution method so that each 
well of a 96 well microtiter plate contains 95 µL Mueller–
Hinton Broth (MHB) and the concentration of the CIP 
ranges from 512 to 2 µg/mL. In each plate, two negative 
controls were used; one column contained MHB + 2 µg/
mL ciprofloxacin (blank for the microtiter plate scan-
ner) and another column contained MHB only (sterility 
control). All the wells in each row were inoculated with 
5  µL (McFarland equivalent) of a particular organism 
except the negative controls. For each isolate, the MIC-
CIP was determined in triplicate and the median MICCIP 
was recorded. The plate was incubated at 37 °C overnight 
at 300 rpm in a shaking incubator (WiseCube, Germany). 
When satisfactory growth was obtained (after 24–36  h) 
the plate was scanned with a microplate reader (Poweam 
Medical Systems Co., Limited, China) and the back-
ground OD was subtracted from the OD of each well. 
The bacterial cultures from the wells of microtiter plate 
were streaked on MHA containing 2 µg/mL ciprofloxacin 
to check the purity of the isolates.

Screening of qnr gene within the Enterobacteriaceae 
isolates
Quinolone resistance encoding gene (qnrS) was inves-
tigated in selected isolates by PCR with a specific set of 
primers- qnrF and qnrR (Additional file 1: Table S2) and 
qnrS positive 18 isolates covering all genotypes with 
high MICCIP value (256–512  µg/mL) were selected for 
determining the location of qnrS gene by Southern blot 
hybridization. qnrS probe was prepared by PCR ampli-
fication and labeled with a PCR DIG-labeling kit (Roche 
Diagnostics GmbH, Mannheim, Germany) according to 
the instructions of the manufacturer. Plasmid DNA from 
the bacterial isolates and marker plasmids of E. coli V517 
were extracted using Wizard Plus SV Minipreps plasmid 
DNA Purification kit (Promega, USA) and was separated 
in 0.8% agarose gel at 70 volts for 4  h. After depurina-
tion, denaturation, and neutralization of the gel, DNAs 
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were transferred onto a Hybond N + nylone membrane 
(Nycomed Amershamplc, Buckinghamshire, UK) with a 
vacuum blotting system for 3–4 h and fixed by UV expo-
sure. The membrane with blotted DNA was sequentially 
subjected to pre-hybridization and hybridization with a 
labeled probe. After hybridization, the DIG-High Prime 
DNA labeling and detection system (Digoxigenin Labe-
ling and Detection Kit; Roche Diagnostics, Mannheim, 
Germany) was used for signal detection according to the 
manufacturer’s instruction.

Efflux pump mediated ciprofloxacin resistance
The chromosomal DNAs extracted from the selected 
Enterobacteriaceae isolates were subjected to PCR using 
primers specific for acrA, acrB and tolC genes encoding 
AcrAB–TolC efflux pump complex and primers specific 
for efflux pump regulatory region genes acrR and marR 
(Additional file 1: Table S2). Mutations within the regu-
latory proteins were studied after sequencing by bioin-
formatics analysis of the deduced amino acid sequences 
(Akter et al. 2012). PCR positive isolates were subjected 
to MICCIP determination by microdilution broth check-
erboard technique in the presence and absence of an 
efflux pump inhibitor 1-(1-naphthylmethyl) piperazine 
(NMP) (SIGMA-ALDRICH, USA) in 96-well microti-
ter plates (Li et  al. 2011). The checkerboard plates were 
inoculated with 105–106  CFU/mL each of bacterial cul-
ture and the final concentrations of NMP and CIP ranged 
from 512–4  µg/mL and 512–2  µg/mL respectively and 
bacterial growth was monitored after 24–36 h. The OD600 

nm of the plate was taken and the background OD was 
subtracted from the OD of each well. The interaction 
between the antibiotic and the inhibitor was interpreted 
on the basis of fractional inhibitory concentration (FIC) 
index where FIC indices of <0.5, 0.5 to <4.0 and >4.0 usu-
ally refer to synergism, additive and antagonism respec-
tively (Braga et al. 2005; Li et al. 2011; Odds 2003).

Analysis of mutation in gyrA gene
A 648 bp fragment of gyrA gene covering QRDR region 
(nucleotide position 199–318) of selected Enterobacte-
riaceae isolates (screened for Qnr and efflux pump) were 
amplified by PCR using primers gyrAF and gyrAR (Addi-
tional file 1: Table S2). The PCR amplicons were purified, 
sequenced and analyzed to find out amino acid substi-
tutions. Reference amino acid sequences downloaded 
from NCBI (http://www.ncbi.nlm.nih.gov) (accession 
no. NP_416734.1, WP_047361088.1, WP_023280374.1, 
NP_461214.1) were compared with that of test iso-
lates  (accession no. KT825924-KT825939) and in sil-
ico site directed mutagenesis in a reference sequence 
(accession no.  NP_416734.1) was carried out. Three 

dimensional (3D) homology models for both the refer-
ence and mutated sequences were built using SWISS-
MODEL workspace (Arnold et  al. 2006; Biasini et  al. 
2014). The best models determined by GMQE value 
and QMEAN values were obtained using the template 
3lpx.1B which covered 56% of the query sequences with 
a sequence identity of 77.19 and 76.99% respectively for 
reference and mutated sequences. The energy minimi-
zation in YASARA (http://www.yasara.org/) refined this 
model and the Ramachandran plot was developed using 
Accelrys software package Discovery Studio Visual-
izer 2.0 (Studio 2013) to check whether the models were 
stereo-chemically favorable. The 3D models of GyrA 
homodimers were docked with a B form DNA (PDB ID: 
1BNA) using ZDOCK 3.0.2 (Pierce et  al. 2014) online 
server when arginine at position 47, histidines at posi-
tion 78 and 80 and tyrosine at position 122, were selected 
as binding site on the DNA gyrase A homodimer for the 
DNA based on the information of active sites of DNA 
gyrase A subunit. The binary complex consisting of DNA 
gyrase subunit A and DNA was docked with ciprofloxa-
cin (Drug Bank accession no. DB00537) using PatchDock 
web server (Duhovny et al. 2002) with clustering RMSD 
1.5 (Akter et al. 2012).

Results
Ciprofloxacin resistance in Enterobacteriaceae isolates
Kirby-Bauer disk diffusion susceptibility test revealed 
that 101 out of 152 Enterobacteriaceae isolates were 
resistant to CIP in the order- CWW (~96%)  >  UTI 
(~72%)  >  CSP (51%) (Additional file  1: Table S1). Fifty-
three Enterobacteriaceae isolates (23, CWW; 15, UTI; 
and 15 CSP) were selected for further study based on the 
growth and the biochemical properties, ARDRA group-
ing, 16S rRNA gene sequencing and phylogenetic analy-
sis. All the analyses corroborated the results and revealed 
that the isolates representing ARDRA Group I, Group II, 
Group III and Group IV were closely related to Escheri-
chia spp., Enterobacter spp., Klebsiella spp. and Salmo-
nella spp. (Table 1; Fig. 1a, b). 

MIC of ciprofloxacin and presence of qnrS gene 
within Enterobacteriaceae isolates
MICs of the ciprofloxacin (MICCIP) for the selected 53 
isolates were in the range of 4–512 µg/mL; among which 
18 Escherichia spp., 4 Enterobacter spp., 5 Klebsiella 
spp. and 3 Salmonella spp. (3 out of 15 isolates) showed 
very high resistance to CIP (MICCIP: 128-512  µg/mL) 
(Table  2). Among the 53 CIP resistant isolates, 31 pos-
sessed qnrS (a variant of qnr family; 19/26 Escherichia 
spp.; 7/7 Enterobacter spp.; 3/5 Klebsiella spp. and 2/15 
Salmonella spp.) (Table  2). Based on high MIC values 
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Fig. 1 Phylogenetic analysis of isolates of Family Enterobacteriaceae using partial sequences of 16S rRNA gene. a Isolates were subjected to AluI 
digestion followed by amplified ribosomal DNA restriction analysis (ARDRA) revealed 4 genotypic groups. b Phylogenetic tree constructed with 
MEGA6 based on ARDRA. The optimal tree was built using Neighbor-Joining method (sum of branch length = 0.2448)
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(256-512  µg/mL), 18 qnrS positive isolates from 4 dif-
ferent ARDRA groups were selected for exploring CIP 
resistance mechanisms within them (Table 2).

Southern blot hybridization predicts qnrS gene location
Out of selected 18 isolates, 13 isolates comprised of 
8 Escherichia spp. (G4, CR2, NCX9, CR4, 26N, CR1, 
MCX14, and 28N), all 3 Enterobacter spp. (MCX5, MCX6 
and NCX14) and 2 Klebsiella spp. (MCX10 and NCX6) 
harbored plasmids of different sizes (<2.0 to   >54.2  kb) 
although Escherichia sp. 28N and Enterobacter sp. NCX14 
did not possess large plasmid  >54.2  kb (Fig.  2; Table  3). 
Southern blot hybridization revealed that 3 Escherichia 

spp. (CR1, CR2 and MCX14) and Klebsiella sp. MCX 10 
harbored the qnrS in the large plasmid (>54.2 kb). How-
ever, Klebsiella sp. MCX10 also showed positive result 
for two other plasmids of very small size (ca. 2.5 and 
2.7 kb), which is of similar size to the qnrS harboring plas-
mid (2.2  kb) in Enterobacter sp. MCX6. Enterobacter sp. 
NCX14 was found to harbor the qnrS gene in two small 
plasmids of different sizes (ca. 3.9 and 7.0 kb). However, in 
Escherichia sp. 26N, a much smaller plasmid (<2.0 kb) was 
found to carry the qnrS gene (Fig. 2; Table 3). 

Contribution of efflux pump on resistance
All 18 isolates displayed positive PCR results for acrA, 
acrB and tolC genes encoding AcrAB-TolC efflux pump 
complex of Resistance-Nodulation-Division (RND) fam-
ily (Table  3; Additional file  1: Figure S1). Checkerboard 
titration was employed to analyze the contribution of 
AcrAB-TolC efflux pump complex by determining the 
effect of NMP, an inhibitor of AcrAB-TolC efflux pump, 
on the action of CIP. The assay detected that in Escheri-
chia spp. (CR1, CR2 and CR4), Klebsiella spp. (NCX6 
and MCX10) and Enterobacter spp. (MCX5), NMP had 
a synergistic effect on the action of ciprofloxacin [FIC 
index (FICI)  ≤  0.5]. In all other isolates, NMP had an 
additive effect (0.5 < FICI ≤ 1) on the action of ciproflox-
acin (Additional file  1: Table S3). Inhibition of AcrAB-
TolC efflux pump significantly reduced the resistance 
to ciprofloxacin in selected 18 isolates. Furthermore, to 
detect the specific mutations in efflux pump regulatory 
genes, 8 Escherichia spp. (CR1, E34, G4, CR2, 28N, E23, 
26N and NCX9) in some of which NMP had synergistic 
effect (e.g. CR1 and CR2) and in some of which NMP had 
additive effect (E34, G4, 28N, E23, 26N and NCX9) on 
the action of CIP were selected for amplification of acrR 
and marR genes by PCR and sequencing (Table 3). Com-
parative analysis of amino acid sequences of acrR (acces-
sion no. KT825940-KT825947) and marR (accession no. 
KT825948-KT825955) with that of references (accession 
no. NP_414997.1; accession no. NP_416047.4) revealed 
that in acrR gene, Escherichia spp. G4 and 28N contained 
the same double amino acid substitutions—T213I and 
N214T; and Escherichia spp. E34, E23 and 26  N con-
tained the same single amino acid substitution- H115Y 
and in marR gene, all isolates contained the same double 
amino acid substitutions (G103S and Y137H) (Table  3). 
In addition, Escherichia spp. 26N, E23 and E34 contained 
another amino acid substitution—A53E and Escherichia 
spp. G4 and 26N also contained another amino acid sub-
stitution—K62R in marR gene (Table 3).

Mutations in QRDR of gyrA
A 648 bp fragment of gyrA covering QRDR was targeted 
to amplify by PCR in 18 selected isolates. However, for 

Table 2 Median minimum inhibitory concentrations 
(MICs) of  ciprofloxacin for  the 53 Enterobacteriaceae iso-
lates and the presence of qnrS gene in the isolates

Italics isolates were selected for revealing CIP resistance mechanisms

Isolates Source ID qnrS MIC (μg/mL)

Escherichia spp. UTI E8, E23, E34 + 512

E29, E42 + 32

E36, E37, E40 − 128

E41, G3 + 128

E56 + 8

E58 + 4

G2 + 128

G4 + 256

DMCH 28N + 256

26N + 512

SSMCH CR1, CR2, CR4 + 512

CR6 + 64

NCX9, MCX14 + 256

C6, C84 − 64

C79 − 32

C49 − 512

Klebsiella spp. SSMCH NCX6, MCX10 + 512

E33 + 256

C1 − 128

C67 − 512

Enterobacter spp. SSMCH MCX4 + 4

MCX5 + 512

MCX2 + 32

MCX3 + 8

MCX1, MCX6, NCX4 + 256

Salmonella spp. Poultry 36, 44, 45, 49, 54, 81, 
84, 94, 60

− 16

58, 68 − 32

74 + 256

77 + 512

18 − 64

20 − 128



Page 7 of 12Chakrabarty et al. AMB Expr  (2016) 6:126 

Fig. 2 Confirming the location of qrnS gene in selected isolates. a Plasmid profiling of Escherichia spp. (i), Enterobacter spp. (ii) and Klebsiella spp. (iii) 
analyzed against V517 molecular mass markers followed by (b). Southern blot hybridization analysis for qnrS gene (i, ii and iii respectively) shows 
plasmids of different sizes containing qnrS gene
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16 isolates, amplicon of desired size was obtained except 
Klebsiella spp. E33 and NCX6 (Table 3) and sequenced. 
The results revealed that all selected Escherichia spp. 
except NCX9 and CR1, two Enterobacter spp. (MCX5 
and NCX14) and both Salmonella spp. 74 and 77 con-
tained the same double amino acid substitutions (S83L 
and D87N). Escherichia sp. CR1 and Klebsiella sp. 
MCX10 contained the same single amino acid substi-
tution (S83L) in the QRDR of gyrA which was S83Y for 
Enterobacter sp. MCX6. Interestingly, a highly CIP resist-
ant Escherichia sp. NCX9 (MICCIP 256  µg/mL) did not 
contain any amino acid substitution in QRDR of GyrA 
subunit (Table 3).

Discussion
Here, we report a very high and alarming level of CIP 
resistance in Enterobacteriaceae family of microorgan-
isms, especially in opportunistic pathogens—Escherichia 
spp., emerging pathogens-Enterobacter spp., and well 
documented pathogens—Klebsiella spp. and Salmonella 
spp., belonging to clinical and poultry origin. Further-
more, this investigation conclusively demonstrated that all 
the 3-types of CIP resistance mechanisms—alteration of 
target enzyme, protection of target and efflux of the drug, 
were operative in Enterobacteriaceae isolates to attain the 
higher resistance. However, in contrast to our current 
knowledge that efflux pump is usually responsible for low 

Table 3 Overview of  combined mechanism of  ciprofloxacin resistance within  qnrS, acrAB-tolC positive Enterobacte-
riaceae

ND not determined

Organism ID MIC  
(µg/mL)

Plasmid mediated qnrS gene Efflux pump mediated resistance Amino acid 
substitution 
in QRDR of DNA 
gyrase subunit A

No. of plas-
mids extracted 
(approximate size 
in kb)

Size (in kb) 
of plasmid 
harboring 
qnrS gene

Effect of NMP 
on the action 
of CIP

Amino acid substitution  
in regulatory gene products

AcrR MarR

Escherichia spp. E23 512 No plasmid – Additive H115Y G103S, Y137H, 
A53E

S83L, D87N

E34 512 No plasmid – Additive H115Y G103S, Y137H, 
A53E

S83L, D87N

26N 256 5 (<2.1, 2.7, 3.0, 
4.6, >54.2)

1 (<2.0) Additive H115Y G103S, Y137H, 
A53E

S83L, D87N

28N 256 6 (<2.1, <2.1, 2.5, 
2.8, 3.1, 3.9)

None Additive T213I, N214T G103S, Y137H, 
K62R

S83L, D87N

CR1 512 1 (>54.2) 1 (>54.2) Synergistic No substitution G103S, Y137H S83L

CR2 512 7 (~2.3, 2.5, 3.7, 3.9, 
5.2, 54.2, >54.2)

1 (>54.2) Synergistic No substitution G103S, Y137H S83L, D87N

CR4 512 5 (<2.1, 2.9, 3.0, 
3.5, >54.2)

None Synergistic ND ND S83L, D87N

MCX14 256 2 (3.1, >54.2) 1 (>54.2) Additive ND ND S83L, D87N

NCX9 256 2 (~54.2, >54.2) None Additive No substitution G103S, Y137H No substitution

G4 256 4 (~2.4, 2.7, 
3.9, >54.2)

None Additive T213I, N214T G103S, Y137H, 
K62R

S83L, D87N

Enterobacter 
spp.

MCX5 512 5 (2.0, 2.2, 2.8, 
3.9, >54.2)

None Synergistic ND ND S83L, D87N

MCX6 256 3 (2.0, 2.2, >54.2) 1 (2.2) Additive ND ND S83Y

NCX14 256 1 (3.9, 7.0) 2 (3.9, 7.0) Additive ND ND S83L, D87N

Klebsiella spp. E33 256 No plasmid – Additive ND ND Not done

NCX6 512 9 (<2.0, 2.0, 2.5, 
3.0, 3.5, 4.8, 5.0, 
54.2, >54.2)

None Synergistic ND ND Not done

MCX10 512 8 (<2.0, 2.5, 2.7, 
3.9, 4.0, 5.0, 
54.2, >54.2)

3 (2.5, 
2.7, >54.2)

Synergistic ND ND S83L

Salmonella spp. 74 256 No plasmid – Additive ND ND S83L, D87N

77 512 No plasmid – Additive ND ND S83L, D87N



Page 9 of 12Chakrabarty et al. AMB Expr  (2016) 6:126 

level of CIP resistance (Hooper 2001; Jacoby 2005), this 
investigation demonstrated that efflux pump can contrib-
ute to a high resistance phenotype even in the absence of 
any mutation in the DNA gyrase subunit A.

Abundance of ciprofloxacin resistance in MDR 
Enterobacteriaceae isolates
High level of resistance to CIP was found in isolates of 
CWW and UTI origins which seems cogent, because 
CIP has been widely used in the treatment of infec-
tions caused by both Gram-negative and Gram-positive 
microorganisms in the hospitals (Adnan et  al. 2013; 
Kaplan et  al. 2013). The presence of residual active 
fluoroquinolones in CWW exerts a selective pressure 
for the emergence, maintenance and horizontal trans-
fer of resistant genes among microorganisms resulting 
in a complex resistant situation. The bacteria isolated 
from CSP also showed higher occurrence of CIP resist-
ance, but MICCIP value was much lower than CWW 
and UTI isolates. This is probably due to low dosages of 
fluoroquinolone antibiotics used in poultry compared 
to human infection treatment. Salmonella spp. 74 and 
77 of CSP origin were exceptional and could withstand 
very high concentration of CIP (MICCIP 256 and 512 µg/
mL respectively) which insinuates a threat of the emer-
gence of zoonotic infections. So far we know, there is no 
well-documented report of very high level of resistance 
(MICCIP 256–512  µg/mL) in Enterobacter spp., Kleb-
siella spp. and Salmonella spp. There are few reports 
available for Escherichia spp. with high MICCIP (128–
256  µg/mL) (Sato et  al. 2013a, b, c) but the molecular 
mechanisms underlying the ciprofloxacin resistance in 
them have not been explored in detail (Azmi et al. 2014; 
Lautenbach et  al. 2010; Sato et  al. 2013a, b, c; Weigel 
et al. 1998).

Contribution of Qnr protein
A variant of qnr gene, qnrS, was found to be highly wide-
spread within Enterobacteriaceae isolates of CWW and 
UTI origins. Escherichia spp. (19/26), Enterobacter spp. 
(7/7) and Klebsiella spp. (3/5) were PCR positive for 
qnrS gene. However, the occurrence of qnrS gene in Sal-
monella spp. (CSP origin) was very low (2/15). The qnrS 
negative isolates might contain other variants of qnr 
gene. Among the 18 selected qnrS positive isolates, 13 
carried plasmids of different sizes (size ranged from <2.0 
to >54.2 kb) (Table 3). Plasmid negative isolates Escheri-
chia spp. E23, E34; Klebsiella sp. E33 and Salmonella spp. 
74 and 77 might harbor chromosomal qnrS gene or have 
large plasmid that could not be retrieved in our experi-
mental condition (Kuo et al. 2009).

Southern blot hybridization revealed that 7 out of 
13 isolates harbored qnrS gene in the plasmids. Three 

Escherichia spp. isolates (CR1, CR2 and MCX14) along 
with Klebsiella sp. MCX10 carried qnrS gene in large 
plasmids of approximately same size (>54.2 kb) which is 
corroborated by the findings of other researchers (Kuo 
et  al. 2009) but Enterobacter spp. NCX14 harbored the 
gene in small plasmids (3.9 and 7.0 kb) which could be 
two different plasmids or the same plasmids with dif-
ferent conformations. Although the presence of qnrS 
in small plasmid was unusual but not novel. Similar 
plasmids harboring qnrS was isolated from Salmonella 
enterica and Aeromonas hydrophila by other researchers 
(Hammerl et al. 2010; Han et al. 2012). However, Escher-
ichia sp. 26N and Enterobacter sp. MCX6 were shown 
to carry qnrS in very small plasmids (<2.0 and 2.2  kb 
respectively) which was not reported earlier. In Kleb-
siella sp. MCX10, qnrS gene was carried in a large plas-
mid (>54.2  kb) along with two small plasmids (2.5 and 
2.7  kb) which could also be the fragments of the large 
plasmid or could be acquired through vertical or hori-
zontal transfer. Isolates from which no plasmid could be 
isolated or the isolates from which plasmids were iso-
lated but did not hybridize with qnrS probe indicated 
that qnrS might be chromosome-borne. Alternatively, 
qnrS in these isolates could be borne by episomes, plas-
mids that can integrate with the chromosome which was 
reported by other researchers also (Kuo et al. 2009; Stra-
hilevitz et al. 2009).

Effects of efflux pump and its inhibitor on resistance
The selected qnrS positive and highly CIPR 18 isolates 
were equipped with active AcrAB-TolC efflux pump 
complex. Checkerboard titration revealed the synergis-
tic effect of NMP on the action of CIP on three Escheri-
chia spp. (CR1, CR2 and CR4, all of CWW origin), two 
Klebsiella spp., (NCX6 and MCX10) and Enterobacter 
sp. MCX5 (FICIs were  <0.5) that means, the combined 
effect of NMP and CIP was higher than the sum of the 
individual effect, i.e. the efflux pump contributed more 
to the development of resistance to CIP than other two 
mechanisms. In remaining 13 isolates, NMP had an addi-
tive effect on the action of ciprofloxacin (FICIs were 
0.5  <  FICI  ≤  1.0) which means that efflux pump and 
mutations in QRDR and/or target protection by Qnr pro-
tein, all have significant role in the development of CIPR. 
Moreover, nonsynonymous mutations in efflux pump 
regulatory regions (acrR and marR) of different Escheri-
chia spp. indicate that the efflux pump expression might 
have been increased due to these mutations.

Alteration of the QRDR of GyrA to the development 
of ciprofloxacin resistance
In this study, it was found that Escherichia spp. E23, 
E34, 26N, 28N, CR2, CR4, MCX14 and G4; Enterobacter 
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spp. MCX5 and NCX14 and both Salmonella spp. 74 
and 77 contained same double amino acid substitutions 
(S83L and D87N) in the QRDR of GyrA. The nucleotide 
change within a genus was also the same but within dif-
ferent genera, nucleotide change was different. S83L and 
D87N amino acid substitutions are reported to be associ-
ated with high level of CIPR (MICCIP ≥  16  µg/mL) but 
not with such elevated level (MICCIP was 256–512  µg/
mL) (Kaplan et  al. 2013; Kocsis and Szabó 2013). How-
ever, highly CIPR Escherichia sp. CR1 (MICCIP 512  µg/
mL), and Klebsiella spp. MCX10 (MICCIP512  µg/mL) 
contained same single (S83L) amino acid substitution in 
QRDR of GyrA; and NMP had synergistic effect on the 
action of ciprofloxacin for them. In addition, highly CIPR 
Enterobacter sp. MCX6 contained single amino acid sub-
stitution (S83Y) whereas Escherichia sp. NCX 9 had no 
amino acid substitution in QRDR of GyrA but both iso-
lates showed similar levels of resistance (CIPMIC 256 µg/
mL) and NMP had additive effect on the action of CIP for 
them. This means that even in the absence of mutation 
in QRDR, active efflux pump along with qnrS could con-
tribute to high level of CIPR which differs from previous 
hypotheses that efflux pump and Qnr protein are only 
responsible for very low level of resistance (Hooper 2001; 
Jacoby 2005). According to our knowledge, there have 
been only two reports of fluoroquinolone resistant iso-
lates (one was clinical isolate and another was laboratory 
derived strain) without any mutations in QRDR, how-
ever, they were just exceeding the breakpoint MIC of CIP 
(whereas MICCIP for Escherichia sp. NCX9. was 256 µg/
mL) (Chopra and Galande 2011; Sato et al. 2013a, b, c). 
It was also observed in Escherichia spp. CR1, CR2 and 
CR4; Enterobacter sp. MCX5, Klebsiella spp. NCX6 and 
MCX10 that NMP had synergistic effect on the activity of 
CIP and exhibited the highest level of resistance (MICCIP, 
512  µg/mL) irrespective of single or double amino acid 
substitutions in QRDR of GyrA; although Escherichia sp. 
CR1, Klebsiella sp. MCX10 and Enterobacter sp. MCX6 
could contain additional amino acid substitution in GyrB 
subunit or ParC subunit. However, isolates with dou-
ble amino acid substitutions (S83L and D87N) and with 

additive effect of NMP on CIP action showed very high 
level of resistance (MICCIP 256–512  µg/mL). So it can 
be inferred that in case of selected Enterobacteriaceae 
isolates high level of CIPR resulted from the cumulative 
action of all three mechanisms of resistance to CIP with 
the mandatory requirement of active efflux pump.

Although the nucleotide variation in QRDR between 
different species was up to 14.1%, but in comparison to 
the E. coli str. K-12 substr. MG1665 (NC_000913.3), the 
variation was mostly 4.4% (Additional file  1: Table S4) 
and therefore structural analysis was performed based on 
the amino acid sequence of GyrA of this organism (acces-
sion no. NP_416734.1) which is sensitive to CIP and an 
amino acid sequence derived from this sequence by in sil-
ico site directed mutagenesis with two amino acid substi-
tutions—S83L and D87N (most common type of amino 
acid substitutions found in this study). Based on homol-
ogy modelling and protein–ligand docking to produce 
ternary ciprofloxacin-GyrA-DNA complex, it was found 
that QRDR of GyrA constitutes the quinolone binding 
pocket and amino acids alteration can diminish the affin-
ity of quinolone binding. It was elucidated that D87N 
mutation disrupt the salt-bridge formation between D87 
and R91 resulting the change in drug binding pocket con-
formation. But the role of mutation at 83 position which 
occurred in almost all CIP Enterobacteriaceae isolates 
and also abundantly reported in literature has not been 
clear from in silico analysis. Therefore, further analysis to 
elucidate the role of 83-position mutation is needed for 
understanding the fluoroquinolone resistance mecha-
nism (Fig. 3).

The present study conclusively demonstrated that 
Enterobacteriaceae isolates of different sources is being 
resistant to a very high and clinically significant concen-
tration of ciprofloxacin (MIC ~ 512 µg/mL) by acquiring 
multiple resistance mechanisms in Bangladesh which has 
not been previously reported. Furthermore, in contrast to 
earlier reports, it was observed that efflux pump played 
a major role in introducing high level of ciprofloxacin 
resistance in the Enterobacteriaceae isolates, although 
concerted activity of all three reported mechanisms of 
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fluoroquinolone resistance such as efflux pump, amino 
acid substitution in DNA gyrase A and Qnr were opera-
tive in most of the isolates.
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Fig. 3 Interaction of ciprofloxacin in ciprofloxacin-DNA gyrase-DNA ternary complexes. The conformation of putative ciprofloxacin binding pocket 
appeared to alter in mutant gyrase A (b) as compared with the reference wild type gyrase A (a)
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