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myeloperoxidase (MPO)�derived products play a crucial role in the

pathogenesis of non�steroidal anti�inflammatory drug (NSAID)�

related small intestinal injury. The aim of the present study is to

identify dihalogenated proteins in the small intestine on indo�

methacin administration. Intestinal damage was induced by sub�

cutaneous administration of indomethacin (10 mg/kg) in male

Wistar rats, and the severity of the injury was evaluated by mea�

suring the area of visible ulcerative lesions. Tissue�associated MPO

activity was measured in the intestinal mucosa as an index of

neutrophil infiltration. The dihalogenated proteins were sepa�

rated by two�dimensional polyacrylamide gel electrophoresis (2D�

PAGE) using novel monoclonal antibodies against dibromotyrosine

(DiBrY), and they were identified by matrix�assisted laser desorp�

tion/ionization time�of�flight (MALDI�TOF) peptide mass finger�

printing and a Mascot database search. Single administration of

indomethacin elicited increased ulcerative area and MPO activity

in the small intestine. 2D�PAGE showed an increased level of

DiBrY�modified proteins in the indomethacin�induced injured

intestinal mucosa and 6 modified proteins were found. Enolase�1

and albumin were found to be DiBrY modified. These proteins

may be responsible for the development of neutrophil�associated

intestinal injury induced by indomethacin.
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IntroductionNon-steroidal anti-inflammatory drugs (NSAIDs) are com-
monly used world over for the treatment of musculoskeletal

pain and inflammation. A major limitation of the clinical utility of
NSAIDs is their gastrointestinal toxicity and the increased risk of
serious, possibly fatal, complications of the upper gastrointestinal
tract, including bleeding, ulceration, and perforation of the stomach
and duodenum.(1–4) Furthermore, recent advances in gastrointestinal
endoscopies such as capsule endoscopy and balloon endoscopy
for investigation of the entire small intestine have revealed that
NSAIDs can cause mucosal injuries in the small intestine as well
as a variety of abnormalities such as ulcerations, perforation,
bleeding, and diaphragm-like strictures.(5,6) Therefore, it is impor-
tant to investigate the precise pathogenesis of NSAID-induced
intestinal injuries and determine preventive and therapeutic strate-
gies for them.

Investigations using experimental animal models have shown
that NSAIDs such as indomethacin damage the small intestine.
Increasing evidence suggests that the intestinal injury caused by
indomethacin is associated with abnormal intestinal permeability,
bacterial translocation, activation of inflammatory cytokines,
nitric oxide (NO) overproduction, and prostaglandin deficiency,

in addition to neutrophil accumulation.(7–11) In particular, the
infiltration of neutrophils into the intestinal mucosa may play a
crucial role in the pathogenesis of NSAID-induced intestinal
injury. Stadnyk et al. demonstrated that neutrophils were detectable
in the small intestine of rats at 6 h after indomethacin administra-
tion and continued to accumulate until 48 h after administration.(12)

We also previously reported that neutrophil infiltration gradually
increased in a time-dependent manner after indomethacin admin-
istration in rats.(7,13,14) Interestingly, impaired leukocyte recruit-
ment and neutrophil depletion resulted in the amelioration of
NSAID-induced injury in mice.(15,16) Thus, neutrophil-mediated
inflammation can be considered to be involved in NSAID-induced
intestinal injury.

On the other hand, neutrophils have granules containing per-
oxidases such as myeloperoxidase (MPO). MPO is known to
catalyze the formation of hypochlorous acid (HOCl) and hypo-
bromous acid (HOBr) using hydrogen peroxide (H2O2) and Cl− or
Br−, respectively. These reactive intermediates may react with
proteins,(17,18) lipids,(19,20) and nucleotides,(21–23) and they reportedly
cause tyrosine halogenation; such halogenations give rise to
products such as dibromotyrosine (DiBrY),(24,25) which is a tyro-
sine molecule modified by bromine at the 3- and 5-positions and
is one of the major oxidative products derived from neutrophil
MPO.

The role of tyrosine halogenation in the development of
neutrophil-mediated inflammatory damage such as NSAID-induced
intestinal injuries remains unclear. In this study, we identified
the DiBrY-modified proteins involved in indomethacin-induced
intestinal injuries by using a proteomics-based approach.

Materials and Methods

Experimental animals. Male Wistar rats weighing 190–210 g
were obtained from Shimizu Laboratory Supplies Co., Ltd.
(Kyoto, Japan). The animals were housed at 22°C in a controlled
environment with 12 h of artificial light per day, and they were
allowed ad libitum access to rat chow and water. The experiments
were performed on 5–6 non-fasting rats per group without
anesthesia. Animal maintenance and all experimental procedures
were carried out in accordance with the NIH guidelines for the
use of experimental animals. All experimental protocols were
approved by the Animal Care Committee of the Kyoto Prefectural
University of Medicine (Kyoto, Japan).

Induction of small intestinal lesions. The animals were
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subcutaneously administered 10 mg/kg indomethacin (Sigma
Chemical; St. Louis, MO) and killed 24 h later under deep ether
anesthesia. To determine the extent of injury, 1% Evans blue was
injected intravenously 30 min before euthanasia; the jejunum and
ileum were then removed, opened along the antimesenteric
attachment, and examined for lesions under a dissecting micro-
scope with square grids. The area (in mm2) of visible lesions
was macroscopically measured, totaled per 20 cm of the small
intestine, and expressed as an ulcer index. The degree of intestinal
injury was evaluated by an independent observer who was blinded
to the experimental conditions. For histological examination,
formalin-fixed tissue was stained with hematoxylin and eosin
(H&E). Staining was evaluated by light microscopy by a pathologist
who was also blinded to the experimental conditions.

Measurement of MPO activity. Tissue-associated MPO
activity was determined by a modification of the method of
Grisham et al.(26) as an index of neutrophil accumulation. The
intestinal mucosa was scraped off using two glass slides and then
homogenized with 1.5 ml of 10 mmol/l potassium phosphate
buffer (pH 7.8) containing 30 mmol/l KCl in a Teflon Potter-
Elvehjem homogenizer. The mucosal homogenates were centri-
fuged at 20,000 × g for 15 min at 4°C to pelletize the insoluble
cellular debris. The pellet was then dissolved in an equivalent
volume of 0.05 M potassium phosphate buffer (pH 5.4) containing
0.5% hexadecyltrimethylammonium bromide. The samples were
centrifuged at 20,000 × g for 15 min at 4°C and the supernatants
collected. MPO activity was assessed by measuring the H2O2-
dependent oxidation of 3,3',5,5'-tetramethylbenzidine. One unit of
enzyme activity was defined as the amount of MPO required to
cause a 1.0/min change in absorbance of at 645 nm and 25°C. The
level of MPO activity in the mucosal homogenates was expressed
as unit per milligram of protein. The total protein in the tissue
homogenates was measured using a Bio-Rad Protein Assay kit
(Bio-Rad Laboratories, KK; Tokyo, Japan) according to the
manufacturer’s protocol.

Sample preparation and two�dimensional polyacryl�
amide gel electrophoresis (2D�PAGE). The intestinal tissue
samples (200 mg) were homogenized in 2 ml homogenization
buffer (8 M urea, 4% 3[(3-Cholamidopropyl)dimethylammonio]-
propanesulfonic acid (CHAPS), 40 mM Tris) containing nuclease
and protein inhibitors (GE Healthcare UK Ltd.; Buckinghamshire,
England) using a homogenizer at 25,000 rpm. The homogenized
samples were transferred to an ultracentrifuge tube, and the
nucleic acids were removed by centrifugation (20 min at 20,000 × g
and 25°C). The samples were then precipitated using the PlusOneTM

2D Clean-Up kit as recommended by the manufacturer (GE
Healthcare UK Ltd.). The protein concentration in the supernatant
fraction was determined using the Bradford assay with bovine
serum albumin as the standard.

The samples were solubilized in 6 M urea, 20 mM dithiothreitol,
30% glycerol, 45 mM Tris base, 1.6% lithium dodecyl sulfate
(LDS) (Invitrogen Japan KK, Tokyo, Japan), and 0.002%
bromophenol blue and were subsequently heated at 70°C for
10 min. Protein lysates (50 μg) were separated by 2D-PAGE.
Immobilized pH gradient (IPG) strips of pH 4–7 or pH 5.3–6.3
(Invitrogen Japan KK) were rehydrated overnight with the protein
samples. The proteins were separated on the basis of their respec-
tive isoelectric points by isoelectric focusing (IEF) using ZOOM®

IPGRunnerTM (Invitrogen Japan KK) at a maximal voltage of
2000 V and a current limit of 50 μA per gel. Following IEF, the
IPG strips were incubated in equilibration buffer I (6 M urea,
130 mM dithiothreitol, 30% glycerol, 45 mM Tris base, 1.6%
LDS, 0.002% bromophenol blue; Genomic Solutions) and once in
equilibration buffer II (6 M urea, 135 mM iodoacetamide, 30%
glycerol, 45 mM Tris base, 1.6% LDS, 0.002% bromphenol blue;
Genomic Solutions) for 15 min each. The equilibrated IPG strips
were applied to 4–12% Bis-Tris gradient gels (Invitrogen Japan
KK), and the NuPAGE® MOPS buffer (Invitrogen Japan KK) was

used at 200 V for 55 min to separate the proteins in the second
dimension on the basis of their molecular size. Following
electrophoresis, the gels were transferred onto nitrocellulose and
immunoblotted with the anti-DiBrY monoclonal antibody (3A5),
which was kindly gifted to us by Prof. Toshihiko Osawa.(24)

In�gel protein digestion and peptide mass fingerprint�
ing. Protein spots of interest were excised using Xcise
Proteomics Systems (Shimadzu Corp., Kyoto, Japan) from the
preparative gel stained with Deep PurpleTM Total Protein Stain
(GE Healthcare UK Ltd). The excised spots were washed thrice
with 50 mmol/l ammonium bicarbonate and 50% acetonitrile
(ACN), dehydrated with 100% ACN. The proteins were subjected
to in-gel digestion with 10 μg/ml trypsin (Promega KK; Tokyo,
Japan) in 50 mmol/l ammonium bicarbonate at 30°C overnight.
Tryptic peptides were extracted from the gel slices with 1%
trifluoracetic acid and 50% ACN. After concentration and desalting
using a Millipore ZipTipµ-C18 (Nihon Millipore KK; Tokyo,
Japan), the resulting peptides were mixed with an equal volume
of 10 mg/ml 2,5-dihydroxybenzoic acid (DHBA), and the peptide
mass spectra were obtained using the AXIMA-QITTM MALDI-
TOF-MASS (Shimadzu) platform for peptide mass fingerprinting.
Protein identification was carried out using the Mascot search
engine (http://www.matrixscience.com/search_form_select.html).

Statistical analysis. Results are presented as the mean ±
(standard error of the mean [SEM]). Overall differences between
groups were determined by one-way analysis of variance
(ANOVA). Whenever the one-way ANOVA was significant,
differences between individual groups were analyzed by
Bonferroni’s multiple comparisons test. Differences of p<0.05
were considered significant. All analyses were performed using
the GraphPad Prism 4 program (GraphPad Software Inc.; San
Diego, CA) for Macintosh.

Results

Intestinal ulceration after indomethacin administration.
A single administration of 10 mg/kg indomethacin elicited multiple
erosions in the small intestine (Fig. 1B); a normal untreated small
intestine is shown in Fig. 1A for comparison. The ulcer index
gradually increased with time, and significant increases in this
index were noted 6, 12, and 24 h after indomethacin administra-
tion (Fig. 1C).

Histological findings and time course of changes in MPO
activites. The histological features observed were defects of
the villi, epithelial stratification, basal lamina degeneration, and
infiltration of the mucosa by inflammatory cells (neutrophils)
(Fig. 2B); none of these were observed in the normal intestinal

Fig. 1. Representative macroscopic findings and ulcer index after
indomethacin administration. To determine the extent of intestinal
injury, 1% Evans blue was injected intravenously 30 min before
euthanasia. The representative macroscopic findings indicate that the
small intestinal injuries were induced 24 h after indomethacin admin�
istration (B); a normal untreated intestine is shown in (A). The ulcer
index after indomethacin administration was evaluated as described in
Materials and Methods (C). Data represent the mean ± (SEM) of 7 rats.
*p<0.01 compared to the sham group (0 h).



doi: 10.3164/jcbn.10�93
©2011 JCBN

180

mucosa (Fig. 2A). Neutrophil accumulation was evaluated by
measuring the MPO activity in the intestinal mucosa homo-
genates. The MPO activity in the intestinal mucosa was markedly
increased by indomethacin treatment and the increase was signifi-
cant 24 h after administration (Fig. 2C).

Identification of DiBrY�modified proteins in intestinal
mucosa with indomethacin�induced injury. To evaluate the
expression of DiBrY-modified proteins in the intestinal mucosa,
we performed 2D-PAGE by using a pH 4–7 IPG strip and 4–12%
Bis-Tris gradient gels. Fig. 3 (upper panel; A, B) shows individual
proteins separated by 2D-PAGE and stained with Deep PurpleTM

Total Protein Stain. Subsequently, the gels were transferred onto
nitrocellulose and were immunoblotted with anti-DiBrY mono-
clonal antibody (Fig. 3, lower panel; C, D). We focused on
analyzing DiBrY-modified proteins between pI 5.3 and 6.3 of size
between 20 and 60 kDa. (Fig. 3, lower panel, boxed image).

Next, the individual proteins were separated by 2D-PAGE
between pI 5.3 and 6.3 (Fig. 4). As shown in Fig. 4B, the
immunoblot analysis revealed 6 DiBrY-modified proteins
(indicated by arrows). These 6 proteins were analyzed by MALDI-
TOF using peptide-mass fingerprinting, and a database search was
performed with Mascot (Table 1). Enolase-1 and albumin were
found to be DiBrY-modified in the intestinal mucosa with
indomethacin-induced injury.

Fig. 2. Representative histological findings and neutrophil accumula�
tion in the intestinal mucosa after indomethacin administration. Histo�
logical appearance of the intestinal tissue of the sham group rats (A)
and rats treated with indomethacin (B). Histological examination
revealed that indomethacin administration induced ulceration in the
small intestine, which was associated with the infiltration of numerous
inflammatory cells. Hematoxylin and eosin (H&E) staining (×40). The
time course of tissue�associated myeloperoxidase (MPO) activity after
indomethacin administration was determined as an index of neutrophil
accumulation in the intestinal mucosa (C). Data represent the mean ±

(SEM) of 8 rats. *p<0.05 compared to the sham group (0 h).

Table 1. List of dibromotyrosine�modified proteins identified in indomethacin�induced injured intestinal mucosa

pI, Isoelectric point; MW, Molecular Weight.
MASCOT score described the significance of the search results from the search engine MASCOT and a significance threshold of
about 60 is typical. The sequence coverage was defined as the ratio of the number of the identified amino acids to the total
number acid of the protein (%).

Spot No. Protein identity pI MW (Da)
MASCOT 

score
Sequence 

coverage (%)

1 enolase�1 6.16 47440 78 29

2 enolase�1 6.16 47440 58 32

3 Albumin isoform CRA_a 6.72 53060 70 21

4 Albumin isoform CRA_a 6.72 53060 93 34

5 Albumin isoform CRA_a 6.72 53060 119 46

6 Albumin isoform CRA_a 6.72 53060 82 23

Fig. 3. Image of 2D�PAGE analytical gels and immunoblotting with
anti�dibromotyrosine (DiBrY) monoclonal antibody. (A, B) 2D�PAGE gels
were stained using Deep PurpleTM Total Protein Stain. Subsequently,
they were transferred onto nitrocellulose and immunoblotted with the
anti�DiBrY monoclonal antibody (C, D). Boxes mark image areas that
were investigated in subsequent experiments at pH 5.3–6.3.

Fig. 4. Image of 2D�PAGE between pH 5.3 and 6.3. (A, B) 2D�PAGE
between pH 5.3 and 6.3 gels were stained using Deep PurpleTM Total
Protein Stain. (C, D) Immunoblotting analysis revealed 6 DiBrY�modified
proteins (arrows) in the intestinal mucosa injured by indomethacin
treatment.
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Discussion

In this study, we performed 2D-PAGE to identify DiBrY-
modified proteins in intestinal mucosa injured because of indo-
methacin. We confirmed that 2 proteins (enolase-1 and albumin)
exhibited altered expression, as shown in Table 1. It is well known
that albumin possesses potent antioxidant properties and non-
specifically binds to free radicals,(27,28) Enolase-1 modification has
also been reported in many reports.(29–33) The present proteome
analysis might provide important, novel clues for understanding
NSAID-induced intestinal injuries and reveal candidates for
therapeutic targets.

Enolase, also known as phosphopyruvate dehydratase, is a
glycolytic enzyme. Mammalian enolase has 3 isoforms: enolase-1
(α-enolase), enolase-2 (γ-enolase), and enolase-3 (β-enolase). The
expression of these isoforms is developmentally regulated in a
tissue-specific manner. Enolase-1 is widely distributed in a variety
of tissues, whereas enolase-2 and enolase-3 are found exclusively
in neurons or neuroendocrine tissue and muscle tissues, respec-
tively.(34) Interestingly, recent investigations have revealed that
enolase enzymes possess various different regulatory properties in
addition to their role in glycolysis and glucogenesis. Enolase-1
plays a key role in anerobic metabolism and acts as a plasminogen
receptor (Plg-Rs),(35) indicating that it may play a role in tissue
invasion. In fact, the enhanced binding and activation of
plasminogen by neoplastic cells has been attributed to enhanced
enolase-1 expression, and abnormal expression of enolase-1 is
associated with tumor progression in lung cancer.(36–38) These
findings collectively indicate that, enolase-1 may be a potential
therapeutic target for cancer. Further, although the role of enolase-
1 remains unclear in intestinal inflammation, Wygrecka et al.

demonstrated that lipopolysaccharide (LPS) induced the expres-
sion of enolase-1 in monocytes, and the increased cell-surface
expression of enolase-1 mediated the invasion of inflammatory
cells.(39)

In proteomics studies, enolase-1 has been frequently identified
to be differentially expressed in 2D-PAGE-based experiments on
human and animal tissues. In particular, enolase-1 was found to be
excessively carbonylated,(30,31) nitrated,(33) and 4-hydroxynonenal
(HNE)-modified(29,32) in various diseases. In the present study, we
identified DiBrY-modified enolase-1 in indomethacin-induced
intestinal injury. Although further studies on the precise function
of DiBrY-modified enolase-1 are required, the protein may be
considered to play an important role in the pathogenesis of
intestinal inflammation.

In conclusion, we identified DiBrY-modified proteins, enolase-1
and albumin, in intestinal tissue with indomethacin-induced
injury. Although further examination is required to gain a better
understanding of the role of these modified proteins, DiBrY is
expected to be a novel biomarker for inflammation-related tissue
damage and may be involved in neutrophil accumulation.
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