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Abstract Background/purpose: Producing tooth crowns through dental technology is a basic
function of dentistry. The morphology of tooth crowns is the most important parameter for
evaluating its acceptability. The procedures were divided into four steps: tooth collection,
scanning skills, use of mathematical methods and software, and machine learning calculation.
Materials and methods: Dental plaster rods were prepared. The effective data collected were
to classify 121 teeth (15th tooth position), 342 teeth (16th tooth position), 69 teeth (21st tooth
position), and 89 teeth (43rd tooth position), for a total of 621 teeth. The procedures are
divided into four steps: tooth collection, scanning skills, use of mathematical methods and
software, and machine learning calculation.

Results: The area under the curve (AUC) value was 0, 0.5, and 0.72 in this study. The precision
rate and recall rate of micro-averaging/macro-averaging were 0.75/0.73 and 0.75/0.72. If we
took a newly carved tooth picture into the program, the current effectiveness of machine
learning was about 70%—75% to evaluate the quality of tooth morphology. Through the calcu-
lation and analysis of the two different concepts of micro-average/macro-average and AUC,
similar values could be obtained.

Conclusion: This study established a set of procedures that can judge the quality of hand-
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carved plaster sticks and teeth, and the accuracy rate is about 70%—75%. It is expected that
this process can be used to assist dental technicians in judging the pros and cons of hand-
carved plaster sticks and teeth, so as to help dental technicians to learn the tooth morphology

more effectively.

© 2023 Association for Dental Sciences of the Republic of China. Publishing services by Elsevier
B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).

Introduction

Human teeth are susceptible to damage and loss due to
accidents, tooth decay, old age, and oral diseases. As a
result, dental restoration is one of the most prevalent
dental tasks. Repairing or removing tooth damage requires
making a tooth, which was traditionally carried out by
dental technicians by hand. This requires repeated prac-
tice to accumulate experience, but various people might
have different opinions as to the quality of the tooth. The
first step in making a tooth is that the tooth morphology
must be correct and aesthetically pleasing. Therefore, in
this study, we used machine learning (ML) of artificial in-
telligence (Al) to evaluate tooth morphology. The aim of
this study was to facilitate the process of digital dental
technology, as Al may help improve digital dental tech-
nologies. The current software development of digital
dental technology still needs personnel to modify and
correct the tooth morphology, and computers can possibly
do this more quickly than human technicians. There are
two kinds of engineering processes worldwide: forward
engineering and reverse engineering. Forward engineering
includes computer-aided design, computer-aided engi-
neering, and computer-aided manufacturing. Reverse en-
gineering uses a scanner to scan a model. The user gets
digital imaging and communications in medicine file from
scanner and transfers it to a standard template library
(STL) file. Finally, the user employs computer numerical
control or 3D printing machine to fabricate an actual
product (Fig. 1).

Current scanning technology includes a scan model,
energy, and format. In the 1980s, because computer-aided
design and drawing required one to learn the process to
make it easy to use, reverse engineering technology
emerged. Oral scanning is common in dental clinics.'™>
The invention of computed tomography and nuclear
magnetic resonance imaging was used to scan patients
with electron injection, and then integrate this into a 3D
image output.”® Positron emission tomography imaging
applied protons as an energy source to scan patients.®”’
Dental computed tomography scans for the oral cavity
have also begun to be marketed, so mastering scanning
technology is still very important.*® Artificial intelligence
includes calculation, methodology, and analysis. McCarthy
defined Al as “the science and engineering of making
smart machines".? There are currently a large number of
tools using Al, including search and mathematical opti-
mization, and logical deduction. Al is also used in robotics,
economic and political decision-making, control systems,
and simulation systems.”~'®
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Machine learning is a type of Al that focuses on building
systems that can learn or improve their performance based
on the data they use. To evaluate a model, the researcher
usually divides the available data into three groups:
training set, validation set, and testing set. The researcher
trains the model with the training dataset and evaluates
the model with the validation dataset. Once the model is
trained and validated, the data can be tested for final
testing. Convolutional neural networks are deep learning
models commonly used in computer vision, especially when
there are insufficient training data samples. This helps the
model learn more oriented data and get better general-
ity.2>>°71¢ There are also many applications of Al in
dentistry, from semi-supervised blurring to tooth segmen-
tation by x-ray images, and applications in orthognathic
surgery. As to current concepts and glimpses into the future
of big data and ML applications, there is the assessment of
periapical lesions calculated by cone beams, and applica-
tions of machine learning in dental, oral, and craniofacial
imaging. This is a modern, digital transformation of oral
care, and there have been several reviews of the current
status and future of Al in dentistry.'” ¢

The main goal of this study was to enhance the process
of digital dental technology. However, current de-
velopments in the software of digital dental technology still
require personnel to modify the correct tooth morphology,
but computers can perhaps do this more quickly. Designing
tooth morphology that meets functionality and aesthetic
requirements by a technician, coupled with manufacturing
by computer-aided design/computer-aided manufacturing
or 3D printing, is bound to greatly increase the production
efficiency of the entire denture production process, and
determining how to allow a computer to automatically
generate the correct tooth morphology and machine
learning of Al to reduce the case return rate were our aims.

Materials and methods

Oral science is divided into three specialties: dentistry,
dental technology, and oral hygiene. Dental technology has
strikingly evolved from the past to the present and future.
Fig. 2 shows the past, present, and future dental technol-
ogy eras.

The procedures are divided into four steps: (1) tooth
collection, (2) scanning skills, (3) use of mathematical
methods and software, and (4) calculation of machine
learning (Fig. 3). The topic of this study was tooth
morphology transferred from the man-made process to the
help and judgment of ML.


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

F.-Y. Fan, W.-C. Lin, H.-Y. Huang et al.

FE CAD | CAE - CAM | |CNC
| |
Mold Casting
Engineering Molding Real
product
Forging
CNC
RE | | SCAN | | Transfer
file
3D Real
printing product

Figure 1

The engineering use direction classification. Abbreviations: FE: forward engineering; CAD: computer-aided design; CAE:

computer-aided engineering; CAM: computer-aided manufacturing; CNC: computer numerical control; RE: reverse engineering; 3D:

three dimension.

Traditional 3 Digital 3 Artificial intelligence
dental technology dental technology dental technology
(TDT) (DDT) (AIDT)

Figure 2 The era of the past, present, and future dental technology.

In response to improvements in dental technology, this
study used Al to improve the identification of tooth
morphology. Dental plaster rods were prepared by col-
lecting work saved in an internal and external dental con-
tour sculpture competition at our university. The effective
data collected were in accordance with Fédération Den-
taire Internationale (FDI; World Dental Federation) tooth
position (ISO-3950) notation to classify 121 teeth of the
15th tooth position, 342 teeth of the 16th tooth position, 69
teeth of the 21st tooth position, and 89 teeth of the 43rd
tooth position, for a total of 621 teeth (Fig. 4a).
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After the selection of plaster sticks, each tooth was
scanned with a desktop scanner to obtain tooth shape data.
In order to reduce human error, the scanning program was
changed from an intraoral scanner to a desktop scanner
(Identica T500, Medit, Seoul, South Korea). We used a
desktop scanner to scan the collected dental plaster sticks
and store them in STL file (Fig. 4b).

After obtaining the STL files of tooth type, the data
obtained had to be converted for use in ML theory and
software. Then, we used the two steps for file processing.
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Figure 3 The flow chart of teeth morphology making by
machine learning (ML) of artificial intelligence.

Step 1: We adjusted the angle, axis, and orientation of
the scanned STL file to be consistent with Meshmixer soft-
ware (AUTODESK, San Francisco, CA, USA) (Fig. 4c).

Step 2: We used FastStone capture software (Fast-
Stone, Alberta, Canada) to arrange the neatly arranged
tooth model to a fixed size (width and height of 330 pixels,
horizontal and vertical resolution of 96 dots per inch, and
a bit depth of 24), and turn individual screenshots into
JPEG file to capture the face with the largest feature point
of tooth type. For example, the labial side (front view) of
the front teeth was captured (Fig. 5a), while the occlusal
surface (top view) was captured for the posterior teeth
(Fig. 5b).

When a suitable model is obtained through machine
learning, this model can provide dental technicians with
the ability to judge the pros and cons of engraved teeth.
After dental technicians have carved their teeth, the
scanned data can be placed in the model to judge the good
or worse of these engraved teeth, which can improve the
dental technician’s ability. A model (No. is C7-26T.4 (14S),
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Fig. 5cd) acted as the reference group (epically at FDI-16).
This is used as a machine learning exercise for sculpting the
morphology of teeth. The authors expect to pass machine
learning, then artificial intelligence can have the ability to
personalize recognition and serve customization.

A typical convolutional neural network architecture
comprises repetitions of a stack of several convolution
layers and a pooling layer, followed by one or more fully
connected layers. The following plan was used to reduce
the problems caused by insufficient materials. Step (1):
Pictures were taken of teeth in the same FDI tooth position,
scoring results of the judges of the competition were
referenced, and they were classified into three ranks (A, B,
and C) according to the scores, from high to low. Step (2):
One picture of each category was saved as a test set. Step
(3): Since the number of data sets was insufficiently large,
the remaining original images of each category were
removed. After the image files of the same size were
adjusted, data augmentation technology was used (Fig. 6).
After the data were augmented, they were divided into a
training set and a validation set. Step (4): The convolutional
neural network model was used for machine learning.

Results

Supervised learning is currently the most common method
of machine learning. The main method is to have all
training data with corresponding labels, and then the ma-
chine learns to map each data point in the data set to the
corresponding label. In order to evaluate the classification
performance of a classifier, it is necessary to introduce
some evaluation indicators. The confusion matrix, preci-
sion, recall, F1 value, micro-averaging, and macro-
averaging have been used to understand the performance
of learning algorithm.'®'* Achieving very high accuracy is
very easy by carefully selecting the sample size but if we
use accuracy as a measure for testing the system’s per-
formance, the system can be biased and can attain very
high accuracy. However, precision, recall, and F1 Value are
not dependent on the training’s size and the test samples.
If there is only one two-class confusion matrix, then the
indicators (such as precision (P), recall (R), and false posi-
tive rate (FPR) can be used for evaluation, there is no
controversy, but when we want to comprehensively
examine the evaluation indicators on n two-class confusion
matrices, we will use macro-averaging and micro-
averaging. When P (Micro) > P (Macro), it means that the
classification accuracy of model for the main class is good,
but the results for the small class are poor for engraved
teeth. The authors use micro-averaging and macro-
averaging to predict the morphology of engraved teeth.

The following plan tries to reduce the problems caused
by insufficient data in this way. Confusion matrix (It is
shown in Fig. 7): It is also called an error matrix and is a
special, two-dimensional (actual and predicted) contin-
gency table. TP, FP, FN, and TN are the number of true
positives, false positives, false negatives, and true nega-
tives that correspond to the relative importance of preci-
sion versus recall and are usually set to 1.

Precision: It is also called the precision rate, which is for
the prediction result.
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Figure 4 Collection and Scanning of teeth. (a) Part of dental plaster sticks (Fédération Dentaire Internationale (FDI)-16)
collected. (b) Scanning and file creation by desktop scanner. (c) Plaster rods after scanning and scanning are arranged by Mesh-

mixer software.

TP

Precision = TP+ FP

(1)

Recall: The recall is for the original sample, and its
meaning is the probability of being predicted as a positive
sample in an actual positive sample. It is also called the
true positive rate (TPR).

TP

(2)

False positive rate: Number of negative sample results
predicted to be positive/actual number of negative
samples.

FPR = FP/(FP+TN) 3)

F1 value: Find a balance between precision and recall.
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_ 2 x Precision x Recall

'~ " Precision + Recall
2xTP

" 2xTP+FP<FN

(4)

Micro-averaging: It is to establish a global confusion
matrix for each instance in the data set regardless of
category, and then calculate the corresponding indicators.

TP S TP
TP+FP Y " TP+ . FP;

micro —

TP TP,
TP+FN Z?:1TP;+Z?:1FN,-

2 x Pmicro X Rmicro
Pmicro + Rmicro

micro —

F, micro =
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Figure 5

Fast Stone capture software captures fixed size of different teeth. (a) anterior teeth (Fédération Dentaire Inter-

nationale (FDI)-43 front view). (b) posteriorteeth (Fédération Dentaire Internationale (FDI)-16 top view). (c) Front view (Model No.

is C7-26T.4 14S). (d) Top view (Model No. is C7-26T.4 14S).

Macro-averaging: It is to first calculate the statistical
index value of each class, and then calculate the arithmetic
mean of all classes.

1
Pmacrozﬁ ZPI
i=1

1 n
Rmacro :E ZRI
i=1

2 X Pmacro X Rmacro
Pmacro + Rmacro

Fmacro =

Among all of the tooth profile data sets, the largest
number of teeth of FDI tooth position 16 was collected (342
teeth in total), and so this tooth was selected to train the
prediction model. When we input a new FDI tooth position
16, the picture was transferred to the convolutional neural
network prediction model (Fig. 8).
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Discussion

The judgment results were obtained in Table 1. The tooth
pictures of the same FDI tooth position will be classified
into three grades, A, B, and C, from high to low, according
to the scoring results of the judges of the current compe-
tition. The precision rate of micro-averaging was 0.75 and
the recall rate was 0.75; the precision rate of macro-
averaging was 0.73 and the recall rate was 0.72. There-
fore, it is estimated that if we take a newly carved tooth
picture into the program, the current effectiveness of
machine learning is about 70%—75% to correctly assess the
pros and cons of tooth morphology.'

The authors also used another method to evaluate the
estimated accuracy of the tooth morphology. First, calcu-
late the TPR and FPR. Then draw the receive operating
characteristic (ROC) curve with the aforementioned two
values (Fig. 9). Finally, calculate the aforementioned area
under the curve graph is obtained as the area under the
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Figure 6 Tooth shape legend with data augmentation.
Actual Values
Positive (1) Negative (0)
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Figure 7 Confusion matrix. Abbreviations: TP: true posi-
tives; FP: false positives; FN: false negatives; TN: true
negatives.

curve (AUC) (Table 2). If we start from the various results of
actual performance, the problem of sample imbalance can
be avoided, which is why the authors choose TPR and FPR as
the indicators of ROC/AUC."®"*2°

The ROC curve, also known as the receive operating
characteristic curve, was originally used in the field of
radar signal detection to distinguish between signal and
noise. Later, it was used to evaluate the prediction ability
of the model. To calculate points on the ROC curve, we can
evaluate the logistic regression model multiple times with
different classification thresholds, but this is very ineffi-
cient. There is an efficient ranking-based algorithm that
provides this information, this algorithm is AUC.

The judgment results obtained are shown in Fig. 9 and
Table 2. The AUC was 0, 0.5, and 0.72. The larger the AUC
value, the better the model. Therefore, it is expected that
if the authors bring a new photo of engraved teeth into the
program, the efficiency will be around 70%—75% after ma-
chine learning calculations, and the quality of tooth
morphology can be correctly assessed.'*2°
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Figure 8 Newly imported tooth legend (Fédération Dentaire
Internationale (FDI)-16).

Table 1 Prediction for micro average, macro average,
and weighted average.

precision recall F1-score
A* 0.00 0.00 0.00
B® 1.00 1.00 1.00
ce 0.78 1.00 0.68
Micro average 0.75 0.75 0.75
Macro average 0.73 0.72 0.72
Weighted average 0.73 0.74 0.70

@ The tooth pictures of the same FDI tooth position will be
classified into three grades, A, B, and C, from high to low, ac-
cording to the scoring results of the judges of the current
competition.

—_—A B C
(0.67,1) 11)
1
0.78,1)

Eos
g
2

= 0.6
2
2
H

204
@D
£
=]

0.2

(©,0)

0

0 0.2 0.4 0.6 0.8 1
False positeive rate (FPR)
Figure 9 Receive operating characteristic curve (False pos-

itive rate (FPR)-True positive rate (TPR) curve).

To sum up, similar values can be obtained through the
calculation and analysis of two different concepts of micro-
averaging/macro-averaging and AUC. Finally, it is
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Table 2 Prediction for area under curve (AUC).
False positive True positive Area under
rate rate curve

A* 0.00 0.00 0.00

B® 0.78 1.00 0.5

c? 0.56 1.00 0.72

2 The tooth pictures of the same FDI tooth position will be
classified into three grades, A, B, and C, from high to low, ac-
cording to the scoring results of the judges of the current
competition.

estimated that if we bring a new carved tooth photo into
the program, the current effectiveness of machine learning
is about 70%—75% to correctly assess the pros and cons of
the tooth morphology.

In the experiment of this study, the lack of a data set
was one of the factors that affected the final results. This
study established a set of procedures that can judge the
quality of hand-carved plaster sticks and teeth, and the
accuracy rate is about 70%—75%. It is expected that this
process can be used to assist dental technicians in judging
the pros and cons of hand-carved plaster sticks and teeth,
so as to help dental technicians to learn the tooth
morphology more effectively.
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