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OBJECTIVE—Increased activity of the innate immune system
has been implicated in the pathogenesis of the dyslipidemia and
insulin resistance associated with obesity and type 2 diabetes. In
this study, we addressed the potential role of Kupffer cells
(liver-specific macrophages, KCs) in these metabolic abnor-
malities.

RESEARCH DESIGN AND METHODS—Rats were depleted
of KCs by administration of gadolinium chloride, after which all
animals were exposed to a 2-week high-fat or high-sucrose diet.
Subsequently, the effects of these interventions on the develop-
ment of hepatic insulin resistance and steatosis were assessed. In
further studies, the effects of M1-polarized KCs on hepatocyte
lipid metabolism and insulin sensitivity were addressed.

RESULTS—As expected, a high-fat or high-sucrose diet induced
steatosis and hepatic insulin resistance. However, these meta-
bolic abnormalities were prevented when liver was depleted of
KCs. In vitro, KCs recapitulated the in vivo effects of diet by
increasing hepatocyte triglyceride accumulation and fatty acid
esterification, and decreasing fatty acid oxidation and insulin
responsiveness. To address the mechanisms(s) of KC action, we
inhibited a panel of cytokines using neutralizing antibodies. Only
neutralizing antibodies against tumor necrosis factor-� (TNF�)
attenuated KC-induced alterations in hepatocyte fatty acid oxi-
dation, triglyceride accumulation, and insulin responsiveness.
Importantly, KC TNF� levels were increased by diet in vivo and
in isolated M1-polarized KCs in vitro.

CONCLUSIONS—These data demonstrate a role for liver mac-
rophages in diet-induced alterations in hepatic lipid metabolism
and insulin sensitivity, and suggest a role for these cells in the
etiology of the metabolic abnormalities of obesity/type 2
diabetes. Diabetes 59:347–357, 2010

T
he physiological purpose of inflammation, which
is an adaptive response to infection, injury, or
exposure to toxic substances, is to reestablish a
homeostatic state that entails removal of the

source of infection, tissue repair, or resolution of toxin-
induced stress. Upon the reestablishment of homeostasis,
the necessity for the inflammatory response is removed,
allowing immune system function to return to the basal
state. However, under pathological conditions, a state of
chronic inflammation is established, and the conse-
quences of this inappropriate condition are the devel-
opment of diseases of autoimmunity, sepsis, fibrosis,
and cellular stress. Most recently, it has become appar-
ent that the major metabolic diseases of this generation,
namely obesity, type 2 diabetes, nonalcoholic fatty liver
disease, nonalcoholic steatohepatitis, and atherosclero-
sis, are states of chronic inflammation, and a series of
studies have demonstrated a role for inflammation in the
pathophysiology of the metabolic abnormalities associ-
ated with a number of these conditions (1–5).

Macrophages are a heterogeneous population of my-
eloid-derived mononuclear cells that are a critical compo-
nent of the innate immune response (6,7). They are
resident in practically all tissues of the body, are recruited
to tissues in response to infection or tissue damage, and
are particularly enriched in tissues that are frequently
exposed to exogenous and endogenous antigens and tox-
ins, such as the lungs and liver. In all tissues, they act as
the first responders to pathogens, toxins, and tissue dam-
age by producing a panel of M1 (Th-1) proinflammatory
cytokines, the prototypical ones being tumor necrosis
factor-� (TNF�), �-interferon (IFN-�), and interleukin
(IL)-1�. In states of overnutrition such as obesity, the
number and activity of macrophages in adipose tissue are
increased in rodents (8,9) and humans (10,11). Further-
more, interventions that inhibit macrophage recruitment
to adipose tissue (12,13) or decrease proinflammatory
activity (14–16) of macrophages improve the insulin resis-
tance associated with obesity, whereas interventions that
induce macrophage recruitment exacerbate insulin resis-
tance (12,17). However, although these studies demon-
strate a pathophysiological role for adipose macrophages
in the metabolic abnormalities of overnutrition, the role of
macrophages in other tissues and the mechanisms of their
effects are largely unknown. In this regard, the potential
role of liver macrophages (Kupffer cells [KCs]) in the
development of hepatic dyslipidemia (steatosis) and insu-
lin resistance is largely unknown. Furthermore, recent
studies (15,16) demonstrate that blocking the anti-in-
flammatory or alternative (M2 or Th-2) activation pro-
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gram of KCs exacerbates obesity-induced insulin
resistance and decreases hepatocyte fatty acid oxida-
tion. However, although suggestive, these studies do not
directly address the contribution of KCs to the develop-
ment of diet-induced steatosis and insulin resistance, or
the mechanisms of these effects. The current study
addressed these issues. The data demonstrate that the
depletion of KCs protects against the development of
diet-induced steatosis and insulin resistance, and that
M1 activation of KCs induces changes in hepatocyte
lipid metabolic pathways and insulin action that are
consistent with the effects of diet in vivo. Finally, data
are presented suggesting that KC– derived TNF� plays a
role in mediating the detrimental effects of KCs on
hepatocyte lipid metabolism and insulin action.

RESEARCH DESIGN AND METHODS

Animal care and maintenance. Male Wister rats were purchased from Charles
River (Madison, WI). After arrival, rats were maintained on a constant 12-h
light/12-h dark cycle with free access to water and ad libitum fed with a standard
chow diet and allowed to acclimate for at least a week. All procedures were
approved by the Institutional Animal Care and Use Committee (IACUC) of the
University of Pittsburgh, and were in accordance with the National Research
Council’s Guide for the Care and Use of Laboratory Animals.
In vivo experimental design. Chronic indwelling catheters were implanted in
the left common carotid artery and the right jugular vein (18). Three dietary
groups were established 1) standard chow 2) high fat (HF; TD 96001, 45% of
calories from fat; Harlan Teklad, Madison WI), and 3) high sucrose (HS; 68% of
calories from sucrose and 11% of calories from fat; Research Diet). Each of the
three dietary groups was further divided into two subgroups; one subgroup was
injected via the carotid artery with gadolinium chloride (GdCl3; Sigma, St. Louis,
MO) and the other was injected with saline. GdCl3 is a selective toxicant for KCs
and is commonly used to deplete the liver of these cells (19–21). In the current

study, depletion of KCs was evaluated by quantification of CD68 (a macrophage
marker)-positive cells by immunohistochemistry (19,20) and measurements of
CD68 and F4/80 mRNA levels using quantitative (q)RT-PCR (supplemental Table
1, available in an online appendix at http://diabetes.diabetesjournals.org/cgi/
content/full/db09-0016/DC1). One week prior to the beginning of diet exposures,
all animals received two injections of a sterile filtered GdCl3 (10 mg/kg) or saline
solution into the carotid artery cannula (at days �7 and �4). Four further
injections were administered during dietary exposures (at days 0, �3, �7,
and �10). At day �14 (i.e., after 2 weeks of dietary exposure), animals were
fasted overnight. Subsequently, animals were killed and tissues (blood, liver,
adipose tissue) were isolated or animals underwent a hyperinsulinemic-euglyce-
mic clamp (see below) and were then killed and tissues isolated. For all
experiments, caloric intake, weight gain during diet exposures, and adiposity
were assessed.
Isolation and plating of primary hepatocytes and KCs. The method for
simultaneous isolation of hepatocytes and KCs from the same rat was adapted
from Smedsrød et al. (22,23). Briefly, livers were perfused through the portal
vein in situ with an oxygenenated modified (no Ca2�, and KH4PO4 was
substituted with NaH2PO4) Krebs-Henseleit buffer plus 2.5 mmol/l EGTA at
37°C at a rate of 18 ml/min for 10 min (24). Subsequently, 100 ml of
Krebs-Henseleit buffer in the presence of Ca2� (2.5 mmol/l) and containing
0.04% collagenase (type IV; Sigma) was recirculated through the liver for �10
min. The resulting cell suspension was filtered through a sterile 150-mesh
nylon screen and centrifuged three times at 50g at 4°C for 2 min, and the cell
pellet containing hepatocytes was further purified in a 30% Percoll/Dulbecco’s
modified Eagle’s medium (DMEM) solution (GE Healthcare Bioscience AB,
Uppsala, Sweden) by centrifugation at 50g for 10 min. The hepatocytes were
plated at a density of 1.5 � 106 cells/well in collagen-coated (Sigma) 6-well
plates with complete DMEM containing 10% FBS, 25 mmol/l glucose, 10
mmol/l HEPES, 250 units/ml penicillin, and 250 �g/ml streptomycin and
incubated for 2 h at 37°C in 5% CO2. Nonattached cells were removed by
washing with PBS after 1 h. For isolation of KCs, the combined supernatant
from the non-Percoll centrifugations above was centrifuged at 50g for 2 min,
and the resulting supernatant (enriched in nonparenchymal cells) was centri-
fuged at 350g for 5 min. The cell pellet containing nonparenchymal cells was
resuspended in 4 ml complete DMEM medium and mixed with 6 ml 30%
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FIG. 1. The effects of KC depletion on liver triglycerides, DAG, ceramide, and cholesterol in response to a high-fat or high-sucrose diet. Male
Wistar rats depleted of KCs or control rats were exposed to a high-fat or high-sucrose diet for 2 weeks as described in RESEARCH DESIGN AND

METHODS. Subsequently, animals were killed after an overnight fast, livers were isolated, and triglyceride (A), DAG (B), cholesterol (C), and
ceramide (D) content of the liver was determined. Data are presented as means � SE. Statistical significance is indicated. n � a minimum of six
in each group.
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(wt/vol) histodenz (Sigma) in PBS. The resulting suspension was layered
under 10 ml DMEM containing 10% FBS and centrifuged at 1300g for 20 min
at 22°C with the brake off. The KC-enriched fraction was obtained and washed
with 4°C culture medium. Subsequently, the cell pellet was suspended in
DMEM at a density of �1.0 � 106 cells per milliliter. Approximately 1.0 � 106

cells were then plated on transwell inserts (0.4-�m pore size membrane;
Corning, Lowell, MA) in 2 ml to allow attachment of KCs. After 1 h, the
medium containing non-KCs was replaced with fresh medium. Cell viability as
assessed by trypan blue exclusion was greater than 95% for KCs and greater
than 90% for hepatocytes. In preliminary experiments (supplemental Fig. 4),

KC attachment was assessed by CD68 immunofluorescence (AbD Serotec,
Killington, Oxford, U.K.).
In vitro experimental design. Hepatocytes were incubated in the absence
or presence of KCs, and/or lipopolysaccharide (LPS; 500 ng/ml), and/or 0.4
mmol/l [3H]-palmitate (5 �Ci/ml) for the measurement of fatty acid oxidation
and esterification and triglyceride accumulation. All fatty acid incubations
were for 24 h, except for the measurement of fatty acid esterification where
labeled palmitate was present for only 2 h after the 24-h coculture period. At
the end of incubations, media were collected and cells were washed two times
in an excess volume of ice-cold PBS, briefly treated with 12.5% trypsin-EDTA,
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FIG. 2. The effects of KC depletion on the development of liver insulin resistance on a high-fat or high-sucrose diet. Male Wistar rats depleted
of KCs or control rats were exposed to a high-fat (A and B) or high-sucrose (C and D) diet for 2 weeks. Subsequently, animals were fasted
overnight and then underwent 4 mU � kg�1 � min�1 euglycemic-hyperinsulinemic clamp in the presence of [3-H3]-glucose for the measurement of
hepatic insulin sensitivity as described in RESEARCH DESIGN AND METHODS. Hepatic glucose output (A and C) and insulin suppression of hepatic
glucose output (B and D) were assessed. Data are presented as means � SE. Statistical significance is indicated. n � a minimum of four in each
group.

TABLE 1
Body weight, epididymal fat, and plasma measurements in the saline- or GdCl3-treated rats exposed to NC, HF, or HS diets for 2 weeks

NC saline NC GdCl3 HF saline HF GdCl3 HS saline HS GdCl3

Body wt (g), day 0 279 	 3 278 	 8 289 	 3 288 	 7 254 	 14 270 	 9
Body wt (g), day 21 375 	 12 351 	 9 371 	 3 382 	 7 352 	 14 346 	 9
Food intake (Kcal/day) 100 	 2 96 	 3 110 	 3 104 	 3 95 	 3 89 	 5
Epididymal fat (g) 6.2 	 0.3 5.4 	 0.3 6.6 	 0.2 6.3 	 0.8 5.2 	 0.5 5.3 	 0.5
Glucose (mg/dl)

Before clamp 88 	 5 NA 96 	 7 89 	 5 92 	 5 88 	 7
After clamp 87 	 7 NA 101 	 5 97 	 3 98 	 8 93 	 4

Insulin (ng/ml)
Before clamp 0.5 	 0.2 0.6 	 0.1 0.8 	 0.5 0.8 	 0.3 0.5 	 0.2 0.6 	 0.1
After clamp 4.5 	 1 NA 5.5 	 0.9 4.0 	 1.2 5.1 	 0.8 4.5 	 1.3

Plasma TGs (mg/dl) 51.2 	 0.8 46.7 	 6.2 63.4 	 5.7* 76.2 	 8.6* 91.6 	 8.0* 109.9 	 9.0*
Plasma FFAs (mM) 0.6 	 0.1 0.4 	 0.1 0.7 	 0.1 0.5 	 0.1 0.7 	 0.1 0.5 	 0.1
Plasma TNF� (pg/ml) 36.1 	 3.4 34.2 	 0.8 42.8 	 10.4 54.6 	 17.9 34.0 	 0.4 39.8 	 2.2
Plasma LPS (EU/ml) 8.3 	 0.3 7.4 	 0.3 8.5 	 1.1 9.1 	 1.5 15.0 	 1.7 16.2 	 4.0

Data are means 	 SE; n 
 minimum 5/group except post-clamp SC insulin where n 
 3. Values for TGs, FFAs, TNF�, and LPS are from
overnight-fasted, preclamp blood samples. *Significantly different from NC saline. FFA, free fatty acids; NA, not applicable.
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and collected by scraping into 2 ml of PBS, centrifugation, and retention of the
pellet for analysis of lipids and proteins. For all conditions, triplicate (3-well)
measurements were made in each experiment. For neutralizing antibody
experiments, anti-TNF�, anti–IL-12, anti–IL-1�, anti–IL-1�, and IL-6 were
present at 1 �g/ml; anti–IL-18, at 10 �g/ml; and anti–IFN-� and anti–IFN-�, at
5 �g/ml. All antibodies were from R&D Systems (Minneapolis, MN). For
analysis of insulin signaling pathways, cells were serum deprived for 2 h after
24-h coculture, and were subsequently stimulated with 100 nm insulin for 10
min. After 2� washes with PBS containing 2 mmol/l protease inhibitors and
phosphatase inhibitors, cells were scraped into phosphatidylinositol 3 kinase
(PI 3-kinase) assay buffer or cell lysis buffer for subsequent analysis.
Hyperinsulinemic-euglycemic clamps. Hyperinsulinemic-euglycemic clamps
were performed as previously described (18). For the assessment of basal
hepatic glucose output (HGO), a 10-�Ci [3-3H]-glucose bolus was administered
intravenously followed by a 120-min infusion at a rate of 0.1 �Ci/min. Arterial
blood samples were taken at 60, 90, and 120 min for the determination of
plasma glucose–specific activity. To assess insulin suppression of HGO, a
constant rate insulin (Humulin; Eli Lilly) infusion (4 mU � kg�1 � min�1) and a
variable rate glucose infusion commenced at �120 min, and the [3-3H]-glucose
infusion continued at a rate of 0.18 �Ci/min for another 90 min. Blood glucose
concentration was monitored at 10-min intervals to determine the exogenous
glucose infusion rate necessary to maintain euglycemia. Blood samples taken
during the final 30 min of the clamp were used to assess plasma radioactivity
for the determination of HGO and the glucose disposal rate (GDR) (25,26).
Immunohistochemistry and immunofluorescence. For immunohistochem-
istry, tissues (liver and epididymal fat) were fixed overnight in a 4% paraform-
aldehyde solution, and subsequently embedded in paraffin. Sections were
obtained and stained using standard techniques. CD68-positive cells were
detected using �-CD68 (AbD Serotec) and were quantified on 8–9 fields of �40
sections using an Olympus (New York, NY) light microscope. For immuno-
fluorescence, CD68 and TNF� were detected in liver sections after antigen
retrieval by heating sections in 1.6 mmol/l EDTA in a high-pressure cooker for
7 min. Subsequently, sections were immunostained with �-CD68 (1:200) and

�-TNF� (1:100; MBL, Woburn, MA) followed by incubation with Alexa
488–conjugated or cyanin 3–conjugated secondary antibodies, respectively.
Images were visualized using an Olympus Provis fluorescence microscope and
modified with Magnafire software (Olympus, Melville, NY).
Tissue, cell, and plasma measurements. Triglycerides, diacylglycerol
(DAG), ceramide, fatty acid oxidation, and fatty acid esterification were
determined as described previously (27,28). Cholesterol was assessed using
the Infinity Cholesterol kit (Thermo, Rockford, IL). Insulin receptor substrate
1 (IRS-1)–associated PI 3-kinase activity, and IRS-1, insulin receptor � (IR�),
acetyl-CoA carboxylase (ACC), AMP-activated protein kinase (AMPK), and
Akt phosphorylation were determined as previously described (24,29). TNF�
(by ELISA; R&D Systems), LPS (limulus amebocyte lysate assay; Lonza
Bioscience, Walkersville, MD), insulin (by ELISA; ALPCO, Salem, NH), and
free fatty acids (Roche, Indianapolis, IN) were measured using commercial
kits according to the protocols provided by the manufacturer. Gene expres-
sion was measured using quantitative real-time PCR (supplemental Table 1) as
previously described (30).
Statistics. Data are expressed as means 	 SE. Statistical significance was
determined by t test and, where appropriate, one-way ANOVA (Bonferroni
post hoc test) was performed using the Systat statistical program (Evanston,
IL). Statistical significance was assumed at P � 0.05.

RESULTS

Depletion of liver KCs protects against liver steato-
sis and insulin resistance induced by high-fat and
high-sucrose diets. To begin to address the role of KCs in
dysregulated hepatic metabolism, we first determined the
metabolic effects of 2 weeks of HF or HS feeding in rats in
the absence and presence of KCs. Two weeks of HF or HS
feeding induced hepatic steatosis (Fig. 1A), increased liver
cholesterol and DAG, but not ceramide levels (Fig. 1B–D),
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and induced systemic hypertriglyceridemia (Table 1) with-
out increasing adiposity or body weight gain (Table 1),
compared with standard chow (SC)–fed controls. There
was a trend toward an increase in systemic TNF� levels on
the HF diet, but this increase did not attain statistical
significance (Table 1). Finally, although fasting plasma
insulin and glucose concentrations were similar in all diet
groups, HF and HS induced hepatic insulin resistance as
measured by the glucose clamp (Fig. 2). Thus, HGO during
the glucose clamp was elevated �40% in HS- and HF-fed
animals compared with controls (Fig. 2A and C). This
corresponded to a decrease in the capacity of insulin to
suppress HGO of �29 in HF- and �28% in HS-fed animals
compared with �58% in controls (Fig. 2B and D). Basal
HGO and clamp GDR were similar in SC-, HF-, and HS-fed
animals (supplemental Fig. 1). Depletion of KCs by GdCl3
decreased liver mRNA levels of the KC-specific markers
CD68/ED1 and F4/80 by �50 and �80%, respectively (Fig.
3A). Histochemical analysis of liver confirmed an �70%
decrease in CD68/ED1-positive cells (Fig. 3C and E).
Interestingly, adipose tissues levels of the same markers
were unaltered by GdCl3 (Fig. 3B, D, and F). Furthermore,
the effects of GdCl3 were independent of diet, whereas a
HF or HS diet had no effects on liver KCs or adipose tissue
macrophage (ATM) numbers in control (saline-treated)
animals (supplemental Fig. 2). Although the depletion of
KCs had no effects on liver triglyceride levels in SC-fed
animals, the development of hepatic steatosis was pre-
vented in HF- and HS-fed animals (Fig. 1A). Notably, KC
depletion also attenuated the increases in DAG (Fig. 1B),
but did not prevent the increase in liver cholesterol (Fig.
1C and D). However, plasma hypertriglyceridemia was not
resolved by KC depletion (Table 1), and indeed, there was
a trend toward increased triglycerides (TGs) in KC-de-
pleted HS- and HF-fed, but not SC-fed, animals. Liver

peroxisome proliferator–activated receptor-� (PPAR�)
and ACC1 gene expression were increased in KC-depleted
HF and HS, and CPT1 expression trended upward, with no
changes in MTTP, LCAD, or DGAT2 expression (Fig. 4).
Similar to hepatic dyslipidemia, hepatic insulin resistance
induced by HF and HS diets was prevented in KC-depleted
animals (Fig. 2), and there were no effects on fasting
glucose or insulin concentrations (Table 1), or basal HGO
and clamp GDR (supplemental Fig. 1).
M1-polarized KCs alter hepatocyte lipid metabolism
and insulin responsiveness in vitro. The demonstration
that a liver depleted of KCs is protected against diet-
induced steatosis and insulin resistance implicates a
mechanistic role for these cells in the determination of
hepatic insulin sensitivity and the regulation of lipid
metabolism. However, this in vivo study does not directly
assess the effects of KCs on hepatocyte metabolism and
insulin action. Studies provide supportive evidence in this
regard, demonstrating that LPS injection rapidly induces
steatosis (31), whereas mice with macrophages lacking
the ability to M2 polarize have decreased hepatocyte
oxidative metabolism and steatosis (15,16). Again, how-
ever, these data implicate, rather then demonstrate, a role
for KCs in hepatocyte metabolic abnormalities. To more
directly address this issue, a coculture system composed
of KCs and hepatocytes isolated from the same rat liver
was used. Isolated KCs (supplemental Fig. 4) were incu-
bated in the presence of LPS and free fatty acids to induce
M1 polarization and, subsequently, readouts of lipid me-
tabolism and insulin action in hepatocytes were assessed.
Importantly, LPS alone had no effect on hepatocyte triglyc-
eride, fatty acid esterification, or fatty acid oxidation (Fig.
5A–C). However, when KCs were present, hepatocyte
triglycerides and fatty acid esterification were increased,
and fatty acid oxidation was decreased. Furthermore,
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phospho-ACC was decreased, with a trend toward de-
creased phospho-AMPK (Fig. 5D–F). Lipogenesis (as mea-
sured by C14-acetate incorporation into total lipids), was
not increased by KCs (supplemental Fig. 3C). A similar
pattern was observed for insulin responsiveness. Thus, M1
activation of KCs resulted in a marked decrease in insu-
lin’s capacity to stimulate phosphorylation of the insulin
receptor and IRS-1, PI 3-kinase activity, and Akt phosphor-
ylation (Fig. 6). Notably, saturated fatty acids alone in the
presence of KCs induced decreases in hepatocyte fatty
acid oxidation, and increases in fatty acid esterification,
but did not alter triglyceride levels (supplemental Fig. 6).
Inhibition of TNF� attenuates the detrimental ef-
fects of KCs on hepatocyte lipid metabolism and
insulin sensitivity. The data presented above demon-
strate metabolic cross talk between KCs and hepatocytes,
which results in altered lipid metabolism and insulin
sensitivity, but do not address the biochemical mecha-
nisms of these effects. An obvious candidate mechanism is
TNF�, because it has a well-described role in the patho-
genesis of insulin resistance, has been implicated in the
development of dyslipidemia and steatosis, and is a pro-
totypical M1 cytokine produced by macrophages when
they are activated (32–39). To address this possibility, we
first evaluated the effects of overnutrition on TNF� pro-
duction by KCs in our model systems. Importantly, in both
HS- and HF-fed animals KCs had increased TNF�, and this
increase was not present in KCs of SC-fed animals as
assessed by immunofluorescence (Fig. 7A). We next di-
rectly evaluated the potential role of this cytokine in the
adverse effects of KCs on hepatocyte lipid metabolism and
insulin responsiveness, using fatty acid oxidation, triglyc-

eride accumulation, and PI 3-kinase activity as readouts,
respectively. In response to LPS exposure, KCs increased
production of TNF�, an effect that was substantially
greater than that observed when hepatocytes were ex-
posed to LPS alone (Fig. 7B). Importantly, blocking of
TNF� activity using a TNF�-neutralizing antibody resulted
in an improvement of the adverse effects of KCs on
hepatocyte fatty acid oxidation and accumulation of TGs
(Fig. 8A) and insulin-stimulated PI 3-kinase activity (Fig.
8B). Notably, neutralizing antibodies against a panel of
other M1-associated cytokines (IL-1�, IL-1�, IL-6, IFN-�,
IFN-�, IL-12, IL-18) were unable to prevent the effects of
M1-polarized KCs on hepatocyte lipid metabolism (supple-
mental Fig. 7).

DISCUSSION

The purpose of the current study was to address the
potential role of KCs in the pathogenesis of two of the liver
metabolic abnormalities associated with states of overnu-
trition, specifically hepatic steatosis and insulin resistance.
A number of novel observations are presented. The data
demonstrate that 1) KCs are M1 activated in states of
overnutrition; 2) depletion of KCs protects against the
development of diet-induced steatosis, increased DAG,
and insulin resistance; 3) M1 activation of KCs in vitro
induces changes in hepatocyte lipid metabolic pathways
and insulin sensitivity that are consistent with the effects
of diet in vivo, and 4) TNF� plays a role in mediating the
detrimental effects of KCs on hepatocyte lipid metabolism
and insulin responsiveness.

The number and activity of adipose tissue macrophages
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are increased in obesity in mice and humans (8–11).
However, to date it has been unclear whether there is a
similar effect of obesity on the activity and/or number of
macrophages in other metabolic tissues of relevance to
obesity and type 2 diabetes. In the case of liver, resident
KCs comprise �5% of the total cell mass and their ana-
tomical position in the sinusoidal spaces of the liver
permits them to act as immune sentinels for the portal
(gut) and systemic circulations. As such, they are most
likely to see potential mediators of macrophage activation
in obesity. Furthermore, their proximity to parenchymal
cells presents opportunities both to influence glucose and
lipid metabolism and potentially to respond to parenchy-
mal cell–derived signals. Data presented in the current
study clearly demonstrate activation of KCs (as measured
by increased TNF� expression) in response to overnutri-
tion, whether a high-fat diet or a high-sucrose diet. One
issue that arises from these observations is the nature of
the dietary signal responsible for the activation of the KCs.
Based on known activators of the M1 response in macro-
phages and a number of other recent studies, an increase
in LPS derived from gut bacteria may mediate the effects
of overnutrition (40–46). Indeed, raising LPS to levels
found in obese mice induces hepatic steatosis and insulin
resistance (40), whereas the treatment of obese mice with
antibiotics reduces LPS levels and improves steatosis and
insulin resistance (41). Furthermore, it is now well estab-
lished that obesity alters the composition of the gut
bacterial population (43–46), that there is increased per-

meability of the gut to LPS in obesity (41), and that
populating the gut of a lean mouse with bacteria derived
from an obese mouse results in increased body fat (45).
However, a note of caution should be introduced regard-
ing this discussion. Although increases in systemic LPS
have previously been reported in obese mice (40,41),
significant increases in plasma LPS were not observed in
the current study, although a distinct trend was clear in
sucrose-fed animals (Table 1). It is possible that factors
such as the diet length/sampling time point (after 2 weeks
of diet), the sampling site (systemic arterial), the nutri-
tional status of the animals (fasted), or diurnal alterations
may have masked changes. However, an alternative expla-
nation is that the activation of KCs is mediated by other
signals. In this regard, saturated fatty acids have been
implicated in the activation of macrophages. Specifically,
saturated fatty acids activate Toll-like receptor 4 (TLR-4),
the LPS receptor, in macrophages (47), obese TLR-4–null
mice have improved insulin sensitivity and lipid profiles
(48), TLR-4–null mice are protected against lipid-induced
insulin resistance (30), and diabetes-induced obesity is a
state of dyslipidemia. Notably, we demonstrate (supple-
mental Fig. 7) that saturated free fatty acids can recapit-
ulate the effect of KC-mediated alterations in hepatocyte
fatty acid oxidation and esterification, but not triglyceride
accumulation. Therefore, it is possible that a combination
of bacterial-derived LPS and elevated free fatty acids may
together be important mechanisms of activation of KCs in
states of overnutrition.
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The current study builds on recent reports that have
indirectly implicated a role for KCs in altering hepatic
metabolism (15,16). Thus, myeloid deletion of PPAR�,
which plays an important role in mediating the alternative
activation (the Th-2 or M2 anti-inflammatory response) of
macrophages, increases susceptibility to insulin resis-
tance, liver steatosis, and reduced hepatocyte oxidative
metabolism in obesity. An implied, although indirect,
implication of these data is that conditions that favor a

proinflammatory M1/Th-1 polarization (the “classic” acti-
vation) of KCs, such as states of overnutrition, play a role
in the development of liver metabolic abnormalities. This
hypothesis is addressed directly in the present study.
Thus, overnutrition results in increased TNF� production
by KCs, and the rapid development of steatosis and insulin
resistance. When KCs are depleted, the effects of diet on
liver steatosis and insulin resistance are prevented. Fur-
thermore, the M1 polarization of KCs in vitro induces
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panels, Hoechst staining was used to visualize cell nuclei (blue). n � a minimum of three. For in vitro experiments (B), hepatocytes and KCs were
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changes in hepatocyte lipid metabolic pathways (fatty acid
oxidation, esterification, and triglyceride accumulation)
that would be expected to promote the development of
steatosis. Taken together with the studies discussed above
(15,16) and other studies that have demonstrated hepatic
metabolic alterations in response to the altered myeloid
activity (12,14), these data suggest that cross talk between
KCs and parenchymal cells plays an important role in the
regulation of hepatic metabolism.

The current study implies a role for TNF� in the
pathogenesis of hepatic insulin resistance and dysregu-
lated lipid metabolism induced by overnutrition. The
source of TNF� is most likely the KCs because high-fat
and high-sucrose diets did not increase systemic TNF�
levels but did increase KC TNF� levels in vivo, LPS
profoundly increased TNF� production from KCs in vitro
but far less so in hepatocytes, and blocking of TNF�
activity attenuated the effects of KCs on hepatocyte fatty
acid oxidation, TG accumulation, and insulin activation of
PI 3-kinase. TNF� is the prototypical M1 cytokine and is
rapidly produced by macrophages in response to proin-

flammatory signals. Importantly, in the context of the
current study, numerous studies have implicated TNF� in
the pathogenesis of insulin resistance and dyslipidemia.
Thus, obese TNF�-null and TNF receptor–null mice have
improved insulin sensitivity compared with obese controls
(37), and the induction of insulin resistance by TNF� is
well established (35,36,39). In the context of lipid metab-
olism, the inhibition of TNF� activity with infliximab
decreases liver steatosis and improves insulin signaling in
liver of high-fat–fed rats (32), TNF��/� bone marrow
introduction into TNF��/� mice induces hepatic steatosis
on a high-fat diet (33), and TNF� injection induces hepatic
steatosis in mice (34). Finally, LPS injections in mice
produce hepatic steatosis within hours, possibly by de-
creasing fatty acid oxidation (31), and it is possible that
the in vivo effects of LPS are mediated by KC-derived
TNF�, although the contribution of other factors cannot,
and should not, be ruled out.

An implication of our work and that of others (15,16) is
that interventions that decrease M1 activity of KCs in the
liver may have beneficial metabolic effects on insulin
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action, dyslipidemia, and elevated hepatic glucose output
in situations of overnutrition. However, the removal of
KCs has substantial effects on the innate immune response
in liver (49,50). Thus, a more likely approach may be to
target the activity of the specific pathways that are acti-
vated in KCs in response to overnutrition, while maintain-
ing the other vital immune functions of KCs. Furthermore,
the long-term deletion of KCs from liver may lead to
“off-target” effects, which could present as effects on liver
function, or effects on peripheral tissue metabolism.
Again, however, it should be emphasized that complete
removal of KCs from liver is most likely not a viable
therapeutic intervention for the treatment or prevention of
the metabolic abnormalities of obesity/type 2 diabetes.

In conclusion, we have demonstrated a critical role for
KCs in the pathogenesis of liver steatosis and insulin
resistance in states of overnutrition and identified TNF� as
one potential mediator of these effects. The most impor-
tant implications of these observations, taken with other
studies in this area, is that the activity of components of
the immune system such as macrophages, and potentially
other immune cells type, is altered by dietary composition
and/or excess nutrients and, furthermore, that cross-talk
between immune cells and cells/tissues that are intimately
involved in the regulation of systemic metabolism, such as
adipose tissue and liver, have profound effects on systemic
metabolic homeostasis.
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42. Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF,
Gordon JI. The gut microbiota as an environmental factor that regulates fat
storage. Proc Natl Acad Sci U S A 2004;101:15718–15723
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