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Persistent Severe Hyperlactatemia and
Metabolic Derangement in Lethal
SDHB-Mutated Metastatic Kidney
Cancer: Clinical Challenges and
Examples of Extreme Warburg Effect
See accompanying editorial doi:https://doi.org/10.1200/PO.17.00037

abstract

Purpose To describe the unique clinical features, determine the genomics, and investigate
the metabolic derangement of an extremely rare form of a hereditary lethal kidney cancer
syndrome.

Patients and Methods Three patients with lethal kidney cancer (age 19, 20, and 37 years)
exhibiting persistent (1 to 3 months) extremely high levels of blood lactate (> 5 mM) despite
normal oxygen perfusion, highly avid tumors on [18F]fluorodeoxyglucose positron emission
tomography (PET), and pleomorphic histopathologic features were identified and treated in a
single institute. Integrated studies including whole-genome sequencing (WGS), targeted se-
quencing, immunohistochemistry, cell-based assays, and 18F-glutamine PET imaging were
performed to investigate this rare kidney cancer syndrome.
Results All three patients with kidney cancer were initially given various diagnoses as a result of
diverse tumor histopathology and atypical clinical presentations.The correct diagnoses of these
SDHB-mutated renal cell carcinomas were first made based on cancer genomics. Genomic
studiesof thebloodand tumorsof thesepatients identified threedifferent kindsof germline loss-
of-functionmutations in theSDHBgeneandthecommonlossofheterozygosity in theremaining
SDHB allele thorough somatic chromosome 1p deletion. In one patient, WGS revealed that a
germline mutation of SDHB coupled with loss of heterozygosity was the sole genetic event.
Cancer evolution analysis of SDHB tumors based onWGS demonstrated that SDHB in kidney
epithelium fulfills the Knudson two-hit criteria as a major tumor suppressor gene. SDHB2/2

tumor cells displayed increase in glucose uptake and lactate production, alteration in mito-
chondrial architecture, and defect in oxidative respiration. 18F-Glutamine PET imaging studies
demonstrated increased glutamine metabolism.
Conclusion SDHB-deficient metastatic renal cell carcinoma is a rare, aggressive form of kidney
cancer that manifests with clinical evidence of a severe Warburg effect, and genomic studies
demonstrated two genetic hits at SDHB genes during kidney tumorigenesis.

Precis Oncol 00. © 2017 by American Society of Clinical Oncology

INTRODUCTION

Renal cell carcinoma (RCC) is a heterogeneous
group of malignancies arising from renal epithe-
lium.1-3 Major RCC subtypes include clear cell
RCC (approximately 75%),4 papillary RCC (ap-
proximately 15%),5 chromophobe RCC (approx-
imately 5%),6 and unclassified RCC (4% to
6%).7-9 The remaining kidney cancer subtypes
are rare (, 1%), among which succinate

dehydrogenase (SDH)–deficientRCCis thenew-
est recognized subtype.1 The SDH enzyme con-
sists of A, B, C, and D subunits.10,11 Germline
SDH mutations are common in patients with
hereditary paraganglioma and pheochromocy-
toma syndrome and GI stromal tumors.12-15 Re-
cent studies have begun to elucidate SDH
mutations in kidney cancer with fewer than 50
patients with SDH-deficient RCCs reported thus
far (0.05% to 0.2%).16,17 The most commonly
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mutated gene in SDH-RCC is SDHB (83%).18-20

As a result of its rarity and recent designation,
clinical and molecular features associated with
aggressive SDHB-deficient RCC are unknown.

TheaerobicglycolysisWarburgeffect incancerwas
first recognized by Otto Warburg,21,22 who
described a phenomenonwhere glucose undergoes
lactic acid fermentation in lieuof aerobic respiration
despite normal oxygen tension, providing adaptive
advantages forproliferating cancer cells.23-26Direct
investigation of the Warburg effect in human can-
cer remains a challenge.27,28 The increased activity

detected by [18F]fluorodeoxyglucose (FDG) posi-
tron emission tomography (PET) reflects glucose
uptake and thereby renders indirect evidence of
aerobic glycolysis. In normal human subjects, lac-
tate produced from glucose fermentation is quickly
removed from the blood by liver. Hence, clinically
relevant lactic acidosis, defined as lowblood pH (<
7.35) with high plasma lactate (> 5 mM), com-
monly denotes a serious compromise in tissue
oxygenation, namely type A lactic acidosis.29-32

Rare casesof lactic acidosis despite adequate tissue
oxygen, namely type B lactic acidosis, have been
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Fig 1. Computed
tomography (CT), [18F]
fluorodeoxyglucose
(FDG) positron emission
tomography (PET), and
blood lactate levels. Left
panels are baseline body
CT scans and center
panels are baseline [18F]
FDG-PET scans of
patients 1, 2, and 3. Right
panels are corresponding
blood lactate levels over
the monitoring period for
patients 1, 2, and 3.

2 po.ascopubs.org PO – Precision Oncology

http://po.ascopubs.org


reported in highly proliferative, hematologic
malignancies and anecdotally in solid
tumors.33-35

The occurrence of theWarburg effect in cancers
has long been considered a consequence of can-
cer progression.36 However, the discovery of FH
and SDH mutations, key enzymes of the tricar-
boxylic acid (TCA) cycle, as primary underlying
genetic events of rare hereditary human can-
cers posits that deregulated metabolism could
function as oncogenic driver and offers the
opportunity to study the Warburg effect in
humans.10,37-40 Of note, kidney cancers of all types
are considered to be metabolic diseases2 in which
deregulated metabolism plays an important role in
thepathobiology.41-44Here,wepresentclinical and
genomic features of three young patients with
metastatic SDHB-deficient RCC whose tumors
displayed high avidity in [18F]FDG-PET and
whose blood exhibited persistent hyperlactatemia.
These patients were initially incorrectly diagnosed
andwere later found tohaveSDHB-deficientRCC
based on genomics; all three patients eventually
died despite various systemic treatments.

PATIENTS AND METHODS

Patients

Blood draws, biopsies, and sample collection were
all done as part of standard of care or under in-
stitutional review board (IRB) –approved proto-
cols. All off-label use of US Food and Drug
Administration–approved medications was done
with patient informed consent. The glutaminase
inhibitor CB-839 was administered under a
single-patient investigational new drug applica-
tion with IRB and US Food and Drug Adminis-
tration approvals. CB-839 was provided by
Calithera Biosciences (South San Francisco, CA).

Germline DNA Analysis

Germline DNA was purified from blood and
subjected to sequencing on all coding exons of
the SDHB, SDHC, SDHD, and AF2 genes by
GeneDx (Elmwood Park, NJ).45

Histopathology and Immunohistochemistry

Immunohistochemistry for SDHB was performed
usinganti-SHDBantibody (ab14714, clone21A11;
ABCAM, Cambridge, United Kingdom).20

Whole-Genome Sequencing

Whole-genome sequencing (WGS) was per-
formed at the New York Genome Center (New
York, NY). Genomic DNA libraries of tumor-

normal pair samples were prepared from the pri-
mary kidney tumor of patient 1 and the primary
tumor and metastases of patient 3. Paired-end
23 100 base pair sequence reads were performed
using Illumina HiSEquation 2500 instruments
(Illumina, San Diego, CA), mapped using the
Burrows-Wheeler Aligner, and processed with
the Genome Analysis Toolkit. Genome-wide de-
tection and analysis of somatic mutations, copy
number alterations, and structural variants were
performed.46

Clonality Analysis

For each mutation, we calculated cancer cell frac-
tions as previously described,47 usingmutant allele
burden, tumor purity, and locus-specific copy
number in tumor and matched normal samples.
Subclones were identified by clustering cancer
cell fractions using Dirichlet process–based
clustering.46

Targeted Exome Sequencing

DNAfrom tumors andmatchednormal tissuewas
analyzed using theMSK-IMPACTassay (Memo-
rial Sloan Kettering Cancer Center, New York,
NY), which provides ultra-deep sequencing cov-
erage (mean. 5003). Target-specific probes for
hybrid selection were designed to capture all
protein-coding exons of 341 cancer genes.48

Metabolic Assessment of Patient-Derived
SDHB-Deficient Cancer Cells

Short-term primary cell cultures were established
from patient 1’s tumor (SDHB2/2 tumor), patient
1’s tumor-adjacent tissue (SDHB+/2 cells), and an
unrelated patient’s tumor-adjacent normal kidney
tissues (normal kidney).Extracellular acidification
rate (ECAR) and oxygen consumption rate were
evaluated using Seahorse XFe96 Extracellular
Flux Analyzer (Seahorse Biosciences, Billerica,
MA). Oxygen consumption rate and ECAR were
normalized to protein concentration of plated
cells per manufacturer protocol. Lactate and glu-
cose levels were assayed using YSI 2300 STAT
Plus Glucose and Lactate Analyzer (YSI, Life Sci-
ences,YellowSprings,OH). Intracellularmetabolite
levels were measured by gas chromatography–mass
spectrometry. Metabolites were extracted by 80%
methanol, and count values were normalized to cell
number.

18F-Glutamine PET

A glutamine-labeled PET scan was done
under an IRB-approved protocol, which
used [18F]4-L-fluoroglutamine (2S,4R)

Normal range of lactate
level is 0.3 to 1.3 mM/L, as
indicated by the horizontal
shading. ABG, arterial
blood gas; HCO3,
bicarbonate;O2Sat, oxygen
saturation; PCO2, partial
pressure of carbon dioxide.
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as a nontherapeutic medical imaging
agent to investigate the pharmacokinetics,
metabolism, and biodistribution. Radiotracer

synthesis and PET imaging were performed as
described.49
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Fig 2. Histologic and
genomic features of
metastatic SDHB-deficient
renal cell carcinoma
(RCC).
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RESULTS

Clinical History

Patient 1 was a 19-year-old white man who pre-
sented with a palpable right upper quadrant mass.
Imaging studies revealed a 123 113 13 cm [18F]
FDG-PET–avid right kidney mass along with
metastatic lesions involvingaxial andappendicular
skeleton, lungs, and lymphnodes (maximum stan-
dardized uptake value [SUV] 48.0; Fig 1), which is
different from clear cell RCC that has variable
[18F]FDG-PET positivity (30% to 60%).50-52

The patient underwent cytoreductive radical ne-
phrectomy, and the pathology reported high-
grade unclassified RCC.53,54 The patient was first
treated on a clinical trial with concurrent bevaci-
zumab and everolimus,55 followed by off-label use
of vandetanib and dasatinib, and finally treatment
with sunitinib without any objective responses.
Follow-up 18FDG-PET demonstrated disease
progression with extensive metastatic lesions (Data
Supplement). The patient died 9 months after can-
cer diagnosis.

Patient 2 was a 20-year-old white man who
presentedwith extensive skullmasses, underwent
frontotemporal-parietal craniectomy, and was
later found to have a 4.4 3 4.7 3 6.6 cm left
kidney mass with metastases to lymph nodes,
liver, and axial and appendicular skeleton (Fig
1). The initial pathology favored metastatic
translocation–type RCC. [18F]FDG-PET con-
firmed extensive metastatic lesions and noted
additional involvement of the parietal lobe and
cranium (maximum SUV, 44.1; Fig 1). The pa-
tient subsequently underwent cytoreductive ne-
phrectomy, and the diagnosis was amended to
mucinous tubular and spindle cell RCC with
sarcomatoid transformation. Over a 3-year
course, the patient was treated with sunitinib,
interleukin-2, cabozantinib, axitinib, temsiroli-
mus, and a phase I glutaminase inhibitorCB-839.
Despite therapy, the patient experienced disease
progression (Data Supplement) and died
39 months after cancer diagnosis.

Patient 3 was a 37-year-old white man who pre-
sented with right shoulder pain and left-sided
abdominal pain. On computed tomography scan,
hewas found tohave a 4.533.934.0 cm left renal
mass and metastases involving the right scapula,
left rib, and axial spine (maximumSUV, 33; Fig 1).
Biopsy of scapular and renalmasses revealed high-
grade, poorlydifferentiated cancer consistentwith
metastatic RCC. As a result of rapid progression,
he was admitted and treated with one cycle of
doxorubicin and gemcitabine. His hospital course

was complicated bymultiple unexplainable hemo-
lytic and thrombotic events, including pulmonary
emboli, numerous cerebral vascular events, and
infarction of the superior mesenteric artery ne-
cessitating exploratory laparotomies for small
bowel and colon resections. The patient died
2 months after cancer diagnosis, and tissues from
the primary renal mass and multiple metastatic
sites were obtained at autopsy.

Persistent Hyperlactatemia Without
Acidemia or Hypoxia

Patient 1 was admitted for tachycardia and exer-
tional dyspnea and found to have an elevated
plasma lactate of 9.6 mM/L (normal values, 0.3
to 1.3 mM/L) with an arterial blood pH of 7.41,
partial pressure of carbon dioxide of 24 mm Hg,
bicarbonate of 15 mEq/L, and oxygen saturation
of 98%(Fig1). Studies revealednoovert ischemia,
and the patient continued to maintain adequate
oxygenation. Subsequent lactate measurements
showed persistent hyperlactatemia (5 to 13 mM)
without dyspnea or pH changes, consistent with
adequate metabolic and respiratory compensa-
tion. Patient 2 initially exhibited a slightly greater
than normal lactate level of 1.4 mM/L (Fig 1),
which gradually increased to 5.5 mM/L and
peaked at 11.2 mM/L. The increasing blood lac-
tate was associated with increasing tumor burden.
Patient 3 had persistently elevated lactate levels
withabaselineof4.4mM/Landapeakof7.5mM/L
(Fig 1). After the patient’s superior mesenteric
artery infarction and subsequent resection, lac-
tate levels remained between 3.2 and 5mM/L for
nearly 2 weeks before death. As a result of the
high blood lactate level and suspicion of SDHB-
deficient RCC based on FDG-PET images, an
arterial blood gas was obtained (pH, 7.43; partial
pressure of carbon dioxide, 28.6 mm Hg; bicar-
bonate, 19.3 mEq/L; and oxygen saturation,
98%; Fig 1).

Diverse Histopathology of SDHB-Deficient
RCC

The histopathologic features varied significantly
among our patients with SDHB-deficient cancer,
making the initial diagnosis challenging. The kid-
ney tumor from patient 1 was heterogeneous,
with areas of low-grade and high-grade cancer
and ossification (Fig 2A). The kidney tumor
from patient 2 exhibited high-grade features
with areas of pleomorphic spindle cells and in-
creased mitotic activity (Fig 2A). The kidney tu-
mor, scapula metastasis, and liver metastasis from
patient 3 revealed exclusively high-grade carcinoma

(A) Histopathology
and SDHB
immunohistochemistry
(IHC). Top panels are
representative hematoxylin
and eosin (HE) images of
the primary kidney tumor
of patient 1, primary kidney
tumor of patient 2, and liver
metastasis of patient 3.
Bottom panels are SDHB
IHC of tumors of patients
1, 2, and 3. SDHB staining
was lost in the tumor cells
but retained in the
intervening stromal cells or
hepatocytes. (B) Summary
of relevant germline and
somatic mutations in all
three primary tumors. The
c.19_41dup23 mutation of
patient 2’s germline SDHB
gene caused a frameshift
starting with codon alanine
15, changed this amino acid
to serine, and created
a premature stop codon at
positive 3 of the reading
frame denoted
pAla15SerfsX3. (C)
Genogram of patient 1’s
family. (D) Copy number
plot of patient 2’s primary
kidney tumor. CA, cancer.

5 po.ascopubs.org PO – Precision Oncology

http://po.ascopubs.org


(Fig 2A). Common histology described for SDHB-
deficient renal tumors, such as bubbly eosinophilic
cytoplasmandcytoplasmic inclusions,56wasdetected
only in patient 1’s primary tumor but not in the
tumors of patients 2 and 3.

Loss of SDHB Staining in Tumors

As a result of unusual clinical and histopathologic
presentations, SDHB-deficient RCCwas suspected
in thesepatients.Germlineandsomaticmutationsof
the SDHB gene of all three patients were confirmed
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by genomic studies. Immunohistochemistry stain
for SDHB protein was subsequently established at
Memorial Sloan Kettering Cancer Center, demon-
strating the loss of SDHB staining in cancer but not
adjacent non-neoplastic cells (Fig 2A). As a control,
oncocytoma, a kidney tumorwithwild-type SDHB,
showed strong SDHB staining (Fig 2A).

Patient 1’s Family Pedigree

The young age of patient 1 and the unusual
histopathologic features of his tumor were con-
cerning for a hereditaryRCC.Accordingly, germ-
line DNA analysis was performed by direct
sequencing of the SDHB, SDHC, SDHD, and
AF2 genes,45 which revealed a germline exon 4-
5 deletion within the SDHB gene in patient 1 (Fig
2B). This alteration was also detected in this
patient’s mother and younger brother (Fig 2C),
confirming maternal inheritance. Both the pa-
tient’smother and younger brother are not known
to have any malignancy; however, baseline lactate
from the patient’s mother and younger brother
werenormal (1.2mM/L) andelevated (1.7mM/L),
respectively (normal, 0.3 to 1.3 mM/L), which
could reflect constitutive haploinsufficiency of
SDHB and be of surveying value.

Sequencing of Patient 2’s Germline and
Tumor DNA

Sequencing of patient 2’s blood DNA revealed
duplication within the SDHB gene, resulting in a
frameshift mutation (Fig 2B).Ultra-deep targeted
sequencing of his tumor DNA was performed
(mean coverage, 7743). The copy number profile
showed broad copy number losses on chromo-
somes 13 and 14 and chromosome arms 1p and 1q
(Fig 2D). Germline duplication in SDHB and
somatic loss of 1p, where SDHB resides (1p36),
resulted in complete genetic loss of SDHB in
patient 2’s tumor (Fig 2B).

WGS of Patient 1’s Primary Tumor

To determine genetic events contributing to the
pathogenesis of SDHB-deficient RCC, WGS of
patient 1’s tumor and matched normal tissue was
performed to mean haploid coverage of approxi-
mately 903 with greater than 96% of the genome
at > 303. A total of 339 somatic alterations con-
sisting of 260 single nucleotide substitutions,
72 indels, and seven rearrangements were identi-
fied (Fig 3 andData Supplement).WGS identified
only a single nonsynonymous somatic substitution
(SREBF1 p.D329Y) with no significant impact
based on functional prediction.57 Copy number
analysis of the tumor revealed few genomic

alterations including loss of the short arm of chro-
mosome 1 where SDHB resides (Fig 3). Further-
more, close examination of the SDHB locus in the
retained allele found that both tumor and normal
tissue have the same deletion spanning exons 4 and
5 of the SDHB coding sequence (chr1:17,353,986
to 17,359,321; Fig 3), resulting in a frameshift
mutation. Altogether, a germline intragenic dele-
tion in SDHB and a somatic loss of 1p resulted in
complete loss of SDHB in the tumor (Fig 2B).

WGS and Clonal Evolution of Patient 3’s
Primary and Metastatic Tumors

WGSwas performed on patient 3’s primary kidney
tumoraswell ashismetastatic liver andscapulabone
lesions (Fig 4 andData Supplement). Copy number
profiles of all samples demonstrated extensive ab-
errations, and the majority of these events were
shared. All tumor samples had the same heterozy-
gous nonsynonymous coding mutation in the
SDHB gene (chr1: 17355138 A.C, c.380T.G,
p.Ile127Ser), whereas the other allele was lost by
an arm-level event on chromosome 1p (Fig 4). Of
note, the sameSDHBmutationhasbeenreported in
patients with GI stromal tumor and paragan-
glioma.58Detailed characterization of the subclonal
structure using the substitution data established a
long trunk with 5,198 of 8,047 substitutions in
100%of cells across tumor sites. This subclone also
containedmutations inMTOR andNF2 that might
have functional impact (Fig 4). The second largest
subclonesupportedby820substitutionswaspresent
in approximately 55%and 100%of cells in the liver
and bone metastases, respectively, likely reflecting
tumor heterogeneity.46 Overall, subclonal relation-
ship among the three tumor sites suggests relatively
late metastasis during clonal evolution.

Disruption of Mitochondrial Architecture in
SDHB-Deficient Cancer Cells

Because SDHB encodes a TCA cycle protein, we
examined themitochondriamorphology of patient
1’s SDHB-deficient primary tumor cells under
electron microscopy. Cells from unrelated normal
kidney tissues (SDHB+/+) and nontumor (SDHB+/2)
kidney tissues of patient 1 exhibited normal mi-
tochondrial architecture with intact membranes
and cristae (Fig 5A). In contrast, mitochondria of
SDHB2/2 tumor cells contained fewer cristae
and less electron-dense matrix (Fig 5A).

Metabolic Assessment of SDHB-Deficient
Primary Cancer Cells

To assess mitochondrial oxidative phosphoryla-
tion and glycolysis, oligomycin, an inhibitor of

The two innermost tracks
depict the copy number
changes (red, increase;
blue, decrease; purple,
allelic imbalance, one allele
amplified or deleted) in the
tumorwhencomparedwith
the normal for patient 1.
The outermost track shows
the intermutation distance
for substitutions each
plotted according to the
type of nucleotide change.
Themiddle track shows the
genomic positions of the
small insertion (green) and
deletion (red) along the
genome. Rearrangements
are plotted as arcs inside the
Circos plot. Also shown is
a zoomed-in view of the
coverage over the SDHB
locus in both tumor and
matched normal samples,
demonstrating the same
deletion of exons 4 and 5 in
both samples.
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electron transport chain (ETC) complex V, was
used to inhibit mitochondrial oxygen consump-
tion, thereby activating glycolysis, and carbonyl
cyanide-4-(trifluoromethoxy)phenylhydrazone
(FCCP), an uncoupler of the mitochondrial pro-
ton gradient, was used to induce maximum mito-
chondrial oxygen consumption.NormalSDHB+/+

kidney cells and RCC4 cells exhibited similar de-
creases and increases in oxygen consumption in
response to oligomycin (13.36 0.9 pmol/min and
15.1 6 1.0 pmol/min, respectively) and FCCP

treatment (25.0 6 3.0 pmol/min and 26.3 6 3.0
pmol/min, respectively), whereas the SDHB2/2

tumor cells exhibited minimum changes (3.3 6
0.4 pmol/min; P , .001 v SDHB+/+ and P , .001
v RCC4), demonstrating a lack of oxidative phos-
phorylation (Fig 5B). When the basal ECAR was
measured, it was much higher in SDHB2/2 cancer
cells (21 6 1.1 mpH/min), and there was a minor
increase upon oligomycin treatment (3.3 6 1.1
mpH/min; 16%; Fig 5B). This suggests that these
cells may be at near-maximum capacity for lactate
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production at baseline as a result of the pre-
existing defect in oxidative respiration. In con-
trast, normal SDHB+/+ kidney cells and RCC4
cells had lower basal ECARs (5.0 6 0.5 mpH/
min and 8.1 6 2.6 mpH/min, respectively) that
increased upon oligomycin treatment (9.36 1.3
mpH/min, 186%, P, .001; and 9.96 1.4 mpH/
min, 121%, P , .001, respectively; Fig 5B).
Direct measurements of glucose and lactate
levels in cell culture media confirmed that
SDHB2/2 cancer cells used more glucose and
produced more lactate compared with unrelated
primary normal kidney cell cultures and two
clear cell RCC cell lines, RCC4 and A498 (Fig
5C). Measurement of intracellular metabolites
showed that SDHB2/2 kidney cancer cells had
increased succinate compared with SDHB+/2

cells and RCC4 and A498 (Fig 5D), suggesting
that loss of both copies of SDHB resulted in
succinate accumulation.

Glutamine Uptake in the SDHB-Deficient
Kidney Cancer

To determine whether the use of other carbon
sources was altered in SDHB-deficient kidney
cancer, an 18F-glutamine PETwas used to mea-
sure glutamine uptake in patient 2 (Fig 6A).
Patient 2’s tumors exhibited elevated 18F-
glutamine uptake, implicating increased depen-
dence on glutamine metabolism. Using primary
SDHB2/2 tumor cells from patient 1, glutamine
deprivation resulted in decreases in glutamate
and succinate, which are downstream catabo-
lites of glutamine (Fig 6B). In contrast, malate
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downstream of the metabolic defect was not
affected by glutamine deprivation. Similarly,
lactate downstream of glucose metabolism was
unaffected by glutamine deprivation (Fig 6B).
Furthermore, prolonged glutamine deprivation
in SDHB2/2 tumor cells resulted in increased
cell death (Fig 6C).

DISCUSSION

Here we report three patients with SDHB-
deficient lethal RCC. WGS identified a novel
exon 4-5 deletion of the SDHB gene in the germ-
line as the first genetic event of patient 1 and
demonstrated chromosome 1p loss in this pa-
tient’s tumor as the second genetic event, leading
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to the homozygous loss of SDHB at 1p36. All
three individuals carry distinct germline muta-
tions in one copy of the SDHB gene, and through
chromosome1p loss, the remainingcopyofSDHB
is lost in their tumors, consistent with the Knud-
son two-hit hypothesis.59

Mitochondrion generatesATPandprovides bio-
synthetic intermediates via two interlinked pro-
cesses (ie, ETCandTCAcycle).Unlike the other
dedicated TCA cycle enzymes, the SDH enzyme
also functions as complex II in ETC, coupling
oxidation of succinate to fumarate in the TCA
cycle with electron transfer to ubiquinone in the
ETC. SDH enzyme is highly conserved and
consists of A, B, C, and D subunits, with SDHA
and SDHB as the catalytic subunits extending
into the mitochondrial matrix and anchored to
its inner membrane with SDHC and SDHD
(Fig 6D).Recent studies elucidated adirect causal
relationship between the loss of SDHB, SDHC,
orSDHDand thedevelopment of rarehereditary
kidney cancer. Of note, homozygous mutations
in SDHA cause severe neurologic defects in in-
fants, known as Leigh syndrome, characterized
by subacute necrotizing encephalomyelopathy,
failure to thrive, ataxia, seizures, and severe lactic
acidosis.37 To our knowledge, the association
between chronic hyperlactatemia and overt met-
astatic SDHB kidney cancer has never been
reported.

Metabolic assessment of patient 1’s SDHB2/2

tumorcells demonstrated theuncouplingbetween

ETCandTCA,manifestedby the lackofoxidative
phosphorylation, the overproduction of lactate,
and the dependence on aerobic glycolysis, exem-
plifying the extreme Warburg effect in human
cancer (Fig 6D). The mechanisms by which
SDHB loss might contribute to tumorigenesis
have been investigated using cell-based assays
and mouse paraganglioma models.60-63 These
studies highlighted the role of accumulated
succinate as an oncometabolite that inhibits
a-ketoglutarate–dependent dioxygenases, result-
ing in metabolic and epigenetic changes.60-63 In
fact, our genomic study of these patients demon-
strated that the complete loss ofSDHBconstitutes
the first event in the pathogenesis of SDHB-
deficient kidney cancer.

From 2011 to 2015, 4,328 patients were diag-
nosed with RCC at Memorial Sloan Kettering
CancerCenter, amongwhomeight (0.18%) have
SDHB-deficient RCC.Limited clinical data pre-
sented in our small series suggested varied treat-
ment benefit with vascular endothelial growth
factor and possibly mammalian target of rapa-
mycin inhibitors, and the use of glutaminase in-
hibitor in this rare disease deserves further
investigation. Altogether, wewish to raise aware-
ness of the demographic, radiographic, biochem-
ical, histologic, and immunohistochemical
features associated with lethal human SDHB-
deficient kidney cancers.
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