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PyUUL provides an interface between biological
structures and deep learning algorithms
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Structural bioinformatics suffers from the lack of interfaces connecting biological structures
and machine learning methods, making the application of modern neural network archi-
tectures impractical. This negatively affects the development of structure-based bioinfor-
matics methods, causing a bottleneck in biological research. Here we present PyUUL
(https://pyuul.readthedocs.io/), a library to translate biological structures into 3D tensors,
allowing an out-of-the-box application of state-of-the-art deep learning algorithms. The
library converts biological macromolecules to data structures typical of computer vision, such
as voxels and point clouds, for which extensive machine learning research has been per-
formed. Moreover, PyUUL allows an out-of-the box GPU and sparse calculation. Finally, we
demonstrate how PyUUL can be used by researchers to address some typical bioinformatics
problems, such as structure recognition and docking.
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tructural biology and bioinformatics often lag behind when

it comes to the application of cutting-edge Machine

Learning (ML) algorithms, highlighting a technological gap
between algorithms used at the forefront of ML research and
those adopted in other disciplines. The stunning results recently
obtained by AlphaFold! and RoseTTA fold? in protein folding
prediction demonstrated how advanced ML, and more specifi-
cally deep learning, could be the key to breakthroughs in unsolved
biological and biophysical problems. The sometimes significant
difference in ML technology between fields of science could
indeed open opportunities for technology arbitrage, where
methods that are well-known in a specific context, such as
computer vision or natural language processing, could be ground-
breaking when applied in other context in which they are
unknown but potentially valuable3->,

In particular, one of the aspects of structural biology that is
most severely affected by this uneven technology availability is
ML applied to protein structures. Most of the existing structure-
based computational approaches only indirectly use the structural
information available (i.e., PDB structures®). Instead, these
methods compute features from PDB structures, such as statis-
tical potentials’, and then they feed these precomputed values
into conventional ML methods, such as Support Vector
Machines, Random Forests, or Multilayer Perceptrons®®. This
can be a suboptimal solution, since nontrivial structural infor-
mation might not be directly picked up by statistical potentials
and thus be inadvertently discarded in the process. Nonetheless,
researchers had to adopt this approach because of (1) the lack of
tools to seamlessly translate the complex data structures used to
represent 3-dimensional macromolecules structures into formats
suitable for easy ML analysis and (2) the lack of flexibility of
conventional ML methods when it comes to deal with complex
structured input data instead of classical one-dimensional feature
vectors.

Early applications of computer vision deep learning techniques
to structural biology have already shown their effectiveness for a
large number of applications, including protein-binding site
prediction!9-12, mutation effect prediction!3, and docking!4. A
broader access of the scientific community to these algorithms
will speed up this significant step forward in the field.

In recent years, following breakthroughs in deep learning in
fields such as computer vision, image recognition, and natural
language processing!>1, companies such as Google and Face-
book have contributed consistently to the democratization of the
access to neural network (NN) technologies by developing flexible
open-source libraries, such as TensorFlow and Pytorch!”:18,
These libraries let researchers build ad hoc models for any given
problem by allowing the use of arbitrarily complex multi-
dimensional tensorial structures as input features, thus removing
the methodological limitations of classical ML methods men-
tioned. Since the tools provided by these flexible NN libraries are
nowadays accessible to every researcher, the gap that remains to
be filled to enable the application of deep learning algorithms in
structural biology (i.e., end-to-end learning on biological struc-
tures) consists in providing reliable and transparent instruments
to seamlessly translate the raw 3D macromolecule structures from
PDB into ML-suitable formats. These new formats can then be
used directly as input features in the most recent NN archi-
tectures, including Transformers and 3D convolutional NN?.

In this paper, we aim at filling this gap by presenting PyUUL, a
Pytorch!8 library designed to process 3D structures of biological
molecules (ie., proteins, drugs and nucleic acids), translating
them into differentiable, ML-ready tensorial representations, such
as volumetric grids or point clouds. In other words, PyUUL
allows researchers to apply any newly developed NN architecture
to their favorite structural biology problem by translating the

structural data into ML-ready data structures. This translation is
completely transparent to the user, therefore masking the
intrinsic complexity of the 3D structures. Furthermore, PyUUL
follows a completely end-to-end approach, meaning that it can be
used as an internal passage of a NN, with backpropagation gra-
dients flowing through it. PyUUL is available as Python package
at https://bitbucket.org/grogdrinker/pyuul/.

Results

PyUUL supports different structure representations. PyUUL
provides an interface between biological structures, such as PDB
structures®, and deep learning algorithms. The user can choose
between three different type of tensor representation of biological
structures: voxel-based, surface point cloud, and volumetric point
cloud (Fig. 1A).

Voxel-based representation. In voxel-based representation, each
macromolecule is represented as a 3D box in which every voxel (a
3D pixel) has a size in Angstroms defined by the user (resolution).
Every atom is described as a sphere in this space, where the radius
corresponds to the atomic radius. Atoms are therefore not
represented as point-like entities, but as solid structures. Similarly
to pictures’ Red, Green, Blue colors, each voxel contains several
channels, describing different types of atomic information. In
PyUUL each channel specifies the density for a specific atom type.
The content and the number of channels is fully customizable by
the user. This approach has been successfully used in other
studies!0:13:20,

Surface point-cloud representation. The second data structure
that the user can choose to represent the target 3D biological
structures is the surface point-cloud representation. In this set-
ting, the macromolecule is represented with a group of points
sampled on its surface. This data representation has recently
shown to have several advantages?!?2, and the deep learning
algorithms that can efficiently handle it are rapidly gaining
popularity?>24, While this representation is fairly new in ML, this
topic of research is very active in computer vision, in particular in
object recognition®>.

This type of representation is often used to address problems in
which the information comes from the object surface. While the
object is placed in a 3D environment, the information lays on a
2D surface (called manifold). The idea is therefore to efficiently
store the information of the surface only, avoiding to use way
larger 3D voxel-based volumes. Since this type of representation
is often used in face and object recognition?%27, as well as in
automatic car driving?8, many of the algorithms developed in this
field are invariant to translations and rotations, making them
potentially valuable for protein analysis.

Volumetric point-cloud representation. The last representation
that is provided by PyUUL is similar to the previous one, but in
this case the points are not sampled just on the surface, but also
inside the volume of every atom. This can be useful when dealing
with large macromolecules that are hard to handle with voxel-
based approaches, but where it is important not to lose volu-
metric information. This method allows sampling points from the
volume occupied by every atom.

PyUUL volumes are deep learning-ready. A common task in
structural biology consists in predicting a specific structural fea-
ture of proteins, where this feature depends in a certain way from
the 3D structure of the target proteins or of certain regions. This
could be the case of real-world tasks, such as protein-protein
interaction prediction or active sites/epitopes identification!0-2°,
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Fig. 1 Overview on the functionalities of PyUUL. A Different 3D data representations available using PyUUL of bovine pancreatic trypsin inhibitor (PDB ID:
1BPI (https://doi.org/10.2210/pdb1BPI/pdb)). From left to right: voxel representation (Subfigure 1), surface point-cloud representation (Subfigure 2), and
volumetric point-cloud representation (Subfigure 3). B Schematic illustration of how the multichannel voxel representation works using PyUUL. The input
3D structure of a protein is represented in a voxel grid, where each channel shows the occupancy of nitrogen, carbon, and oxygen atoms. This 3-channel
voxel representation can be used as input for a 3D convolutional neural network that iteratively samples the entire protein volume and processes this data
to address problems such as protein pattern recognition or protein-ligand interaction learning.

In this context, PyUUL can transform the protein structures to
3D volumes that can then be handled by NN modules, such as 3D
convolutional NN3.

As an example of how NN models can be used with PyUUL,
we built a NN to recognize alpha helices within a protein
structure. We chose this example because, while it is sufficiently
easy to be solved by a relatively simple NN, it nonetheless clearly
requires the extraction of structural information from the
voxelized volume describing the input proteins, showing that
the protein is correctly transformed into a tensorial data structure
and structural information is preserved. Moreover, the NN is
sufficiently simple to allow a clear visualization of its learning
process. Figure 1B shows an overview of the steps performed to
build a volume-based NN wusing PyUUL. Figure 2A and
Supplementary Movie 1 show the evolution of the 3D convolu-
tional NN during training. The voxels highlighted in gray are the
ones that the NN, at each specific learning stage, recognizes as
part of an alpha helix. As shown in the figure, during the
increasing training epochs, the NN rapidly converges to the
identification of the alpha-helix regions. The purpose of this
example is to show that PyUUL’s volumetric representation is
highly informative and that ML methods can easily model
structural biology concepts (e.g. secondary structures) from it.

The tensorial representation provided by PyUUL is the
standard input of several computer vision utility libraries such
as torch-Geometric3! and torch-points3d32. The first one
provides bleeding-edge network modules such as graph-CNN,
while the second one also includes several network architectures
that can be used in a plug-and-play fashion and, if paired with
PyUUL, in a completely out of the box manner.

We provide a tutorial for this example at:
pyuul.readthedocs.io/examples/examplel.html

https://

PyUUL works also with nucleic acid and small molecules.
PyUUL has been built to be as general as possible. Therefore, it is
possible to convert any biological molecule to tensorial repre-
sentation, including small molecules and nucleic acids. This fea-
ture has the purpose to help the user to apply modern ML
algorithms in topics such as drug repositioning®> or chemical
discovery34. Moreover, the possibility to handle nucleic acids can
be useful when dealing with super-molecular complexes or
ribozymes. The current version of PyUUL provides the data of
most of the common non-protein biological molecules and
atoms. However, it can also deal with molecules containing more
exotic atoms if their atomic radius is provided. A tutorial on how
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Fig. 2 Application of PyUUL to structural bioinformatics problems. A The learning process of a 3D convolutional neural networks on a structural biology
task: the picture shows the training procedure of a neural network on a voxel representation of a protein. The network iteratively learns to recognize alpha
helices. The voxels that are predicted to be part of an alpha helix at each leaning stage are highlighted in gray. Supplementary Movie 1 shows the complete
evolution of the network during training. B The learning process of a 3D Siamese NN trained with metric learning. The network assigns a 2D vector (two
latent features) to every protein in accordance to its 3D representation obtained with PyUUL. Each point represents a protein and each color a different
fold. With the training, it optimizes this signature in a way that proteins belonging to the same protein class have a similar signature. Supplementary

Movie 2 shows the complete evolution of the network during training. € Optimization of the conformation of GTP. The figure shows a neural network
optimizing the conformation of GTP in its binding pocket. This is done first training a network to recognize original GTP-protein complexes from the ones in
which GTP has been randomly rotated, defining a scoring function that describes how likely the protein-ligand complex is to be the optimal one. The

parameters of the network are then frozen and the network is asked to reposition GTP to the right position in the pocket of their respective protein. This

protein-ligand optimization can be done simply calculating the gradient of the scoring function with respect to the GTP coordinates. Supplementary

Movie 3 shows the complete evolution of the network during training.

to generate volumetric representations of unsupported molecules
is provided in PyUUL’s documentation.

End-to-end structure-based protein clustering with PyUUL.
Novel NN approaches often blur the division between regressors
and classifiers, since their flexibility allows these models to
address intermediate flavors of prediction tasks. One example of
this is metric learning3?, a technique that allows NNs to learn
how to map input objects into a learned latent space in which a
target definition of distance between these objects (metric) is
preserved. This is for example used for one-shot learning in image
recognition3®. Specific NN architectures, such as Siamese net-
work, have been introduced to solve these tasks3’. Siamese net-
works are a type of network architecture that takes an input and
provide a latent embedding or a “signature” of the input. The
output of the network is abstract and has no direct biophysical
meaning. However it acquires specific properties when compared
with the embeddings obtained from other inputs (i.e. the eucli-
dean distance between two embeddings).

Another common aspect that is shared between computer
vision and ML on 3D biological structures is that the models used
should be rotation invariant to recognize objects regardless of
their rotation (i.e., the angle at which the picture has been taken).
To overcome this problem various solutions have been proposed,
and among the most recent, an invariant architecture called
Spatial Transformer (ST)3® has been introduced. STs are modules
that learn to perform an instance-specific affine transformation of
the inputs, thus allowing the NN to learn the optimal set of
transformations (e.g. rotation, scaling, shear, etc.) to extract
information from each input instance, thus making the model
more robust to perturbations. In the following we show that these
solutions are directly applicable to 3D structures within PyUUL’s
framework.

As a proof of concept showing the capabilities of PyUUL, we
propose a NN for rotation-invariant metric learning on protein
structures for protein fold recognition. We collected 491 protein
structures divided into 4 different SCOP3 classes and we trained
a NN to perform a supervised clustering based on the PyUUL
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volumetric protein representation. The NN we used is a 3D
Siamese NN37 that takes as input the PyUUL voxel representation
of the proteins and maps them into a latent space, using the ST
layers®® to ensure rotation invariance. This latent space is an
abstract vectorial representation of the proteins, where proteins
with similar structures are represented by similar vectors, while
proteins with completely different structures are more distant (see
Methods for more details). In other words, we built a supervised
clustering algorithm that assigns a signature to proteins based on
the shape information present in the PyUUL volumetric
representation used as input.

The learned latent space is 5D, thus we performed Principal
Component Analysis, a linear method for dimensionality
reduction based on rotation of the reference frame to maximize
the variance of each axis, in two dimensions to allow the
visualization of the trajectories of the points representing the
input proteins during training (see Fig. 2B and Supplementary
Movie 2). A 5D encoding was chosen since the network had
convergence problems with a smaller embedding. We can see
that, in this latent space, the points representing proteins
belonging to different classes are moved away from each other,
while proteins from the same class are moved closer together,
ending up with 4 clusters corresponding to the training classes.
Since the NN learns distances in a metric space, the positions on
the plot are arbitrary, given that the distances are preserved.
Metric learning with PyUUL can be used to cluster proteins
accordingly with any structure-related global characteristic of
proteins. More details about the results of the proposed network
can be found in Supplementary Note 3.

Gradient-based protein structure optimization with PyUUL.
An important problem in structural biology is the optimization of
a protein or a drug using some predefined objective function,
such as a force field. This is the case of the force field-based
optimization that can be performed by Rosetta?? or FoldX*!, in
molecular dynamics simulations, in docking and in loop
modeling.

Let us suppose that in our optimization task the objective
function is provided by a differentiable force-field F and that the
target biological structure (i.e. a protein) is represented by its 3D
coordinates X. s = F(X) thus provides a score s of the quality of
the global structure. In the case of a force-field, this score would
be a AG and the highest score conformation would be the one
with the minimum energy.

However, the objective function F might be any differentiable
function, including for example one derived from an arbitrarily
complex NN that has been trained to recognize the minimum
energy states of a specific class of biological structures. In this
case, the score would not have a direct physical meaning, but its
minimization would have the same effect as AG protein
optimization.

The volumetric representation provided by PyUUL is fully
differentiable and this means it can be used as an internal step in
a gradient-descent optimization. More specifically, we can
calculate the gradient dF(X)/0X of the score s with respect to
the input coordinates X. We can then use the standard gradient-
based optimizers provided by Pytorch (that are usually used to
train NNs) to optimize the input structure X by moving each
atom in the direction that maximizes (or minimizes) s. Thanks to
flexibility of Pytorch autograd mechanism!8, this is possible in
just a couple of lines of code. Alternatively, as suggested by
AlQuraishi4?, it is possible to compute OF(X)/(0¢dy), thus
differentiating s with respect to the torsion angles ¢, v, so that the
optimization of the position of the atoms natively preserves the
bond distances.

To show that this kind of end-to-end optimization is possible
with PyUUL, we tackled the task of optimizing guanosine
triphosphate (GTP) structure in its binding pocket. GTP is a
molecule that plays a crucial role in many regulatory processes,
often promoting a conformational change,3. The orientation of
the ligands, however, is often troublesome for standard docking
algorithms*4. We thus used PyUUL to build a NN to learn the
optimal conformation of the protein-GTP complex and then used
it to dock the ligand into the pocket. To do so, we first collected
515 proteins in complex with GTP (available in the git
repository). For every protein, we rotate the GTP at a random
angle, and we train a 3D convolutional NN to recognize the
rotated conformations from the original ones. After the training,
we give to the NN a protein-ligand complex in which the GTP
has been randomly rotated and translated, and we use the NN to
put it back to the optimal place, effectively performing an
optimization of the GTP-protein binding. The whole procedure
has been performed in grouped 5-fold cross-validation, in which
the intergroup sequence identity is at most 30% in order to
prevent the network from learning just the amino acidic
composition. The proteins involved in the classification are
therefore non homologous to the one on which the GTP pose
optimization test is performed. 473 out of 515 of the optimized
complexes converged to a solution, while 42 did not converge
after 100 iterations. Figure 2C and Supplementary Movie 3 show
the iterative refinement of the GTP position performed by the
volume-based NN for 5H74 (https://doi.org/10.2210/pdb5H74/
pdb). More details about performances and validation can be
found in Supplementary Note 3 and Supplementary Fig. 2.

Protein signature encoding with point clouds. In previous
sections we described possible applications of PyUUL in docking
and supervised clustering using pure volumetric ML techniques.
In this section we want to merge these two concepts and generate
fixed-length signatures for each GTP binding pocket. Such
embedding could be used, for example, for in-silico drug
screening, similarly to what has been done with molecular fin-
gerprints for small molecules. We therefore want to find an
encoding that preserves the similarity between pockets. To do so,
we are going to use surface cloud point representation. The
network architecture, however, could be used with volumetric
point clouds as well. First, for each GTP binding protein under
scrutiny we calculated the surface point-cloud representation
using PyUUL. We then used the Fast Global Registration algo-
rithm, an algorithm often used for 3D point clouds registration in
computer vision which finds the optimal superimposition
between two point clouds, to estimate the pairwise distance of
each pair of pockets. We then applied a variant of the encoder
FoldNet proposed in ref. 4. The network takes as input a cloud
point and it generates a signature of a fixed size. For more details
about the network architecture refer to the methods section.
Differently from protein recognition section in which a label
(protein class) was assigned to every protein, here we only have
pairwise distances. Metrics learning and contrastive loss are
therefore not directly applicable to the problem. In order to
obtain the pocket signatures, we propose a regression-based
approach: we calculate the signature of each pocket, we then
calculate a pairwise distance matrix between them and then we
compare it with the one obtained with the fast global registration
algorithm. The network therefore learns to assign signatures that
preserve the distance matrix of the point clouds. We tested this
approach on the GTP binding pockets used in previous section
performing a 5-fold stratified cross-validation in which proteins
with SI greater than 30% are grouped together. Using 10 features
as encoding dimension we could reach a Pearson’s correlation
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coefficient between the signature based and the cloud point based
pairwise distance matrix of 0.72. More information about the
network can be found in Supplementary Note 3 and Supple-
mentary Table 1.

GPU parallelization, sparse tensors, and resources usage.
PyUUL can calculate the volume using sparse tensors from
Pytorch. This often provides a boost in performances, in parti-
cular when many volumes are batched together. This results from
the fact that empty voxels are often predominant. Even if cur-
rently Pytorch support for sparse NNs is somehow limited, many
third-party libraries alongside with the Facebook research group
are currently been developed to allow sparse computations*C.
PyUUL has full GPU calculation support, and all the operations
can be handled by both the CPU or the GPU. Supplementary
Fig. 1 shows a benchmark of the speed performances and RAM
requirements.

Discussion

In structural biology, the adoption of the latest deep learning
algorithms has been slower than in other fields of science. The
main factor has been that biological structures are stored in
peculiar data formats, which are not trivial to use as inputs for
deep learning methods. We developed PyUUL to solve this pro-
blem by connecting the raw structural data contained in mac-
romolecules with the input formats required by deep learning
algorithms (i.e., NNs).

There are other publicly available packages that can convert
biological structures to volumetric (mainly voxel-based)
representations??47. However, in PyUUL the volumetric trans-
formation is performed in a differentiable way, meaning that the
gradient calculated by Pytorch can pass through it. This feature is
essential for the development of end-to-end sequence-to-struc-
ture NN, since the gradient is supposed to flow from the input to
the loss function without interruptions.

The recent success of AlphaFold*3, that has an end-to-end
architecture, in the CASP14 competition highlighted the potential
of this type of NN. PyUUL can therefore be used to easily
implement 3D-based NN modules in such architectures.

PyUUL is an open-source software, which will continue to be
updated and expanded based on community feedback and the
advancements in the field.

Methods

PyUUL implementation. PyUUL is implemented in Pytorch!8. The autograd
function of Pytorch allows the automatic propagation of the gradients between
subsequent mathematical operations and it natively supports GPU computation. In
the following sections, we describe the steps required to transform biological
macromolecules structures in volumetric entities.

Processing biological structures with PyUUL. PyUUL has been designed to be as
transparent as possible to the user. It provides some basic utilities and parsers to
deal with standard PDB files. utils.parsePDB takes as input a single PDB file
or a folder containing PDB files and returns a tensor with the coordinates and a list
of atom names. The atom names can therefore be used to create channels
(utils.atomlistToChannels) and a tensor of radius (atomlistToR-
adius). These two functions provide the standard channels and atoms radius of
PyUUL, but the user can redefine both these tensors in order to change (1) how
atoms types are grouped together and (2) the radius of each atom type.

Voxel-based representation. In the following section, we describe how the voxel
representation of the biological structures is obtained.

To translate a PDB structure into a voxelized volume, the first step is to define
the volume’s boundaries. PyUUL starts by building a parallelepipedic box around
the input structure and divides it into voxels. Every voxel has a side length that can
be defined by the user (default=1 A), which determines the resolution of the
output 3D representation of the volume. When multiple input structures are given
as input (coordinates and radius with batch greater than 1), the box is defined in a

way that it contains all the different structures. This can be seen as 3D padding, and
it allows a fast and effective batching of the tensors.

PyUUL estimates the volume occupied by an atom as a function of its radius.
Atoms are therefore not simply point-like entities, but sphere-like solid objects.
This occupancy function needs to be differentiable to allow Pytorch to propagate
the gradient in the subsequent calculations. Operations that requires gradient
calculation are performed using pytorch 1.9, while the others are done using
numpy#® 1.19. Scikit-learn 1.0.1% is used for scaling procedures. PyUUL provides
two volume density functions, that slightly change the definition of the volume
associated to each atom. The user can decide which function to use passing the
corresponding parameter to the Python object (see online documentation for more
information). The first one is a sigmoid-like function, as shown in Eq. (1)

1
1+ esd=ra)

where V,(d, r,,) is the fraction of volume occupied by atom a of radius r, at distance
d by its center, and s is a steepness parameter (default = 10) that defines how fast
the atom occupancy decreases at distances greater than their radius. In more
practical terms, this function defines the occupancy of an atom with a sigmoid that
has the inflection point in correspondence of the point in which the distance is
equal to the radius of the atom.

The second one is the one defined by Li and coauthors in ref. °! and described
in Eq. (2)

V(d,r,) = ©)

2
Vatd.r) = e~ ) @

To compute the final volume occupied by the atoms, we need to change the
reference system from the atom point of view to the voxel one. We thus need to
integrate over every voxel in the box. In other words, for each voxel we have to sum
the occupancy generated by every atom. To reduce the computational requirements
of the library and given the fact the contribution to the volume of an atom
decreases exponentially for distances greater than the atom radius, every atom at a
distance greater than 10 A from the point in the volume is considered to have
contribution equal to 0. This value can be adjusted by the user. For the sigmoid-
based occupancy function, the occupancy of a voxel is defined as the sum of the
contribution of each atom to the point in the center of the voxel (Eq. (3)).

N/Z
VOXEL;; = min (ﬂZ::l V(ICijx — Xalls7a))s 1) 3)

where N, is the number of atoms in the channel under consideration, x,, are the
coordinates of Atom n, r, is the radius of Atom #, i, j and k are three integers that
identify the coordinates of the voxel in the box and Cyj is the center of the voxel i,
j k.

For what concerns the Li’s occupancy function, we used Equation 2 of ref. °! as
shown in Eq. (4):

Nu
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For both functions, every channel is considered as independent and the atoms
belonging to different channels do not interact nor share volumetric contributions.

Surface point cloud. The surface point cloud is generated in two steps: in the first
one, points are sampled around each atom using a Fibonacci lattice on a sphere of
the radius of the atom. The usage of Fibonacci lattice ensures that the points are
sampled homogeneously on the surface of the sphere. We than calculate the
volumetric occupancy of each sampled point using Eq. (4). By contrast with the
voxel representation, we investigate the occupancy on the sampled points instead of
the center of the voxel. We therefore remove all the points that have a volumetric
occupancy greater than 0.5, removing the part of the atoms’ surface that is buried
by other atoms. To have a constant number of points per structure in a batch, we
randomly sample a number of points (defined by the user, default 5000) from each
structure.

Volumetric point cloud. Differently from the surface point cloud, in the volu-
metric point-cloud representation, we do not have to deal with occupancy, since
this representation has the goal to sample points inside the protein’s volume. For
each atom, we therefore randomly sample points with a multivariate 3D Gaussian
probability distribution with mean equal to the atom coordinate and ¢ equal to the
radius of the atom. As in previous case, we randomly sample a number of points
(defined by the user, default 5000) from each structure to obtain batches with
constant number of points.

Neural network for alpha-helix identification. The goal of this network is to
show that a NN is capable of converging to a meaningful solution using a voxelized
representation of a protein. For this purpose, we used a single protein (PDB id:
1WOU (https://doi.org/10.2210/pdb1WOU/pdb)) since this protein has both alpha
helices and beta sheets. We parsed the protein structure using the util-
s.parsePDB function, obtaining its coordinates and the atom names. We then
used the functions utils.atomNamesToRadius and
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utils.atomNamesToChannels to obtain the atomic radius and the channels
respectively (with default parameters, see Supplementary Note 1 for more infor-
mation). We then generated the voxel representation of the protein calling the
VolumeMaker object.

The NN consists of 3 layers of 3D convolutional modules (with respectively (19,
10, 10) channels) followed by 3-layer feed-forward modules (with (100, 100, 1)
neurons). See Supplementary Material S2.1 for more details about the NN. The
labels on which the network has been trained were a 3D tensor, assessing if every
pixel contained an alpha helical region (positive label) or not (negative label). The
network was trained for 200 epochs using binary cross-entropy as loss function
with the Adam optimizer and learning rate of 0.01. The code is available as a
tutorial in the library documentation.

Network for gradient-based protein structure optimization. For what concerns
the GTP optimization, we started selecting 515 proteins in complex with GTP from
PDB®. The complete data set is available in the PyUUL git repository. We calcu-
lated the voxel representation of each complex using the functions described in
previous section with a resolution of 1 A. However, in this case we used the reduced
number channel hashing (see Supplementary Note 2 for more information about
channel hashing). We therefore used 4 channels for the protein atoms and another
4 for the GTP, with a total of 8 channels. To let the network focus on the binding
pocket, we selected a cube of side 11 voxels, with the O’ atom of GTP in the central
one, as already done by other authors*4.

We then built an ST with self attention. The self-attention approach for data
structure of variable dimensions has been described in refs. #32. The ST has the
goal of ensuring invariance to translation, scale, and rotation. It is required since
PDB structures have an arbitrary orientation and the NN predictions should not be
influenced by it. A deeper description of STs can be found in ref. 3.

The NN is thus composed of an ST layer, followed by the self-attention
module*>2, which allows the NN to deal with inputs of variable lengths.

The last part of the network is a 3-layer feed-forward module with ReLU
activation, layer normalization, and dropout. The final output is given as a single
neuron with sigmoid activation. For more information about the architecture, see
Supplementary Note 1.

For every training and test set in the 5-fold cross-validation, we perform the
following steps:

®  Rotation: for every GTP pocket in the train set assign a positive label (1) to
the original complex conformation and a negative label (0) to a random
rotation centered in the O5" atom of the GTP.

® Training: We train the network described above for 100 epochs to
discriminate rotated complexes from original complexes using binary
cross-entropy as loss function.

®  Optimizing: For every complex in the test set, we randomly rotate and
translate (translation sampled from a 3D multivariate normal distribution)
the GTP. We then evaluate the transformed complex with the trained NN,
we calculate the gradient with respect to a transformation matrix (rotation
and translation) and we perform a gradient-based optimization finding the
complex that maximizes the output of the network. In order to limit the
numerical issues of gradient vanishing, the optimization is performed
starting from 10 random transformations of the input. In other words, we
reposition the GTP finding the conformation in which the trained network
gives the highest “correctness” score.

Siamese network for end-to-end structure-based protein clustering. To assess
the capability of using PyUUL to compress macromolecules structural information
in a meaningful way, we selected SCOP families with more than 100 members that
did not belong to the same SCOP fold. We therefore selected 419 proteins belonging
to 4 families. We decided to focus on a small number of families to easily visualize
the output in two dimensions. We split the families in train and test subsets (80%
train and 20% test) and we used the voxelized representation offered by PyUUL
(resolution of 2 A) to feed a Siamese NN and perform supervised clustering.

The network architecture used to perform the supervised clustering of proteins
is the same as for GTP optimization, with the exception that it has two neurons as
output. The network is trained using a contrastive loss from the Pytorch metric
learning library®3. Contrastive loss train the network to give similar encodings to
proteins belonging to the same cluster and different ones to the ones belonging to
different clusters.

Then we trained the network for 2000 epochs, using the Adam optimizer with a
learning rate of 0.01. Protein encoding has been performed in 5 dimensions to get
fast convergence, but it is an arbitrary parameter of the network, which can be set
by modifying the number of output neurons.

FoldNet for GTP binding pocket signature encoding. In order to show an
example of usage of the cloud point representation provided by PyUUL, we built a
network that compresses structural information of GTP binding pockets and
encodes it in a fixed-size array. As dataset, we used the dataset used in “GTP-
protein conformation optimization" section. However, form the 515 proteins, we

removed 78 proteins that had multiple GTP binding pockets, obtaining a dataset of
437 pockets. Using a pymol®* script, we removed the atoms not belonging to the
binding pocket (distance threshold of 5A). Using PyUUL’s object Point -
CloudSurface, we generated the point cloud of every pocket, removing all
atoms not involved in the binding of the GTP (based on a distance threshold of
5Aform any GTP atom) and we obtained their surface point-cloud representation
using PyUUL. Using the fast global regularization algorithm implemented in torch-
point3d32 library and proposed by Zhou and coauthors®®, we superimpose every
pocket pair and we estimate the pairwise distance using the MSE of the matching
points using the get _match function of torch-points3d. The pairwise distances
are the labels of our regression problems that the network will learn from. The
network architecture is a variant of the FoldNet encoder developed in ref. 4°. This
type of architecture is well known in computer vision and, iteratively applying 1D-
convolutional filters and pooling to the input cloud point, provides a permutational
invariant (the order of the points of the cloud does not influence the learning
procedure) prediction. The NN maps the cloud point in an arbitrary number of
dimensions that represents an abstract description of the object under scrutiny.
The only difference between our architecture and Tao’s network is the presence of
an additional 3-layers feed-forward sub-network with 10 each neuron on top of the
encoder and the fact that all activations have been changed from ReLU to
hyperbolic tangent. All the other parameters have not been changed. A detailed
description of the original foldNet network can be found in the relative article®>.
Training and testing has been performed in a 5-folds stratified cross-validation
setting, grouping together proteins with a sequence identity higher than 30% . The
network has been trained for 30 epochs with Adam optimizer, learning rate of
0.001 and batch size of 50.

Computational resources requirements. The speed and RAM consumption
performances calculation has been performed on a data set of 100 proteins of size
between 100 and 200 amino acids. The data set is available in the Git repository.
The speed tests have been performed on an Intel i7-8850H CPU and an Nvidia
P1000 GPU.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The PDB structures used in this study are available at https://bitbucket.org/grogdrinker/
pyuul. All the structures have been downloaded from the Protein Data Bank

(PDB)®. Source data are provided with this paper.

Code availability

A Python implementation of the algorithm is available at https://bitbucket.org/
grogdrinker/pyuul/. It can also be installed via the pyuul PyPI (https://pypi.org/project/
pyuul/) or conda package (https://anaconda.org/grogdrinker/pyuul).
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