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A B S T R A C T   

In this work, we present a novel stretchable bimodal sensor that can simultaneously detect temperature and humidity changes based on poly- 
hydroxyethyl acrylate (PHEA) elastomer infused with 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF4) ionic liquid. The sensor ex-
hibits high transparency, stability, and biocompatibility, as well as excellent mechanical and sensing properties. The sensor can achieve a maximum 
strain of 761%, a sensitivity of 4.5%/◦C at room temperature, a detection range from − 35 to 120 ◦C, and a response time of 10 ms. The sensor is able 
to provide acute response to movement of human hand at close range and can detect temperature changes as small as 0.004 ◦C in the range of 
20–30 ◦C. The sensor also responds to humidity change, showing a high sensitivity to humidity change of 4.4%/RH% under the temperature of 
30 ◦C. The sensor can be used for various applications in wearable electronics, human-machine interfaces, and soft robotics.   

1. Introduction 

Stretchable sensors that can detect multiple stimuli such as temperature and humidity are highly desirable for applications in 
wearable electronics, human-machine interfaces, and soft robotics. Temperature sensing is especially important for monitoring human 
health and physiological activities, as well as environmental changes [1–4]. However, most of the existing stretchable sensors are 
based on electronic conductors and semiconductors, which have limitations in transparency, stretchability, stability, and biocom-
patibility [5–8]. 

Ionic conductors, on the other hand, offer advantages such as high transparency, low impedance, and good biocompatibility 
[9–11]. However, they often face challenges due to the high ion concentration and the presence of water in the matrix for ion 
dissolution, which can result in poor mechanical properties and water evaporation [12–14]. Therefore, there is a pressing need to 
develop novel ionic conductors that can combine high stretchability, transparency, stability, and sensitivity for bimodal sensing. 

Various attempts have been made to create sensors based on hydrogels and conducting elements, utilizing different measurement 
techniques [6,15,16]. However, many of these sensors rely on complex structures or incorporate conducting particles, such as 
multiwall carbon nanofibers, rendering the material opaque and compromising its mechanical properties [17]. Additionally, some 
previous works involved the use of metallic salts, introducing the challenge of corrosion over extended periods, which can damage the 
polymer structure [18,19]. In 2018, S. Ding and colleagues [20] introduced a non-corroding, single-phased ion gel material that has 
high sensitivity to temperature. Nonetheless, their utilization of a hydrophobic matrix limited the material’s capability to simulta-
neously detect moisture. There also have been other trials to make stretchable temperature and humidity sensors by application of 
stretchable designs [21,22]，but by incorporating such designs, the manufacturing process becomes more complicated. Consequently, 
the development of a bimodal sensor capable of sensing both temperature and humidity remain an unsolved challenge. 

The elastomer PHEA (Poly Hydroxyl Acrylate) catches our attention due to its superior hydrophilicity and biocompatibility. The 
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hydrophilicity of PHEA allows it to absorb water molecule from ambient air and to develop a humidity sensing mechanism based on it. 
And the high biocompatibility of PHEA allows long period of contact of PHEA matrix to human skin, which allows the fabrication of 
breath sensors from it. In addition, the high biodegradability of PHEA will cause little environmental impact upon commercialization. 

1-Ethyl-3-Methylimidazolium Tetrafluoroborate (EMI-BF4), as a novel kind of ionic liquid, has been used in lithium batteries to 
improve their ionic conductivity and ion transportation behaviors at room/low temperatures [23]. However, the utilization of 
EMI-BF4 as an ionic conductor when coupled with hydrogel remains a relatively unexplored area of research. 

In this work, we report an ultrasensitive stretchable bimodal sensor that can sense temperature and humidity simultaneously based 
on novel elastomer and ionic liquid samples. The elastomer can provide mechanical strength and elasticity to the sensor. During 
mechanical property tests, PHEA (Poly Hydroxyl Acrylate) sample doped with 10 wt% ionic liquid is capable of a maximum strain of 
761%. The ionic liquid infusion provides exquisite sensing ability to both temperature and humidity change, with a high sensitivity of 
4.5%/◦C at room temperature range. wide detection ranges from − 35 to 120 ◦C, fast response time of 10 ms. These characteristics 
render it well-suited for a variety of applications in soft electronics. 

2. Materials and methods 

2.1. Material and equipment 

Material: Monomer: Hydroxyl Acrylate (HEA), ionic liquid: 1-Ethyl-3-Methylimidazolium Tetrafluoroborate (EMI-BF4), light 
absorber: Diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide (TPO) are all brought from Sigma Aldrich. 

Equipment: Fluke 2638A Source meter, Wan Hao pulling machine, Mark 10 F305-IM Universal Testing machine. EZ4 Laboratory 
compact spin coater, Seville LED UV Black Light. 

2.2. Preparation of sensor piece 

The sample was created through a series of steps. Initially, a resin mixture was prepared by blending a hydroxyl acrylate monomer 
with EMI-BF4 ionic liquid (in varying concentrations from 5 to 40 wt%) along with 0.5 wt% TPO photo initiator. This mixture was then 
applied to a mica substrate using spin coating. As shown in Fig. 1a, the subsequent polymerization of the resin film was achieved under 
UV light, and the sensor piece was carefully removed, followed by a thorough ethanol wash. The resulting sensor samples consistently 
had a thickness of 0.1 mm. A post-curing process was carried out under UV light to enhance the sensor’s mechanical properties. 

2.3. Characterization of the sensor piece 

The temperature and humidity of the samples were characterized through a series of tests. For temperature response analysis, a 
PHEA sample underwent baking at 80 ◦C until it reached a 10 wt% weight loss. Subsequently, the strip was sealed with PTFE tape, and 
its resistance changes with increasing temperature were recorded. Cooling tests involved lowering the strip to subzero temperatures 
using liquid nitrogen, recording resistance changes during the cooling process. These datasets were processed to construct a 
comprehensive temperature-response curve. 

Humidity response measurements consisted of sealing a bare sensing strip within a container containing a water source and hy-
groscopic salt (Lithium Chloride). Resistance changes were recorded as humidity gradually decreased. This process was repeated at 

Fig. 1. (a)Max tensile strength of the polymer. (b) Structural schematic of the polymer.  

T. Xian et al.                                                                                                                                                                                                            



Heliyon 10 (2024) e25874

3

various temperatures (30, 40, 50, 60, and 80 ◦C), generating Resistance-Humidity matrices for different temperature levels. 
Mechanical property assessments were conducted using a pulling test, and the resulting data were processed using specialized 

software. For breath sensing, a PHEA sample sealed with PTFE tape was attached to an N95 mask’s surface to monitor temperature 
changes resulting from human breath. 

To determine the gauge factor, a pulling machine is used to gradually apply strain to standard rectangular-shaped PHEA samples, 
with resistance changes recorded. In motion sensing, the same piece of PHEA used for breath sensing was affixed to a lab door and 
integrated into the sensing system. The door’s magnet was part of the system to automatically release when a sharp resistance drop was 
detected. 

2.4. Data collection 

Resistance values were read using a source meter and converted into ambient temperature data for temperature measurements. For 
humidity measurements, the first strip’s ambient temperature reading was used to determine humidity levels by incorporating the 
resistance of the second strip into a Temperature-Humidity (T-H) matrix. 

3. Results and discussion 

3.1. Mechanical properties of the polymer 

The initially fabricated PHEA (Poly Hydroxyl Acrylate) samples demonstrated commendable mechanical properties, with 
remarkable stretchability exceeding 790%. This underscores PHEA’s suitability as a high-quality elastomer. In our work, we incor-
porated various ionic liquids, including EMI-BF4 (1-Ethyl-3-Methylimidazolium Tetrafluoroborate), to impart conductivity. Notably, 
the addition of a relatively modest amount of ionic liquid within the range of 10–20 wt% had a minimal impact on mechanical 
properties. As depicted in Fig. 1b, the elastomer enriched with 10 wt% EMI-BF4 exhibited an outstanding maximum stretchability of 
761%. 

3.2. General properties of the material 

We doped the PHEA samples with various ionic liquids, each at 10 wt%, and compared their respective room temperature re-
sistivity values. We used an undoped PHEA sample as a reference, which exhibited insulating properties with a resistivity of 1.5 × 107 

Ω/m. After doping with different ionic liquids, the resistivity of the samples decreased, with some falling into the resistivity range of 
semiconductors. As depicted in Fig. 2a, the resistivity of the samples doped with 10 wt% EMI-BF4 was compared with those doped with 
EMI-TFSI (1-Ethyl-3-methylimidazolium bis (trifluoromethyl sulfonyl) imide) and EMIES (1-Ethyl-3-methylimidazolium ethyl sulfate), 
which are commonly used ionic liquids. The results revealed that the addition of EMI-BF4 led to the lowest resistivity among the three 
samples at room temperature (25 ◦C) under an ambient relative humidity of RH = 80%. Notably, increasing the EMI-BF4 content to 
20–30 wt% had minimal impact on mechanical properties, ensuring high elasticity was maintained. 

As reported in previous studies [24,25], conducting elastomers can serve as effective strain sensors. We selected the PHEA samples 
doped with the 10 wt% EMI-BF4 to do the test. Subsequently, we measured the gauge factor of this sample, as depicted in Fig. 2b, the 
figure illustrates that the resistivity of the sample varies in response to elongation (strain) up to 200% with a gauge factor of 5.7. 

3.3. Electric properties of the material 

Our initial research objective was to measure resistivity concerning temperature for temperature sensing applications. As shown in 
Fig. 3a, our findings revealed that the selected sample (PHEA doped with 10 wt% EMI-BF4) maintained conductivity at low tem-
peratures down to − 35 ◦C and remained stable even at elevated temperatures up to 120 ◦C. Notably, the sample retained relatively low 

Fig. 2. (a)The resistivity of HEA ionogels with different ionic liquid. (b)Strain-resistivity curve of the material.  
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resistivity even at a low temperature of − 20 ◦C. This temperature response closely aligns with similar behavior observed in other 
previously reported conducting hydrogels [26,27]. Furthermore, when compared to existing materials of the same class [6,18], our 
sample exhibited a broader sensing range. 

In addition to its wide temperature stability range, the sample also exhibited high sensitivity to temperature changes. Fig. 3b il-
lustrates the varying responses of differently EMI-BF4 concentration samples (ranging from 5% to 40%) to a temperature change from 
25 to 120 ◦C. To maintain consistent water content during these tests, a hydrophobic tape (Polytetrafluoroethylene) was used to seal 
the samples after pretreatment. It is evident that the sample with 10 wt% EMI-BF4 displayed the highest sensitivity to temperature 
changes, while the 40 wt% sample exhibited the least sensitivity. To quantitatively measure the sensitivity, we defined the thermal 
response as the relative resistance variation (ΔR/R0) concerning the initial resistance level (R0). Sensitivity was calculated from the 
slope of the fitted response-versus-temperature curve using Equation 1. 

S(%)= (ΔR)/(R0 ∗ ΔT) ∗ 100% Eq.1 

The sample with 10 wt% EMI-BF4 showcased the highest sensitivity at 4.5%/◦C at room temperature (25 ◦C), surpassing most 
previously reported materials [28–37,46]. A detailed comparison is provided in Table S1. However, it is important to note that the 
sample with 5 wt% EMI-BF4 exhibited lower sensitivity (2.5%) compared to the 10 wt% sample (4.5%). This observation can be 
attributed to the nature of PHEA as a long-chain elastomer, which undergoes coiling and relaxation as temperature changes. When the 
dopant concentration is reduced to very low levels, the polymer network formed by these coiled chains becomes denser, potentially 
inducing cross-links [31]. This significantly reduces the ability of conducting ions to move within the polymer, thus reducing sensi-
tivity. Conversely, with very high dopant concentrations, the restriction on ion movement inside the polymer network is minimal at 
room temperature, resulting in little change as temperature varies. 

After studying the samples’ response to the temperature change, we then conducted research on its repeatability of results. First the 
PHEA sample doped with 10 wt% EMI-BF4 is deprived of water content and sealed with PTFE tape as mentioned before and situated in 
an air tight box. Then the temperature inside the box is heated from 70 to 100 ◦C. As shown in Fig. 4, the sample is able to reproduce the 
same resistance value at a given temperature after a few cycles. This points out that the sample has reproductible resistivity values 

Fig. 3. (a)The upper and lower limit temperature sensing range of EIL. (b)The response to temperature of sample with different EMI-BF4 
concentration. 

Fig. 4. Cyclic temperature and resistance behavior of EIL.  

T. Xian et al.                                                                                                                                                                                                            



Heliyon 10 (2024) e25874

5

when subjected to a slow cyclic temperature change. 
Our next study was to test the response of the sample to changes in humidity at a specific temperature. As illustrated in Fig. 5a, the 

PHEA sample doped with 10 wt% EMI-BF4 attains various equilibrium weights when exposed to different relative humidity levels, 
ranging from 20% to 80%, at room temperature. Subsequently, we measured the resistivity of the sample at room temperature as the 
ambient humidity increased from 30% to 80%, with results depicted in Fig. 5b. As shown in the figure, there is a substantial change in 
resistivity as the environmental humidity increases from 30% to 80%. 

The sample is then subjected to humidity change under different temperatures from 30 to 80 ◦C as shown in Fig. 6. The data 
collected is arrayed into a temperature humidity matrix comprised of resistance curves under different temperature. The matrix is later 
used in the fabrication of the bimodal sensor. From the TH-matrix data, it’s found that the sample has a highest sensitivity of 4.4%/RH 
% under the temperature of 30 ◦C, which is 3 times more than previously reported resistive moisture sensors, which have their 
sensitivities in the range of 1–2%/RH% at maximum [38–41]. Detailed comparison is shown in Table S2. 

3.4. Potential applications of the material 

Based on the properties of the PHEA sample doped with 10 wt% EMI-BF4, we have developed a bimodal sensor capable of 
simultaneously sensing temperature and humidity. By detecting the movement of a human hand and monitoring the behavior of a lit 
candle, our sensor has demonstrated high sensitivity to both temperature and humidity. After this, we have extended the applications 
to motion detection and respiratory sensing. From the tests, it is shown that the sample has the potential to be used in various areas. 

3.5. Bimodal sensor 

As stated in the “Introduction” section, the bimodal sensor is made of one sealed and one bare PHEA strip doped with 10 wt% EMI- 
BF4. The strips are situated on a transparent plastic substrate. The circuit is then connected to the substrate. In a typical measuring 
cycle, the resistance value of the sealed strip is measured first. Then the resistance value is substituted into the data curve shown in 
Fig. 3a to acquire the temperature value. After acquiring the temperature value, the resistance value of the bare strip is measured. Then 
the resistance value of the bare strip is substituted into the data curves shown in Fig. 6 together with the temperature value acquired 
above to calculate the humidity. Then the combined temperature and humidity data is sent to the screen by a Wi-Fi module. A photo 
and schematic of the bimodal sensor is shown in Fig. 7. 

Our sensor boasts an exceptional temperature resolution, capable of detecting temperature changes as small as 0.004 ◦C, at the 
temperature range from 20 to 30 ◦C. This stands in stark contrast to the majority of commercial products (Table S3) and academically 
reported stretchable sensors, which typically exhibit resolutions within the range of 0.1–0.5 ◦C [42,43]. 

We first demonstrated this high resolution by employing the temperature sensor to detect a human hand. We placed the hand at a 
distance of 15 cm from the sensor and detecting the temperature is 27.648 ◦C (see movie S1). As the hand gradually approached to a 
distance of 5 cm, the temperature changed to 27.664 ◦C. From the test data depicted in Fig. 8, it is evident that the bimodal sensor 
consistently generated temperature change signals throughout this process and could clearly discern the movement of the hand, thus 
affirming the high temperature resolution. A comparison of cost of our sensor with commercial sensors that have a similar resolution is 
shown in Table S4. It is shown that, the elastomer sensor costs much less to produce than existing high-resolution sensors. 

In addition to its remarkable temperature resolution, the bimodal sensor also exhibits a high humidity resolution. We conducted a 
candle test to compare our bimodal sensor with the commercial temperature and humidity dual sensor, DHT22 (see movie S2). As 
shown in Fig. 9, we firstly placed a lit candle 3 cm in front of the EIL sensor, with the L value set to zero. Then, we gradually moved the 
candle to L = 15 cm and recorded the changes in sensor output during this process. It is noticeable that the DHT22 failed to detect 
humidity changes during this phase, maintaining a stable humidity output of 81.6%. However, our bimodal sensor demonstrated 
humidity variations ranging from 81.592% to 81.605%, showing our robust humidity sensing capabilities. Simultaneously, in com-
parison to the DHT22, our bimodal sensor was able to precisely detect detailed temperature changes during this test. 

Fig. 5. (a)The equilibrium weight with the increase of humidity at room temperature. (b)The resistivity versus humidity curve of the sensor at room 
temperature. 
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Fig. 6. The response to humidity of the sensor at different temperature.  

Fig. 7. Schematic and photo of the bimodal sensor.  

Fig. 8. The response of the sensor to hand movement.  
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3.6. Breath detection 

As previously introduced in the section on the bimodal sensor, it exhibited remarkable sensitivity, capable of detecting changes in 
ambient temperature as small as 0.004 ◦C. This exceptional sensitivity allowed us to integrate the sensor with an N95 mask, creating a 
breath sensor, as depicted in Fig. 10. In this figure, the sensor is positioned on the front arc of an N95 mask and connected to a 
computer via a small Wi-Fi module as shown in Fig. 10a. The data in Fig. 10b demonstrates the consistency in temperature and hu-
midity variations when the subjects are breathing. 

Upon further comparison with other existing works [44,45], it becomes evident that our bimodal sensor performed comparably to 
current commercial breath sensors. Furthermore, the high sensitivity enabled the sensor strip to be placed on breath masks rather than 
on the upper lip. This adaptation made it possible to utilize breath sensors on patients requiring oxygen support, while avoiding 
potential skin irritation often associated with conventional wearable sensors that need skin contact [47]. 

4. Conclusion 

In this work, we have presented a novel stretchable temperature and humidity sensor based on a composite made with elastomer 
and ionic liquid. The sensor shows high transparency, flexibility, and ionic conductivity, as well as excellent stability and self- 
adhesiveness. The sensor can monitor both temperature and humidity changes with excellent sensitivity higher than most existing 
works at around room temperature, and thus is applicable in room temperature sensing and breath sensing. We believe that this 
polymer has great potential in both academic and applicational uses. 
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