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Abstract
Transforming growth factor-beta (TGF-b2) is an important cytokine regulating immune cell function. However, whether TGF-b2
controls the invasion of colorectal cancer (CRC) by immune cells is unknown. Therefore, we evaluated the expression of TGF-b2
usingmultiple databases and determined the relationship between TGF-b2 expression and tumor immune infiltration defined by a set
of genetic markers. The analysis demonstrated that the expression of TGF-b2 is closely related to the outcome of many cancers, and
this correlation was particularly strong in CRC. In addition, the increased expression of TGF-b2 was significantly associated with the
expression of various markers of specific immune cell subpopulations, and overexpression of TGF-b2 was closely related to the
prognosis of colon cancer patients. Moreover, TGF-b2 was related to the prognosis and infiltration of the tumor by immune cells in
CRC patients. The obtained results indicate that TGF-b2 is a critical factor regulating the recruitment of immune cells and controls
their infiltration into colorectal tumors. Thus, high expression of TGF-b2 not only facilitates the prognosis in CRC patients, but also
may provide a new target for the treatment of CRC.

Abbreviations: CRC = colorectal cancer, ACC = adrenocortical carcinoma, COAD = colon adenocarcinoma, CTLA4 = cytotoxic
T lymphocyte-associated antigen 4, DCs = dendritic cells, GEPIA = gene expression profile interactive analysis, HR = hazard ratio,
KIRC = kidney renal clear cell carcinoma, OS = overall survival, PBMCs = peripheral blood mononuclear cells, PD-1 = programmed
death 1, PD-L1 = programmed death ligand 1, PPS = post-progression survival, STAD = stomach adenocarcinoma, TAM = tumor-
associated macrophages, TIMER = tumor immunoassay resources.
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1. Introduction
Colorectal cancer (CRC) is one of the most deadly cancers
worldwide, second only to lung, liver, and stomach cancers.[1]

One of the primary causes of its poor prognosis is tumor
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metastasis.[2] Immunotherapy has become the main treatment for
CRC and holds a great promise for the treatment of mismatch-
repair-deficient and microsatellite instability-high metastatic
CRC.[3] Immunotherapy has provided antitumor effects in
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malignant melanoma and non-small cell lung cancer by targeting
cytotoxic T lymphocyte-associated antigen 4 (CTLA4), and
inhibitors of programmed death 1 (PD-1) receptor, and
programmed death ligand 1 (PD-L1).[4,5] However, in metastatic
CRC, anti-CTLA4 shows poor clinical efficacy,[6] and anti-PD-1
and anti-PD-L1 demonstrated only partial improvement in
patients with advanced gastric cancer and colon cancer.[7–9]

Infiltration of the tumor by immune cells is particularly relevant
to patient prognosis, and tumor-associated macrophages (TAM)
have an impact on the prognosis and efficacy of chemotherapy
and immunotherapy.[10] Therefore, it is essential to elucidate the
immune phenotype of CRC and understand how immune cells
control this type of cancer. These advances will help to identify
novel immunotherapy targets in CRC.
Transforming growth factor-beta (TGF-b) is a cytokine that

has an important function in immune responses and is
particularly relevant to the development of malignant
tumors.[11–13] The TGF-b Family comprises three members,
TGF-b1, TGF-b2, and TGF-b3, which have essential functions in
vitro.[14] TGF-b1 and TGF-b2 affect tumor progression by
controlling the activity of stromal cells and tumor cells.[15,16]

Most cancer cells are not susceptible to TGF-b-induced inhibition
of growth, and resistance to its inhibitory activity is accompanied
by an enhancement of tumor growth-promoting activity of TGF-
b.[17,18] A low level of TGF-b1 expression is associated with
disease-free and overall survival (OS) of cancer patients and
constitutes an independent prognostic factor.[19]

TGF-b signaling can induce strong immunosuppression. In
addition to other cells in the tumor microenvironment, TGF-b
can be secreted by tumor cells and immune cells.[20,21] It drives
the epithelial-mesenchymal transformation of tumor cells,
enhancing tumor progression.[22] Inhibition of TGF-b signaling
prevents metastasis or further development of certain advanced
tumors such as CRC and gastric cancer,[23–25] while TGF-b1 can
impair immune cell responsiveness[26,27] and promote angiogen-
esis.[28]

TGF-b is a potent regulator of the tumor microenvironment. It
controls the interactions among tumor, immune, and stromal
cells, while simultaneously regulating cytokine production.
Peripheral blood mononuclear cells (PBMCs) are key immune
cells capable of secreting cytokines. The interaction between
PBMCs and cancer cells can either induce or suppress the tumor-
specific immune response, thereby determining whether tumor
cells undergo apoptosis or cancer progresses more rapid-
ly.[21,29,30] Tumor-PBMC interactions are mediated by both
direct intercellular contact and cytokine-dependent signaling
pathways. Certain tumors can induce the differentiation of naive
peripheral CD4+ T cells into CD4+ CD25+ regulatory T cells by
secreting TGF-b.[31–33] Additionally, in certain cancer types,
including colon cancer, the release of tumor necrosis factor-a,
interleukin-1b, and interferon-g is elevated upon interaction with
lymphocytes.[34] However, it is unclear how TGF-b2 regulates
tumor progression and immune cell infiltration in CRC.
The present study utilized the Oncomine and PrognoScan

databases and Kaplan-Meier plotters to determine the relation-
ship between the expression of TGF-b2 and patient prognosis.
Moreover, the impact of TGF-b2 on tumor-infiltrating immune
cells in different tumor microenvironments was assessed using
tumor immunoassay resources (TIMER). This investigation
provides novel insights into the functional role of TGF-b2 in
CRC and proposes a potential mechanism by which TGF-b2
controls the interaction between immune cells and tumors.
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2. Materials and methods

2.1. Oncomine database analysis

The Oncomine is a comprehensive database compiled from
86,733 samples and 715 gene expression datasets (https://www.
oncomine.org/resource/login.html).[35] This resource was used to
assess the association between TGF-b2 expression and prognosis
in various tumor types.
2.2. PrognoScan database analysis

We evaluated the relationship between TGF-b2 expression and
patient prognosis using the PrognoScan database (http://dna00.
bio.kyutech.ac.jp/PrognoScan/index.html).[36] PrognoScan
searches the relationship between gene expression and patient
prognosis, including OS, post-progression survival(PPS), no-
distance survival and disease-free survival, in a large number of
publicly available cancer microarray datasets.
2.3. Kaplan-Meier plotter analysis

The Kaplan Meier plotter (http://kmplot.com/analysis/) facili-
tates the analysis of the effects of multiple genes on the survival of
patients in 21 different types of cancer, including breast cancer
(n=6,234), ovary (n=2,190), lung (n=3,452), and gastric
cancer (n=1,440).[37] Kaplan-Meier plotter was used to deter-
mine the correlation between TGF-b2 expression and survival
rates of patients with breast, ovarian, lung, and gastric cancers.
2.4. TIMER database analysis

TIMER is a database designed for the analysis of immune cell
infiltration in a variety of cancers (https://cistrome.shinyapps.io/
timer/).[38] The database uses statistical methods validated by
pathological examination to assess the immune infiltration of
tumors by neutrophils, macrophages, dendritic cells, B cells, and
CD4/CD8 T cells. In the present analysis, the TIMER database was
used first to assess differences in the level of TGF-b2 expression in
specific tumor types, and subsequently to explore the association
between TGF-b2 expression and the degree of infiltration of specific
immune cell subpopulations. Kaplan-Meier curve analysis was
performed to investigate changes in the survival of patients with
different levels of gene expressionor immunecell infiltration.Finally,
the correlation of TGF-b2 expressionwith the expression of specific
immune-infiltrating cell subset markers was evaluated.
2.5. Gene expression profile interactive analysis (GEPIA)
database analysis

OnlineDatabaseGEPIA; http://gepia.cancer-pku.cn/index.html) [39]

can be used to verify further the significance of genes identified in
TIMER. GEPIA is an online database that helps to standardize the
analysis of 9,736 tumor samples and 8,587 normal control samples
from the TCGA and GTEx RNA-seq data. GEPIA was used to
evaluate the association between TGF-b2 expression in multiple
tumor types and patient prognosis and between TGF-b2 expression
and the level of specific markers of tumor immune cell infiltration.
2.6. Statistical analysis

PrognoScan and Kaplan-Meier plotters were used to generate
survival curves, and the results of the PrognoScan, Kaplan-Meier
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plotters, TIMER, and GEPIA databases were displayed with the
hazard ratio (HR) and P-values or Cox P-values obtained with
the log-rank test. The data from the Oncomine resource provided
information on rankings, fold-changes, and P-values. Spearman
correlation analysis was used tomeasure the degree of correlation
between specific variables. The following r values were used to
determine the strength of the correlation: 0.00-0.19, “very
weak”; 0.20-0.39, “weak,” 0.40-0.59, “medium,” 0.60–0.79,
“strong,” and 0.80–1.0, “very strong.” P< .05 was considered
statistically significant.
3. Results

The expression of TGF-b2 in various tumors and normal tissues
was assessed first using the Oncomine database. This analysis
documented that, in comparison with normal tissues, the
expression of this gene was increased in CRC, head and neck
cancer, liver cancer, myeloma, sarcoma, that is, in 5 of 20 cancers
evaluated. Additionally, in the bladder, cervical, lung, melanoma,
and ovarian cancers, TGF-b2 was expressed at a lower level than
in normal tissue (Fig. 1A). Detailed findings for different tumor
types are listed in Supplementary Table 1 (http://links.lww.com/
MD/F175). Next, the TCGA and TIMER databases were used to
assess the differential expression of TGF-b2 in specific tumor
types. In comparison with normal tissues, the expression of
TGF-b2 was significantly higher in cholangiocarcinoma, colon
adenocarcinoma (COAD), liver hepatocellular carcinoma, stom-
ach adenocarcinoma(STAD), and thyroid carcinoma tissues and
significantly lower in bladder urothelial carcinoma, breast
invasive carcinoma, kidney chromophobe cell carcinoma, kidney
renal clear cell carcinoma (KIRC), lung adenocarcinoma, lung
squamous cell carcinoma, prostate adenocarcinoma, rectum
adenocarcinoma, and uterine corpus endometrial carcinoma
tissues than in normal tissues. Figure 1B shows the difference
between TGF-b2 expression in tumors and normal adjacent
tissue samples in the TCGA dataset.
Figure 1. Expression level of TGF-b2 in different types of human cancers. (A) TGF-
normal tissues according to the Oncomine database. (B) The TIMER resource wa
tumors in the TCGA database. (

∗
P< .05,

∗∗
P< .01,

∗∗∗
P< .001).

3

3.1. Relationship between TGF-b2 expression and
prognosis of cancer patients

The relationship between the expression of TGF-b2 and the
prognosis of cancer patients was explored using the GEPIA
PrognoScan databases (Supplementary Table 2, http://links.lww.
com/MD/F176). In multiple types of cancer, including blood,
prostate, ovarian, lung, colorectal, breast, and brain cancers, the
patient prognosis was significantly correlated with TGF-b2
expression (Fig. 2A-H). Also,Kaplan-Meier plotter databases
were used to assess the relationship between the expression of
TGF- b2 and the prognosis of various cancer types. This analysis
documented that upregulation of TGF- b2was strongly related to
the poor prognosis of patients with gastric cancer (OS HR=1.88
(95%CI: 1.57–2.24), P< .0001; PPS HR=2.51 (95%CI: 2.01–
3.15), P< .0001; 209908_s_at), breast cancer (OS HR=0.77
(95%CI: 0.61–0.99), P= .039; no-distance survival HR=0.78
(95%CI: 0.62–0.99), P= .043; 209908_s_at) (2K-L), lung cancer
(OS HR=1.23 (1.08–1.4), P= .0013, 220407_s_at; PPS HR=
1.34 (1.04–1.73), P= .025, 220406_at), and Ovarian cancer (OS
HR=1.18 (1.04–1.34), P= .013, 209909_s_at; progression-free
survival, progression-free survival, HR=1.22 (1.07–1.39), P
= .0036, 220407_s_at;) (Fig. 2O-P). Conversely, the expression
of TGF-b2 appeared as a protective factor in the prostate, breast
cancer, colorectal, blood cancer, brain, gastric, lung, and ovarian
cancers. The correlation between TGF-b2 expression and patient
prognosis in 33 cancer types was further evaluated using the
GEPIA database. This analysis demonstrated that the expression
of TGF-b2 is related to the OS in adrenocortical carcinoma
(ACC), STAD, COAD, KIRC, and lower-grade glioma mesothe-
lioma, and the disease-free survival of ACC, STAD, COAD,
lower-grade glioma, uveal melanoma, and pancreatic adenocar-
cinoma (Supplementary Figure 1-4, http://links.lww.com/MD/
F166, http://links.lww.com/MD/F167, http://links.lww.com/
MD/F168, http://links.lww.com/MD/F169). Together, these
results indicate that the high expression of TGF-b2 is significantly
correlated with the poor prognosis of CRC patients.
b2 expression in different cancers is increased or decreased in comparison with
s used to display the expression levels of TGF-b2 in different types of human
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Figure 2. Correlation between TGF-b2 expression and prognosis of patients with various types of cancer. (A-H) GEPIA and PrognoScan databases. (I-P) Kaplan-
Meier plotter database. DFS, disease-free survival; OS; PPS, post-progression survival; DMFS, no-distance survival; PFS, progression-free survival.
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3.2. Relationship between TGF-b2 expression and
infiltration of CRC by immune cells
In cancer patients, tumor infiltration and lymph node metastasis
are independent prognostic factors.[40–42] Therefore, the TIMER
database was used to establish whether the expression of TGF-b2
correlates with the degree of immune cell infiltration in 39 tumor
types (Supplementary Figures 5-9, http://links.lww.com/MD/
4

F170, http://links.lww.com/MD/F171, http://links.lww.com/
MD/F172, http://links.lww.com/MD/F173, http://links.lww.
com/MD/F174). A statistically significant correlation has been
identified between the expression of TGF-b2 and tumor purity in
26 cancer types and between the expression of TGF-b2 and B-cell
infiltration in 14 cancer types. Acorrelation was also present
between TGF-b2 expression and the magnitude of invasion by
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Figure 3. Correlation between TGF-b2 expression and infiltration by immune cells of COAD (colon adenocarcinoma) and ACC (adrenocortical carcinoma) (A) The
expression of TGF-b2 in COAD (n=457) was significantly negatively correlated with tumor purity, and infiltration by with CD8+ T cells, CD4+ T cells, macrophages,
neutrophils, and CDs in COAD. Significantly positive correlation was present, except for B cells. (B) In ACC (n=79), TGF-b2 expression was not significantly
correlated with tumor purity and Bcell, CD8+ T cell, macrophage, neutrophil, and DC infiltration.
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multiple immune cells, such as CD8+ T cells (in 19 cancer types),
CD4+ T cells (in 21 cancer types), macrophages (in 24 cancer
types), neutrophils (in 23 cancer types), and dendritic cells (in 25
cancer types). In ACC, no significant correlation was found
between TGF-b2 levels and infiltration by B cells, CD4+ T cells,
CD8+ T cells, macrophages, neutrophils, or dendritic cells
(Fig. 3A).Similarly, there was no relationship between TGF-b2
levels in CRC and infiltration by B cells; however, in this tumor
type, the expression of TGF-b2 was significantly associated with
the levels of CD8+ T cells (r=0.234259, P< .0001), CD4+ T cells
(r=0.350021, P< .0001), macrophages (r=0.438681, P
< .0001), neutrophils (r=0.336562, P< .0001), and dendritic
cells (r=0.355884, P< .0001) (Fig. 3B). These findings indicate
that TGF-b2 plays an essential function in regulating the
infiltration of CRC by immune cells, and has a particularly
potent effect on macrophage infiltration.

3.3. Correlation between TGF-b2 and the expression of
immune markers

The TIMER and GEPIA databases were used to explore further
the relationship between TGF-b2 expression and immune cell
infiltration, represented by the expression of sets of markers of
various immune cells in COAD, including CD8+ T cell subsets,
total T cells, B cells, monocytes, TAM,M1 andM2macrophages,
neutrophils, natural killer cells, dendritic cells (DCs), Th1 cells,
Th2 cells, Tfh cells, Th17 cells, and T cell subsets. ACC was used
as a control group. The results were adjusted according to tumor
purity in order to identify the correlation between TGF-b2
expression in COAD andmarkers of monocytes (CD86, CSF1R),
TAMs (CCL2, CD68, IL10), M1 macrophages (NOS2, PTGS2),
M2 macrophages (CD163, VSIG4, MS4A4A), neutrophils
(CEACAM8, ITGAM, CCR7), dendritic cells (HLA-DPB1,
HLA-DRA, HLA-DPA1, CD1C, NRP1, ITGAX), Th1 cells
(TBX21, STAT4, STAT1), Th2 cells (GATA3, STAT6, IL13)
Tfhcells (BCL6, IL21), Th17 cells (STAT3, IL17A) and Tregs
(FOXP3, CCR8, STAT5B, TGF-b1). For all markers, the
correlation was statistically significant (P<0.05; Table 1). In
contrast, only 10 immune cell markers were associated with
differential expression of TGF-b2 in ACC (Table 1). In COAD,
the expression of TGF-b2 was significantly correlated with
5

markers of monocytes (CD86, CSF1R), TAMs (CCL2), M1
macrophages (NOS2, PTGS2), and M2 macrophages (CD163,
VSIG4, MS4A4A). In all cases, the association was statistically
significant (P<0.05; Fig. 4). Therefore, the relationship between
the expression of TGF-b2 and markers of immune cells in COAD
was evaluated using the GEPIA database. The correlation
between TGF-b2 and markers of monocytes, TAMs, and M1
andM2macrophages was similar to that obtained using TIMER,
except for the absence of a statistically significant correlationwith
NOS2 (Table 2). These results suggest that TGF-b2 may regulate
the polarization of macrophages in COAD. Data on the
expression of markers of DCs (CD1C, NRP1, and ITGAX)
indicate that high TGF-b2 expression increases DC infiltration in
COAD. Importantly, DCs can increase tumor metastasis by
activating the response of Tregs and inhibiting tumor-specific
cytolytic CD8+ T cells,[43] highlighting the key role of TGF-b2 in
the regulation of tumor metastasis.Also, a significant correlation
was observed between the expression of TGF-b2 and markers of
Tregs and exhausted T cells, including FOXP3, CCR8, STAT5B,
and TGF-b (Table 1), suggesting that TGF-b2 may play a role in
the immune escape of CRC.

4. Discussion

4.1. TGF-b2 is one of the three members of the TGF-b

Family of cytokines that have a wide regulatory function in
cancer. TGF-b cytokines signal through type I and type II
receptors (TGF-bR1 and TGF-bR2), and the signal is transmitted
through downstream regulatory SMAD proteins, which control
critical cellular activities, such as migration, proliferation, and
differentiation. TGF-b cytokines are capable of suppressing IL-2-
stimulated growth of T cells. The present work demonstrated that
TGF-b2 expression correlates with the prognosis of patients with
multiple types of cancer, and particularly strong correlation is
present between high TGF-b2 expression and the prognosis of
CRC patients. The upregulation of TGF-b2 is also a reliable
predictor of lymph node metastasis in CRC patients. Additional-
ly, the performed analyses documented that the expression of
TGF-b2 is related to the expression of several markers of immune
cell subspecies in tumors. Together the current investigation
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Table 1

Analysis of the correlation between TGFb2 and immune cell related genes and markers in TIMER.

COAD STAD ACC

None Purity None Purity None Purity

Description Gene markers cor P Cor P Cor P Cor P Cor P Cor P

CD8+ T cell CD8A 0.13
∗∗∗

0.04 0.26 0.12
∗∗

0.12
∗

0.01 .91 0.12 .31
CD8B 0.09

∗
0.02 0.49 0.11

∗
0.12

∗
0.10 .37 0.03 .78

T cell (general) CD3D 0.06 .18 0.05 0.36 0.05 .28 0.04 .43 0.05 .68 0.15 .20
CD3E 0.14

∗
0.05 0.31 0.06 .19 0.05 .35 0.06 .61 0.05 .65

CD2 0.18
∗∗

0.10 0.05 0.11 .02 0.11 .03 0.04 .74 0.10 .40
B cell CD19 0.04 .35 0.05 0.33 0.13

∗
0.10 .06 0.04 .70 0.06 .63

CD79A 0.15
∗

0.04 0.42 0.14
∗

0.12 .02 0.04 .70 0.11 .37
Monocyte CD86 0.39

∗∗∗
0.33

∗∗∗
0.18

∗∗
0.18

∗∗
0.06 .58 0.19 .11

CSF1R 0.38
∗∗∗

0.30
∗∗∗

0.31
∗∗∗

0.29
∗∗∗

0.13 .25 0.07 .58
TAM CCL2 0.50

∗∗∗
0.45

∗∗∗
0.32

∗∗∗
0.33

∗∗∗
0.20 .07 0.13 .26

CD68 0.18
∗∗∗

0.12 0.01 0.05 .28 0.06 .25 0.16 .15 0.10 .40
IL10 0.26

∗∗∗
0.20

∗∗∗
0.27

∗∗∗
0.29

∗∗∗
0.20 .08 0.15 .21

M1 Macrophage NOS2 0.25
∗∗∗

0.27
∗∗∗

0.18
∗∗

0.18
∗∗

0.46
∗∗∗

0.48
∗∗∗

IRF5 0.07 .11 0.07 0.13 0.17
∗∗

0.17
∗∗

0.00 .97 0.07 .58
PTGS2 0.27

∗∗∗
0.23

∗∗∗
0.33

∗∗∗
0.33

∗∗∗
0.10 .39 0.13 .28

M2 Macrophage CD163 0.40
∗∗∗

0.34
∗∗∗

0.24
∗∗∗

0.23
∗∗∗

0.13 .27 0.06 .60
VSIG4 0.35

∗∗∗
0.27

∗∗∗
0.27

∗∗∗
0.30

∗∗∗
0.07 .51 0.02 .86

MS4A4A 0.35
∗∗∗

0.28
∗∗∗

0.26
∗∗∗

0.27
∗∗∗

0.21 .06 0.15 .20
Neutrophils CEACAM8 0.21

∗∗∗
0.20

∗∗∗
0.02 .74 0.02 .74 0.01 .90 0.02 .89

ITGAM 0.38
∗∗∗

0.33
∗∗∗

0.26
∗∗∗

0.26
∗∗∗

0.22 .05 0.20 .09
CCR7 0.20

∗∗∗
0.12 0.01 0.22

∗∗∗
0.20

∗∗∗
0.01 .96 0.05 .65

Natural killer cell KIR2DL1 0.05 .28 0.01 0.85 0.09 .08 0.07 .15 0.18 .11 0.16 .19
KIR2DL3 0.03 .55 0.00 0.99 0.07 .14 0.05 .34 0.14 .22 0.07 .54
KIR2DL4 0.03 .56 0.09 0.07 0.12 .01 0.14

∗
0.08 .48 0.19 .10

KIR3DL1 0.04 .35 0.01 0.91 0.08 .11 0.07 .16 0.15 .20 0.11 .36
KIR3DL2 0.09 .07 0.02 0.72 0.01 .87 0.00 .94 0.07 .51 0.07 .55
KIR3DL3 0.03 .58 0.04 0.46 0.10 .03 0.12 .02 0.04 .75 0.06 .63
KIR2DS4 0.08 .08 0.06 0.24 0.02 .72 0.00 .99 0.21 .07 0.15 .19

Dendritic cell HLA-DPB1 0.21
∗∗∗

0.12 0.01 0.05 .30 0.04 .47 0.13 .24 0.04 .72
HLA-DQB1 0.10 .03 0.00 0.98 0.09 .07 0.11 .03 0.05 .68 0.03 .83
HLA-DRA 0.23

∗∗∗
0.14

∗
0.04 .44 0.05 .35 0.14 .21 0.05 .69

HLA-DPA1 0.26
∗∗∗

0.18
∗∗

0.01 .84 0.00 .99 0.14 .20 0.05 .66
CD1C 0.37

∗∗∗
0.31

∗∗∗
0.31

∗∗∗
0.32

∗∗∗ �0.18 .11 -0.11 .35
NRP1 0.67

∗∗∗
0.64

∗∗∗
0.57

∗∗∗
0.57

∗∗∗
0.38

∗∗
0.32

∗

ITGAX 0.42
∗∗∗

0.37
∗∗∗

0.28
∗∗∗

0.28
∗∗∗

0.03 .80 0.08 .50
Th1 TBX21 0.12 .02 0.08 0.10 0.07 .15 0.03 .78 0.06 .62 0.12 .02

STAT4 0.21
∗∗∗

0.22
∗∗∗

0.20
∗∗

0.01 .90 0.11 .33 0.21
∗∗∗

STAT1 0.25
∗∗∗

0.03 0.52 0.05 .38 0.20 .08 0.27 .02 0.25
∗∗∗

IFNG 0.02 .74 0.08 0.10 0.09 .09 0.21 .07 0.31
∗

0.02 .74
TNF 0.07 .17 0.09 0.06 0.09 .09 0.03 .77 0.09 .45 0.07 .17

Th2 GATA3 0.21
∗∗∗

0.25
∗∗∗

0.26
∗∗∗

0.35
∗

0.33
∗

0.21
∗∗∗

STAT6 0.16
∗∗

0.05 0.29 0.05 .32 0.37
∗∗

0.38
∗∗

0.16
∗∗

STAT5A 0.01 .81 0.17
∗∗

0.17
∗∗

0.28 .01 0.24 .04 0.01 .81
IL13 0.11 .03 0.08 0.11 0.07 .15 0.22 .05 0.19 .10 0.11 .03

Tfh BCL6 0.24
∗∗∗

0.39
∗∗∗

0.37
∗∗∗

0.01 .92 0.03 .80 0.24
∗∗∗

IL21 0.11 .02 0.02 0.75 0.01 .81 NA NA NA NA 0.11 .02
Th17 STAT3 0.14

∗
0.29

∗∗∗
0.27

∗∗∗
0.12 .31 0.11 .37 0.14

∗

IL17A 0.12 .01 0.08 0.09 0.09 .07 0.18 .10 0.18 .13 0.12 .01
Treg FOXP3 0.26

∗∗∗
0.05 0.29 0.03 .52 0.31

∗
0.32

∗
0.26

∗∗∗

CCR8 0.35
∗∗∗

0.21
∗∗∗

0.21
∗∗∗

0.16 .16 0.21 .08 0.35
∗∗∗

STAT5B 0.25
∗∗∗

0.37
∗∗∗

0.36
∗∗∗

0.29
∗

0.26 .03 0.25
∗∗∗

TGFB1 0.22
∗∗∗

0.38
∗∗∗

0.37
∗∗∗

0.26 .02 0.31
∗

0.22
∗∗∗

T cell exhaustion PDCD1 0.03 .56 0.07 0.18 0.07 .21 0.12 .29 0.26 .03 0.03 .56
CTLA4 0.22

∗∗∗
0.10 0.05 0.10 .06 0.07 .54 0.17 .14 0.22

∗∗∗

LAG3 0.04 .39 0.01 0.86 0.00 .94 0.29 .01 0.34
∗

0.04 .39
HAVCR2 0.30

∗∗∗
0.13

∗
0.13 .01 0.08 .46 0.02 .88 0.30

∗∗∗

GZMB 0.05 .34 0.08 0.09 0.10 .04 0.03 .79 0.02 .84 0.05 .34

CODA, colon adenocarcinoma; CTLA4 = cytotoxic T lymphocyte-associated antigen, IFN-g = interferon-g, 4 LUSC, lung squamous cell carcinoma; STAD, stomach adenocarcinoma; Th, T helper cell; TAM,
tumor-associated macrophage; Tfh, Follicular helper T cell; TNF-a = tumor necrosis factor-a, Treg, regulatory T cell; Cor, R value of Spearman’s correlation; Purity, correlation adjusted by purity. None,
correlation without adjustment. Values are retained to two decimal places.

∗
P< .01;

∗∗
P< .001;

∗∗∗
P< .0001.
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Figure 4. Analysis of the correlation between TGF-b2 expression and immunological markers in COAD (colon adenocarcinoma) and adrenocortical carcinoma
(ACC). (A–D) Scatterplots of correlations between TGF-b2 expression andmarkers of monocytes (A), TAMs (B), andM1 (C) andM2 (D) macrophages in ACC. (E–H)
Scatterplots of correlations between TGF-b2 expression and markers of monocytes (E), TAMs (F), and M1 (G) and M2 (H) macrophages in COAD.

Tu et al. Medicine (2020) 99:46 www.md-journal.com
highlights multiple functions of TGF-b2 in the progression of
CRC, making it a valuable prognostic biomarker in colorectal
tumors.
The use of independent Oncomine and GEPIA databases to

assess the correlation between TGF-b2 expression and the
prognosis of 33 different types of cancer revealed significant
differences in TGF-b2 expression between normal and cancer
tissues. Oncomine data have shown elevated levels of TGF-b2 in
normal tissues, including lymphomas and brain, breast, colorec-
tal, esophageal, gastric, head and neck, kidney, liver, pancreatic,
7

cancers. Conversely, the levels of TGF-b2 levels are decreased in
breast, kidney, lung, and prostate cancer (Fig. 1A). According to
the TCGA database, expression of TGF-b2 is increased in
cholangiocarcinoma, COAD, liver hepatocellular carcinoma,
STAD, Thyroid thyroid carcinoma, and relatively lower in
bladder urothelial carcinoma, breast invasive carcinoma, kidney
chromophobe cell carcinoma, kidney renal papillary cell
carcinoma, KIRC, lung adenocarcinoma, lung squamous cell
carcinoma, prostate adenocarcinoma, and uterine corpus
endometrial carcinoma (Fig. 1B). Variations in TGF-b2 expres-

http://www.md-journal.com


Table 2

Correlation analysis between TGFb2 and related genes and markers of monocyte, TAM and macrophages in GEPIA.

COAD STAD ACC

Description Gene markers cor p Cor P Cor P

Monocyte CD86 0.21 .00039 0.079 .11 0.16 .18
CD115 (CSF1R) 0.24 5.1e–05 0.12 .012 0.14 .23

TAM CCL2 0.22 .00024 0.09 .069 -0.13 .26
CD68 0.18 .0036 0.029 .56 0.12 .29
IL10 0.14 .02 �0.022 .66 0.18 .13

M1 Macrophage INOS (NOS2) �0.092 .13 �0.088 .076 -0.13 .26
IRF5 0.019 .76 0.11 .021 0.059 .16
COX2 (PTGS2) 0.45 6.7e–15 0.11 .022 0.14 .23

M2 Macrophage CD163 0.19 .0015 0.13 .0084 0.23 .048
VSIG4 0.23 .00015 0.15 .0025 0.24 .033
MS4A4A 0.2 8e–04 0.11 .033 0.18 .12

CODA, colon adenocarcinoma; GEPIA = gene expression profile interactive analysis, LUSC, lung squamous cell carcinoma; STAD, stomach adenocarcinoma. TAM, Tumor-associated macrophages. Normal,
correlation analysis in normal tissue of TCGA. Tumor, correlation analysis in tumor tissue of TCGA. NA, No correlation value in database.

∗
P< .01;

∗∗
P< .001;

∗∗∗
P< .0001.
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sion in a range of different cancers may be related to discrepancies
in data collection methods between individual studies or
differences in underlying biological mechanisms. In the database
used in the current work, a correlation between high TGF-b2
expression and poor prognosis of CRC was observed.
Another important finding of this study is the demonstration

that the expression of TGF-b2 is related to the degree of immune
infiltration in many cancer types, particularly in CRC. TGF-b2
expression was positively correlated with the degree of macro-
phage infiltration, but weakly positively correlated with the
degree of CD8+ T cell, CD4+ T cell, DC, and neutrophil
infiltration in COAD (Fig. 3B). In addition, the correlation
between TGF-b2 and the expression of certain immunological
marker genes strongly suggests that TGF-b2 can control immune
cell infiltration and interactions in the colorectal tumor
microenvironment. Markers of M2 macrophages, such as VSIG4
and MS4A4A, correlated weakly with TGF-b2 expression, while
the expression of the marker of M1 macrophages, PTGS2, was
moderately and strongly correlated (Table 2). These results reveal
a potential regulatory role of TGF-b2 in TAMpolarization. Also,
TGF-b2 was found to have the potential to activate Tregs and
induce T cell exhaustion. The increase in TGF-b2 expression was
positively correlated with the expression of Treg and T cell
exhaustion markers (FOXP3, CCR8, STAT5B, TGFB1, CTLA4,
and HAVCR2) (Table 1). Thus, TGF-b2 expression may
participate in the regulation of tumor-associated T cell exhaus-
tion and Tregs. In addition, the level of TGF-b2 in COAD is
correlated with the expression of multiple markers of T cells
(Th1, Th2, Tfh, and Th17). This finding may reflect the ability of
TGF-b2 to control T cell responses in CRC. Collectively, these
results highlight the potential of TGF-b2 to regulate the
recruitment and activation of immune cells in colorectal tumors.
In summary, the expression of TGF-b2 is related to the

magnitude of the infiltration of CRC by immune cells, and is
significantly correlated with the prognosis of CRC. TGF-b2 may
be an important regulator of immune cell infiltration in CRC
cancer patients and a valuable prognostic biomarker.
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