
����������
�������

Citation: Pang, R.; Zhu, Q.; Wei, J.;

Meng, X.; Wang, Z. Enhancement of

the Detection Performance of

Paper-Based Analytical Devices by

Nanomaterials. Molecules 2022, 27,

508. https://doi.org/10.3390/

molecules27020508

Academic Editors: Giuseppe Cirillo,

Chongjun Zhao and Sungsu Park

Received: 27 November 2021

Accepted: 10 January 2022

Published: 14 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Review

Enhancement of the Detection Performance of Paper-Based
Analytical Devices by Nanomaterials
Renzhu Pang 1, Qunyan Zhu 2, Jia Wei 1,2, Xianying Meng 1,* and Zhenxin Wang 2,3,*

1 Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, China;
pangrenzhu@jlu.edu.cn (R.P.); weijia@ciac.ac.cn (J.W.)

2 State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry,
Chinese Academy of Sciences, Changchun 130022, China; zhuqy@ciac.ac.cn

3 School of Applied Chemical Engineering, University of Science and Technology of China, Hefei 230026, China
* Correspondence: mengxiany@mail.jlu.edu.cn (X.M.); wangzx@ciac.ac.cn (Z.W.)

Abstract: Paper-based analytical devices (PADs), including lateral flow assays (LFAs), dipstick assays
and microfluidic PADs (µPADs), have a great impact on the healthcare realm and environmental
monitoring. This is especially evident in developing countries because PADs-based point-of-care
testing (POCT) enables to rapidly determine various (bio)chemical analytes in a miniaturized, cost-
effective and user-friendly manner. Low sensitivity and poor specificity are the main bottlenecks
associated with PADs, which limit the entry of PADs into the real-life applications. The application
of nanomaterials in PADs is showing great improvement in their detection performance in terms of
sensitivity, selectivity and accuracy since the nanomaterials have unique physicochemical properties.
In this review, the research progress on the nanomaterial-based PADs is summarized by highlighting
representative recent publications. We mainly focus on the detection principles, the sensing mecha-
nisms of how they work and applications in disease diagnosis, environmental monitoring and food
safety management. In addition, the limitations and challenges associated with the development of
nanomaterial-based PADs are discussed, and further directions in this research field are proposed.

Keywords: paper-based analytical devices; nanomaterials; point-of-care testing; signal enhancement

1. Introduction

As an easily accessible and cheap material made from cellulose (the most abundant
polymer on earth) or nitrocellulose, paper offers many advantages for development of
biosensing platforms, in particular point-of-care-testing (POCT) devices [1–7]. For instance,
various in situ analyses can be achieved by the paper-based analytical devices (PADs)
because many recognition probes, such as ligands, antibodies and aptamers, can be easily
immobilized within the (nitro)cellulose matrix [8–20]. Because of the controlled porosity
and capillary forces of the nitrocellulose/cellulose network, the fluidics can be efficiently
transported via capillary flow. In addition, the PADs are compatible with different detection
systems, including naked eye and simple optical or electrical readers, which meets the needs
in developing countries [21–25]. In the past decades, PADs, including lateral flow assays
(LFAs), dipstick assays and microfluidic PADs (µPADs), have been well developed and
shown a great impact on the clinical diagnosis, environmental monitoring and food safety
management [8–35]. For example, one type of PAD, the lateral flow immunoassay (LFIA),
is commercially available and is extensively used as a powerful diagnostic platform for the
rapid detection of antibodies or antigens at a low cost [34–36]. The LFIA has dominated
the market of rapid diagnostic testing since the lateral flow immunochromatographic
strip was first developed for screening the supernatants of hybridomas in 1982 through
antigen–antibody interaction on paper to produce a color change visible to the naked
eye [34–37].
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The PADs detection methods include optical techniques (colorimetry, fluorescence
and surface enhancement Raman scattering (SERS), etc.) and electrochemical (EC) methods
(amperometry, potentiometry, voltammetry, electrochemical impedance spectroscopy (EIS),
electrochemiluminescence (ECL) and photoelectrochemistry (PEC)) [21–25]. Among these
detection methods, colorimetry offers simplicity and convenience and, until 2009, had
been one of the main detection methods in PADs. The biggest advantage of paper-based
colorimetric devices is that the presence of a specific analyte can be distinguished easily
with the naked eye without expensive and complex instruments through the change of
color. However, the colorimetric method is limited to qualitative yes/no detections and/or
semi-quantitative analysis because it has several inherent disadvantages, such as narrow
dynamic range, poor sensitivity and being easily interfered with by environmental light and
biased by users’ subjectivity. The EC method was first used as a PAD detection technique in
2009 by Dungachi et al. [38]. Generally, the analytical performances (especially sensitivity)
of electrochemical paper-based analytical devices (also known as ePADs) are better than
those of paper-based colorimetric analytical devices [18,23–25,28,31]. Unfortunately, the
analytical performance (in particular, selectivity) of ePADs can be decreased significantly
in complex matrices. Currently, the EC detection and optical detection are accounted for as
the two main detection methods of PADs (as shown in Figure 1).
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To resolve these limitations, nanomaterials were utilized to produce selective and
sensitive detection signals on PADs because nanomaterials and their composites exhibit
unique physical and chemical properties (as shown in Figure 2) [26–35]. For instance,
nanoparticles, including gold nanoparticles (AuNPs) and magnetic nanoparticles (MNPs),
have been extensively used as signal indicators for paper-based colorimetric analytical
devices [32–34]. Several AuNPs labeled lateral-flow test-strip (LFTS) immunosensors, such
as human chorionic gonadotropin (HCG) and Hepatitis B surface antigen (HBsAg) col-
loidal gold immunoassay strips, have been clinically approved for rapid testing. Transition
metal dichalcogenides (TMDs) and carbon nanomaterials, such as carbon nanotubes and
graphenes, can accelerate electron transfer and increase actual electrode area when they
are used as functional materials on electrode surfaces, resulting in the enhancement of the
sensitivities of ePADs [18,24,31]. Fluorescent nanoparticles, such as quantum dots (QDs),
carbon nanodots (CDs) and upconversion nanoparticles (UCNPs), offer new opportunities
to update the assaying performance of paper-based fluorescent analytical devices in the
responding time, sensitivity and selectivity because they have unique optical properties,
such as tunable fluorescence color, high quantum yields, wide excitation wavelength,
narrow emission band and excellent optical stability [33]. Moreover, nanomaterials have
large amounts of surface-active sites as well as high surface-to-volume ratios, which sup-
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port diverse functionalization with high densities of recognition units. The phenomenon
further improves the detection performances of PADs. Therefore, the integration of nano-
materials with PADs enables strong quantitative capabilities of PADs and expands their
applicable fields.
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Currently, great efforts are being made for improving the detection performance of
PADs by using advanced materials, such as nanomaterials and their composites [33–36].
The latest reviews have extensively summarized the specific characteristics of PADs. For
instance, the fabrication of nanomaterial-based colorimetric and fluorescent PADs was
reviewed by Patel et al. [33]. The signal amplification strategies of nanoparticle-based
lateral flow testing strips (LFTSs) have been discussed by Shirshahi and Liu [34], and
Díaz-González and de la Escosura-Muñiz [35], respectively. The engineering strategies for
enhancing the performance of ePAD were reviewed by Baharfar et al. [39]. Based on the
detection targets, the applications of nanomaterial-based PADs have also been reviewed by
several groups [27,28,36]. The purpose of this review is to introduce readers to a general
overview of the recent developments regarding nanomaterial-based PADs in terms of the
detection modes and their representative applications.

2. Nanomaterial-Enhanced Paper-Based Analytical Device
2.1. Electrochemical Paper-Based Analytical Devices

Due to its desirable features, such as high sensitivity, rapid response and easy miniatur-
ization, the EC detection has gradually become one of the most commonly used detection
principles for PADs. A typical immunoassay of ePAD is shown in Figure 3. After adding a
drop of analyte solution on the sample zone, the analyte will bind to the detection antibody
at the conjugate zone and then bind to the capture antibody at the test zone; the excess
conjugates are migrated to the absorbent zone under driving by capillary action. Three
electrodes (working electrode, counter electrode and reference electrode) are needed for EC
analysis, and the concentration of the target analyte can be correlated to the EC response
intensity of the electroactive species. The electroactive species are produced by labels
catalyzed EC substrates. Dungachi et al. fabricated the first paper-based ePAD for the
simultaneous determination of glucose and lactate in real samples by photolithography
and screen-printing technology in 2009 [38]. Various nanomaterials and their nanocom-
posites have been demonstrated as powerful EC transducers and efficient electroactive
label carriers in the design strategy of ePADs, which offers great improvements of the
analytical performance of ePADs through increasing EC signal (e.g., current) production
and decreasing background noise (i.e., enhancing signal-to-noise ratio (S/N)) (as shown in
in Table 1) [40–77].
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Various nanoparticles, such as noble metal nanoparticles, metallic oxide nanoparticles
and silica nanoparticles (SiNPs), have been extensively used to fabricate and/or modify the
working electrodes of ePADs for achieving good detection performance through different
methods, including directly dispersing nanoparticles in the printing ink and in situ growth,
electrogeneration and drop-casting of nanoparticles on the screen-printed carbon electrodes
(SPCE) [40–56]. For example, Pavithra et al. developed an ePAD for immunosensing
carcinoembryonic antigen (CEA) by using AuNP working electrode, which was fabricated
by directly screening printed self-made AuNP ink on the Whatman® grade 1 chromatog-
raphy paper [47]. The as-developed ePAD exhibited a linear range of 1.0 ng mL−1 to
100.0 ng mL−1 with a limit of detection (LOD) of 0.33 ng mL−1, The ePAD was used suc-
cessfully to analyze CEA in the diluted human serum samples, demonstrating that the
ePAD has good practicability. Zheng et al. developed an ePAD for ultrasensitive detection
of CEA and prostate-specific antigen (PSA) by using cyclodextrin functionalized AuNPs
(CD@AuNPs) and AuNPs modified paper working electrode (PWE) [40]. The CD@AuNPs
exhibited mimicking properties of both glucose oxidase (GOX) and horseradish peroxi-
dase (HRP) simultaneously, which can efficiently electrocatalytically reduce H2O2. The
AuNPs modified PWE was constructed by in situ growth of AuNPs on the surfaces of
cellulose fibers of paper. Taking advantage of the high conductivity of AuNP modified
PWE and good catalytic activity of CD@AuNPs, the as-developed ePAD exhibited wide
linear ranges (0.005 to 100 ng mL−1 (CEA) and 0.002 to 40 ng mL−1 (PSA)), low LODs
(0.002 ng mL−1 (CEA) 0.001 ng mL−1 (PSA) and high stability (retaining 90% of the initial
responses after stored at 4 ◦C for 15 days). The ePAD was used to detect CEA and PSA
in spiked human serum samples, and satisfactory recoveries (in the range of 100.4% to
109.2% for CEA and in the range of 100.9% to 114.0% for PSA) were obtained, indicating
that the ePAD has a great potential application of detecting CEA and PSA in clinical sam-
ples. Pinyorospathum et al. developed an ePAD for detection of C-reactive protein (CRP)
through electrodeposited AuNPs on SPCE, followed by the self-assembly of PMPC-SH on
AuNP surface [41]. In the presence of CRP and Ca2+, the current of ePAD was decreased by
increasing the concentration of CRP, while [Fe(CN)6]3−/4− was used as the electrochemical
probe. The as-developed ePAD exhibited a linear range of 5 to 5000 ng·mL−1 with an LOD
of 1.6 ng·mL−1, which was applied successfully to detect CRP in the certified human serum
samples. De França developed an ePAD for detection of dopamine through drop-casting
CdSe/CdS magic-sized QDs (MSQDs) on the graphite working electrode (5 mm in diam-
eter), which was drawn on chromatography paper by 6B grade pencil [52]. After being
decorated by 10 µg MSQDs, the peak current was enhanced ca. 46% in comparison with
that of bare electrode, besides a decrease in the charge transfer resistance and increase in
the electroactive area of the sensor. The as-developed ePAD exhibited excellent analytical
performance, including low LOD (96 nmol L−1), good stability (within a period of 7 days
without major variations of peak current), repeatability (ca. 2.85% relative standard de-
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viation (RSD) and reproducibility (ca. 7.2% RSD). The ePAD was employed successfully
for sensing dopamine in human blood serum samples with recovery rates between 95.2%
and 102.6%. Because of their high catalytic activity, nanomaterials can also be used as
active probe for developed ECL PAD [54–56]. For instance, Huang et al. developed an
auto-cleaning ECL PAD for detection of Ni2+ and Hg2+ through using superior peroxidase-
like activity of cubic Cu2O-Au nanoparticles and a large specific surface area and excellent
conductivity of silver nanoparticles (AgNPs) [55]. The cubic Cu2O-Au nanoparticles can
catalyze H2O2 to generate reactive oxygen species, promoting the luminescence of N-(4-
Aminobutyl)-N-ethylisoluminol (ABEI)). The as-developed ECL PAD exhibited wide linear
ranges (10 nmol L−1 to 0.2 mmol L−1 (Ni2+) and 10 pmol L−1 to 1 µmol L−1 (Hg2+)) and
low LODs (3.1 nmol L−1 (Ni2+) and 3.8 pmol L−1 (Hg2+)), which was used successfully to
detect Ni2+ and Hg2+ in the spiked lake water.

As transduction materials, carbon nanomaterials, including single-walled carbon
nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs) and different types of
graphene materials, have been getting great attention in the ePAD fabrication because they
have high surface area, excellent electrical conductivity and rich surface-chemical proper-
ties [57–73]. For instance, Valentine et al. found that the device-to-device reproducibility
and current intensity of ePAD can be efficiently improved through formation of MWCNT
network in the porous structures of paper [58]. Tran et al. developed an ePAD for non-
enzymatic detection of glucose through the deposition of the SWCNT layer on wax-printed
nitrocellulose (NC) membrane [59]. The SWCNT electrode exhibits high conductivity
with an average resistivity of less than 100 Ω/sq and excellent mechanical property. Af-
ter modification of the SWCNT electrode by AuNPs, the as-developed ePAD exhibited
excellent glucose detection performance, including good reproducibility (RSD < 8%) and
high sensitivity (240 µA/mM cm2), which was used successfully to determine glucose in
Coke. Pungjunun et al. developed an origami-based ePAD for sensing NO and NO2 (as
NOX) by using a screen-printed graphene electrode modified with copper nanoparticles
(CuNP/SPGE) [64]. Because of the good catalytic property of CuNP towards the EC conver-
sion of NOX and excellent conductivity of graphene, the as-developed ePAD exhibited high
selectivity, low LODs (0.23 vppm and 0.03 vppm with exposure times of 25 min and 1 h,
respectively), good reproducibility (RSD < 5.1%) and long lifetime (>30 days). The ePAD
was applied to detect NOX in air and exhaust gases from cars, and satisfactory results were
obtained. Cai group has been developed a series of ePADs for detection of various biomark-
ers, including CEA and neuronspecific enolase (NSE), by using amino functional graphene
(NG)-Thionin (THI)-AuNPs nanocomposites modified SPCEs [66,67]. Integration of SiNPs
modified paper microzones with reduced graphene (RG) modified SPCE, Scala-Benuzzi
et al. developed an ePAD for the quantitative determination of ethinylestradiol (EE2) in wa-
ter samples through capturing EE2 by the immobilized anti-EE2 specific antibodies on the
paper microzones, subsequently releasing the adsorbed EE2 by adding a diluted solution
of sulfuric acid and detecting the desorbed EE2 by Osteryoung square wave voltammetry
(OSWV) [69]. The as-developed ePAD exhibited excellent analytical performance, including
wide linear range (0.5 to 120 ng L−1), low LOD (0.1 ng L−1) good recovery values (from 97%
to 104%) and good reproducibility (RSD < 4.9%). There are no significant differences were
found between the results of ePAD and the results of spectrophotometric immunoassay,
when two methods were used for the quantification of EE2 in river water samples and
spiked water samples.
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Table 1. The typical nanomaterial-enhanced ePADs for sensing various analytes.

Nanomaterials Modification
Methods

Electrochemical
Method Analytes Linear Ranges Limit of Detection Real Samples Recovery Ref.

AuNPs In situ growth DPV CEA and PSA
5 × 10−3 to 100 ng mL−1

(CEA) and 2 × 10−3 to
40 ng mL−1 (PSA)

2 × 10−3 ng mL−1 (CEA)
1 × 10−3 ng mL−1 (PSA)

Human serum - [40]

AuNPs Electrodeposition DPV CRP 5 to 5 × 103 ng mL−1 1.6 ng mL−1 Certified
human serum - [41]

AuNPs Electrodeposition DPV EGFR 0.5 to 500 nmol L−1 0.167 nmol L−1 Saliva samples - [42]

AuNPs Drop-casting DPV
H1047R (A3140G)

missense mutation in
exon 20

-
5 nmol L−1 (signal on)

and 6 nmol L−1

(signal off)
- - [43]

AuNPs Electrodeposition Impedimetry miRNA 155 0 to 4 × 103 ng mL−1 6.9 × 102 ng mL−1

(93.4 nmol L−1)
Fetal bovine serum - [44]

AuNPs Drop-casting SWASV Hg2+ 5 to 200 ng mL−1 2.5 ng mL−1 Drinking water 95% to 104% [45]

Poly (N-vinylpyrolidone)
AuNPs Screen-printing Chronoamperometry Glucose 1 × 104 to

1.5 × 106 nmol L−1 2.6 × 104 nmol L−1 - - [46]

Poly (N-vinylpyrolidone)
AuNPs Screen-printing DPV CEA 1 to 100 ng mL−1 0.33 ng mL−1 Diluted

human serum 99.58% to 102.50% [47]

Pd decoration of
Cu/Co-doped CeO2

(CuCo-CeO2-Pd)
nanospheres and

urchin-like AuNPs

In situ growth DPV Amyloid-β 1 × 10−3 to
100 nmol L−1 5 × 10−5 nmol L−1

Artificial
cerebrospinal fluid
and human serum

99% to 100.5% [48]

N-CDs, TiO2 NPs and
Pt NPs Drop-casting PEC CEA 2 × 10−3 to 200 ng mL−1 1.0 × 10−3 ng mL−1 Living MCF-7 cells - [49]

TiO2 nanosheets and
CeO2 NPs

In situ growth of
TiO2 nanosheets and

drop-casting of
CeO2 NPs

PEC Thrombin 2 × 10−5 to 0.1 nmol L−1 6.7 × 10−6 nmol L−1 Human serum - [50]

CdSe/CdS
magic-sized QDs Drop-casting DPV Dopamine 500 to

1.5 × 104 nmol L−1 96 nmol L−1 Human serum 95.2% to 102.6% [51]

ZnO NPs Drop-casting SWV Picric acid 4 × 103 to
6 × 104 nmol L−1 4.04 × 103 nmol L−1 Tap water,

lake water 92.3% to 98.9% [52]
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Table 1. Cont.

Nanomaterials Modification
Methods

Electrochemical
Method Analytes Linear Ranges Limit of Detection Real Samples Recovery Ref.

Molecularly imprinted
polymer coated

Fe3O4@Au@SiO2 NPs
Drop-casting LSV Serotonin 10 to 106 nmol L−1 2 nmol L−1

Pharmaceutical
capsules and
urine samples

100% to 111% [53]

Patchy gold coated
Fe3O4 nanospheres - ECL CEA 1 × 10−4 ng mL−1 to

15 ng mL−1 3 × 10−5 ng mL−1 Human serum - [54]

Cubic Cu2O-Au NPs
and AgNPs

In situ
growth (AgNPs) ECL Ni2+ and Hg2+

10 to 2 × 105 nmol L−1

(Ni2+) and
1× 10−2 nmol L−1 to

1× 103 nmol L−1 (Hg2+)

3.1 nmol L−1 (Ni2+) and
3.8 × 10−3 nmol L−1

(Hg2+)
Lake water

96.4% to 101.6%
(Ni2+) and 96.0%
to 104.0% (Hg2+)

[55]

DNA-functionalized PtCu
nanoframes - ECL Streptavidin 1 × 10−4 nmol L−1 to

100 nmol L−1 3.34 × 10−5 nmol L−1 Human serum 98.4% to 106.5% [56]

SWCNTs Vaccum filtration CV Glucose 5 × 10−5 to
1 × 107 nmol L−1 1.48 × 105 nmol L−1 Coke 97.3% to 105% [59]

Graphene Screen-printing DPV Oxytetracycline 1 to 200 ng mL−1 0.33 ng mL−1 Milk, honey and
shrimp - [60]

Graphene Screen-printing DPV Hepatitis B
virus DNA

5 × 10−2 to
100 nmol L−1 1.45 × 10−3 nmol L−1 Plasmid constructs - [61]

Graphene Screen-printing SWV Salivary thiocyanate 2.5 × 104 to
7 × 105 nmol L−1 6 × 103 nmol L−1 Human saliva - [62]

Graphene Drop-casting DPV ATP 3 × 102 to
4.5 × 105 nmol L−1 80 nmol L−1 Human serum and

cell lysates 95.4% to 104.2% [63]

Graphene and CuNPs
Screen-printing

(graphene) and in
situ growth CuNPs

DPV NOx 0 to 150 vppm 0.23 vppm
Ambient indoor
and outdoor air,

and exhaust gases
- [64]

Graphene and AuNPs
Drop-casting

(graphene) and
label (AuNPs)

DPV
Pseudopodium-

enriched atypical
kinase one

1 × 10−2

to 1 × 103 ng mL−1 1 × 10−2 ng mL−1 Human serum 103% to 104% [65]

(NH2-G)/Thi/
AuNPs nanocomposites Drop-casting DPV CEA 5 × 10−2 to 500 ng mL−1 1 × 10−2 ng mL−1 Human serum - [66]

(NH2-G)/Thi/
AuNPs nanocomposites Drop-casting DPV CEA and NSE

1 × 10−2 to 500 ng mL−1

for CEA and 5 × 10−2 to
500 ng mL−1 for NSE

2 × 10−3 ng mL−1 for
CEA and

1 × 10−2 ng mL−1

for NSE

Human serum - [67]
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Table 1. Cont.

Nanomaterials Modification
Methods

Electrochemical
Method Analytes Linear Ranges Limit of Detection Real Samples Recovery Ref.

Reduced graphene Screen-printing and
in situ EC reduction Amperometry Claudin 7 and CD81

2 × 10−3 to 1 ng mL−1

(Claudin 7) and 0.01 to
10 ng mL−1 (CD81)

4 × 10−4 ng mL−1

(Claudin 7) and
3 × 10−3 ng mL−1

(CD81)

Plasma of breast
cancer patients - [68]

Reduced graphene Drop-casting and
EC reduction SWV Ethinylestradiol 5 × 10−4

to 0.12 ng mL−1 1 × 10−4 ng mL−1 River water 97.5% to 103.7% [69]

Graphene QDs Drop-casting SWV UA and creatinine 10 to 3 × 103 nmol L−1
8.4 nmol L−1 (UA) and

3.7 nmol L−1

(Creatinine)
Human urine 98.9% to 101.5% [70]

GO Drop-casting SWV CRP, cTnI and PCT

1 to 1 × 105 ng mL−1

(CRP), 1 × 10−3 to
250 ng mL−1 (cTnI),

5 × 10−4 ng mL−1 to
250 ng mL−1 (PCT)

0.38 ng mL−1 (CRP),
1.6 × 10−4 ng mL−1

(cTnI) and
2.7 × 10−4 ng mL−1

(PCT)

Human serum - [71]

RGO and cysteine AuNPs

Drop-casting (RGO)
and

electrodeposition
(AuNPs)

Chronoamperomatriy IL-8 1 × 10−3 to
9 × 10−3 ng mL−1 5.89 × 10−4 ng mL−1 - - [72]

(NH2-GO)/Thi/AuNPs Screen-printing DPV EGFR 5 × 10−2 to 200 ng mL−1 5 × 10−2 ng mL−1 Human serum - [73]

rGO/Thi/S-AuNP/Chi Drop-casting Amperometry 17β-E2 1 × 10−2 to 100 ng mL−1 1 × 10−2 ng mL−1 Human serum - [74]

Cobalt-MOF In situ growth Amperometry Glucose 8 × 105 to
1.6 × 107 nmol L−1 1.5 × 105 nmol L−1 Serum, Urine and

Saliva 87.2% to 108.6% [75]

Pd@hollow Zn/
Co core−shell ZIF67/

ZIF8 NPs
Drop-casting DPV PSA 5 × 10−3 ng mL−1 to

50 ng mL−1 7.8 × 10−4 ng mL−1 - - [76]

Ni-MOFs/AuNPs/
MWCNTs/PVA

Vacuum filtration
(MWCNT/PVA) and

drop-casting
(Ni-MOFs/AuNPs)

DPV HIV DNA 10 to 1 × 103 nmol L−1 0.13 nmol L−1 Human serum 95.5% to 103.8% [77]

CV: cyclic voltammetry; SWV: square wave voltammetry; ECL: electrochemical luminescence; PEC: photoelectrochemical; DPV: differential pulse voltammetry; EIS: electrochemical
impedance spectroscopy; ASV: anodic stripping voltammetry; LSV: linear-sweep voltammetry; SWASV: square wave anodic stripping voltammetry; 2D: two dimension; 3D: three
dimension; NPs: nanoparticles; AuNPs: gold nanoparticles: CDs: carbon dots; N-CDs: nitrogen-doped carbon dots; QDs: quantum dots; AgNPs: silver nanoparticles; SWCNTs: single-
walled carbon nanotubes; MWCNTs: multiple-walled carbon nanotubes; MOFs: metal-organic frameworks; Ni-MOFs: nickel metal-organic frameworks; CuNPs: copper nanoparticles;
(NH2-G)/Thi/AuNPs: amino functionalized graphene/thionine/gold nanoparticles nanocomposites; RGO: reduced graphene oxide; GO: graphene oxide; rGO/Thi/S-AuNP/Chi:
amino redox graphene/thionine/streptavidin-modified gold nanoparticles/chitosan; ZIF: zeolite imidazole ester framework material; PVA: polyvinyl alcohol; CEA: carcinoembryonic
antigen; PSA: prostate-specific antigen; CRP: C-reactive protein; EGFR: epidermal growth factor receptor; NSE: neuronspecific enolase; ATP: adenosine triphosphate; UA: uric acid; IL-8:
interleukin 8; cTnI: cardiac troponin I; PCT: procalcitonin.
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The unique features of metal-organic frameworks (MOFs), including high porosity,
tunable framework structures, large surface areas and multiple functionalities, make them
extremely attractive for improving the detection performance of biosensors [78,79]. Re-
cently, MOFs and their nanocomposites have been used for developing ePAD with excellent
detection performance [75–77]. Wei et al. fabricated a cobalt-MOF (Co-MOF) modified
carbon cloth/paper (CC/Paper) hybrid button-based PAD (Co-MOF/CC PAD) for nonen-
zymatic quantitative EC detection of glucose through in situ growth of Co-MOF on CC [75].
As a typical nanozyme, the environment tolerance of Co-MOFs is much better than that
of natural enzyme, which can increase significantly the stability of ePAD. Densely grown
Co-MOF on CC can maximize its catalytic sites, resulting in high sensitivity of ePAD. The
Co-MOF/CC PAD exhibits linear range from 0.8 mmol L−1 to 16 mmol L−1 with an LOD
of 0.15 mmol L−1 and maintains at a stable detection performance in 60 days, and then
gradually decreased to about 60% after 120 days. The ePAD was used successfully to
determine glucose in multiple body fluids, including serum, urine and saliva. Lu et al.
developed an ePAD-based DNA hybridization for detection of human immunodeficiency
virus (HIV) DNA by using the nickel MOF (Ni-MOF) composite/AuNPs/CNTs/polyvinyl
alcohol (Ni–Au composite/CNT/PVA) paper electrode as working electrode and methy-
lene blue (MB) as a redox indicator [77]. The CNT/PVA were deposited on the cellulose
membrane by vacuum filtration, and Ni–Au composites were loaded on CNT/PVA film
by the drop-casting method. The Ni–Au composite/CNT/PVA film electrode has large
specific surface area and conjugated π-electron system, which makes a higher loading of
the single-stranded DNA probe than that of CNT/PVA film electrode. The phenomenon
improves the sensitivity for detecting target DNA. The ePAD exhibited excellent sens-
ing performance with a wide linear range of 10 nmol L−1 to 1 µmol L−1, a low LOD of
0.13 nmol L−1, good selectivity against one-base mismatch DNA sequences and excellent
stability after 20 days of storage. The target HIV DNA was detected successfully even in
complex serum samples by the as-developed ePAD.

2.2. Colorimetric Paper-Based Analytical Devices

Colorimetric detection is the most common method in PADs. Figure 4 shows a typical
schematic of colorimetric test strip. Generally, the test strip includes five functional zones:
sample, conjugate, test, control and absorbent zones. Under the analyte solution migration,
conjugates will capture the analyte with detection antibody at conjugate zone, and then
the conjugates and analyte bind to the capture antibody at test zone, the excess conjugates
are migrated to the control zone conjugate with secondary antibody. After finishing
the reaction, the ImageJ is usually used for the collecting colorimetric signals of the test
and control lines. Up to now, various kinds of nanomaterials are used as colorimetric
labels. The nanomaterial-based colorimetric PADs have been extensively used for detection
of various targets (as shown in Table 2) [43,80–112]. Plasmonic nanoparticles, such as
AuNPs and AgNPs, are extremely useful indicators for the fabrication of colorimetric
PADs because of their strong local surface plasmon resonance (SPR) bands [80]. Moreover,
multiple, simultaneous tests can be rapidly performed with low sample consumption by
incorporating these surface-modified AuNPs into a PADs that can be read using just a
smartphone. For example, Díaz-Amaya et al. developed a µPAD for multiplexed aptamer-
based detection of analytical targets through a salt-induced aggregation of single strand
DNA (ssDNA) functionalized polyethyleneimine (PEI) encapsulation of gold-decorated
polystyrene (PS) core particles (ssDNA-PEI-Au-PS) [85]. The net positive charge of the PEI
layer avoids the direct interaction of metallic ions and ssDNAs with the AuNPs, which
provides ideal conditions for controlled induction of aggregation of AuNPs on the test
zones of µPAD, resulting in high sensitivity, selectivity and reproducibility (RSD = 5.69%).
Using a smartphone as detector, the analytical performance of as-proposed µPAD was
demonstrated by multiplexed detection of Hg2+ and As3+ with low LODs (1 µg mL−1) and
high specificity (p > 0.05) versus different interferent ions (Ca2+, Fe2+, Mg2+ and Pb2+). The
authors provided a universal idea for fabricating µPAD with the capability of multiplex and
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quantitative colorimetric detection. Monisha et al. reported a PAD with AgNPs for on-site
determination of Hg2+ from environmental water samples by inkjet-printing polyvinyl
pyrrolidine (PVP) stabilized AgNPs on Whatman® grade 1 chromatography paper [96].
In the presence of Hg2+, the color of AgNP is changed from yellow to colorless because
of the oxidation of AgNPs into Ag+ ions on the paper substrate. The as-proposed PAD
exhibited the linear range from 40 to 1200 ng mL−1 with LOD of 10 ng mL−1, and was
used successfully for quantitative detection of Hg2+ in different types of water samples
collected from river, tube well, pond, coal mines and industrial waste. This approach
could be used to determine Hg2+ in other real samples, such as biological and vegetable
samples. Recently, Mettakoonpitak et al. developed an uncomplicated, affordable and
environmentally friendly method for fabrication of µPAD by screen-printing biodegradable
polycaprolactone (PCL) as high-resolution hydrophobic barriers [98]. The proposed method
can produce as narrow as 510 ± 40 µm hydrophilic channel and 490 ± 30 µm hydrophobic
edge, respectively. The as-developed method was used successfully to fabricate µPADs
for detection of Cr3+ and Cl− with high selectivity. For Cr3+ analysis, the µPADs achieved
a linear range of 50.0 to 1000.0 ng mL−1 with an LOD of 15.0 ng mL−1, when AgNPs
were used as the colorimetric probe. Integration of nanoparticle as color indicator and
PCL screen-printing could provide a simple and environmentally friendly method for
fabricating µPADs with high analytical performance, which are ultimately utilized in
wide-ranging applications.

In addition, the AuNPs can also serve as carriers for the simultaneous immobilization
of different biomolecules (e.g., antibodies, DNA and aptamers) with an abundant number
of biorecognition elements or optical/electrochemical tags on their surfaces to provide
more binding sites or signal amplification of analyte for a single recognition reaction. Fur-
thermore, different antibodies can be easily introduced to the AuNP surface via electrostatic
interactions to provide highly specific recognition sites for biomolecular sensing, resulting
in simplify the PAD fabrication procedure. Huang et al. reported a highly sensitive colori-
metric PAD for detection of PSA by using AuNPs labeled with biotinylated poly(adenine)
ssDNA sequences and streptavidin-HRP for enzymatic signal enhancement [87]. The
as-proposed PAD was able to detect as low as 10 pg mL−1 PSA in a test that could be
completed in as little as 15 min.
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Table 2. The typical nanomaterial-enhanced colorimetric PADs for sensing various analytes.

Nanomaterials Analytes Linear Ranges Limit of Detection Real Samples Recovery Ref.

AuNPs Gallic acid 1 × 104 to 1 × 106 nmol L−1 1 × 103 nmol L−1 Tea 85.2% to 93.1% [80]

Avidin
functionalized AuNPs Ig G - 300 ng mL−1 - - [81]

Citrate stabilized AuNPs Melamine 100 to 106 ng mL−1 100 ng mL−1 Milk - [82]

Citrate stabilized AuNPs NADH - 1.25 × 104 nmol L−1 Cell Lysate - [83]

Aspartic acid
modified AuNPs Cysteine 9.99 × 104 to

9.987 × 105 nmol L−1 1 × 103 nmol L−1 Human plasma 99.2% to 101.1% [84]

ssDNA-PEI-Au-PS Hg2+ and As3+ 0 to 3 × 104 ng mL−1 1 × 103 ng mL−1 River water 96.2% to 116.7% [85]

ssDNA
functionalized AuNPs Tuberculosis DNA 1.95 × 10−2 to 19.5 ng mL−1 1.95 × 10−2 ng mL−1 Infected tissue - [86]

ssDNA
functionalized AuNPs PSA - 1 × 10−2 ng mL−1 Human serum - [87]

Antibody
functionalized AuNPs Ig G - 284.52 ng mL−1 Whole blood - [88]

Antibody
functionalized AuNPs Yersinia Pestis - 2.5 × 10−2 ng mL−1 - - [89]

Antibody
functionalized AuNPs

Influenza A H1N1 and
H3N2 viruses -

2.7 × 103 pfu/assay for H1N1
detection and 2.7 ×104

pfu/assay for
H3N2 detection

Cell lysate - [90]

Antibodies
functionalized AuNRs sIL-2R 1 to 6.25 × 103 ng mL−1 1.0 ng mL−1 Mouse serum 93% to 109% [91]

Antibodies
functionalized AuNRs CRP 50 to 1 × 104 ng mL−1 1.3 ng mL−1 Human plasma - [92]

Co(II) catalyst, secondary
antibody, luminol

multifunctionalized AuNPs

H-FABP, cTnI
and copeptin

1 × 10−4 to
1 × 103 ng mL−1, 5 × 10−4

to 1 × 103 ng mL−1 and
1 × 10−3 to

1 × 106 ng mL−1 for
H-FABP, cTnI and copeptin

6 × 10−5 ng mL−1,
3 × 10−4 ng mL−1 and
4 × 10−4 ng mL−1 for

H-FABP, cTnI and copeptin

Human serum 94% to 108% [93]



Molecules 2022, 27, 508 12 of 31

Table 2. Cont.

Nanomaterials Analytes Linear Ranges Limit of Detection Real Samples Recovery Ref

Cu/Co-doped CeO2
(CuCo-CeO2-Pd)
nanospheres and

urchin-like AuNPs

Amyloid-β 1 × 10−2 to 100 nmol L−1 5 × 10−4 nmol L−1
Artificial cerebrospinal

fluid (aCSF) and
human serum

99% to 100.5% [48]

Gold nanostars Glucose 0 to 2 × 107 nmol L−1 1.4 × 106 nmol L−1 - - [94]

PVP stabilized AgNPs Nitrite 10 to 5 × 103 nmol L−1 and
104 to 3.2 × 106 nmol L−1 8.5 × 10−2 nmol L−1 Tap, river and lake water 95.6% to 101.9% [95]

PVP stabilized AgNPs Hg2+ 40 to 1.2 × 103 ng mL−1 10 ng mL−1
Tube well, river pond

water, industrial waste
and coal mine water

92.5% to 96.0% [96]

PVP stabilized AgNPs Ascorbic acid 1 × 106 to 4 × 106 nmol L−1 8.28 × 104 nmol L−1 Vitamin C tablet and
artificial juice - [97]

Citrate stabilized AgNPs Cr3+ and Cl−
50 to 1 × 103 ng mL−1

(Cr3+) and 1 × 104 to
5 × 105 ng mL−1 (Cl−)

15 ng mL−1 (Cr3+) and
1 × 104 ng mL−1 (Cl−)

Instant noodle seasoning - [98]

Citrate stabilized AgNPs Hg2+ 1 to 4 ng mL−1 0.86 ng mL−1 River water 98.9% to 101% [99]

Achillea Wilhelmsii extract
coated AgNPs Hg2+ 1 × 103 to 7 × 105 nmol L−1 300 nmol L−1 River, well and lake

water - [100]

Citrate capped Cu@Ag
core@shell NPs Phenthoate 50 to 1.5 × 103 ng mL−1 15 ng mL−1 Pond and river water,

cucumber and potato 92.6% to 97.4% [101]

DNA-templated Ag/Pt NCs miRNA21 1 × 10−3 to 0.7 nmol L−1 6 × 10−4 nmol L−1 Human urine 93.8% to 106.0% [102]

ssDNA
functionalized PtNPs miRNAs 1 × 10−2 to 100 nmol L−1 8.5 × 10−3 nmol L−1

(miRNA21)
Human Serum 86.2% to 112.2% [103]

Pd NPs/meso-C H2O2 5 × 103 to 3 × 105 nmol L−1 1 × 103 nmol L−1 Commercial milk 100.9% to 109.7% [104]

ZnONRs Glucose and UA

Glucose (1 × 104 to
1 × 107 nmol L−1) and uric

acid (1 × 104 to
5 × 106 nmol L−1)

3 × 103 nmol L−1 for glucose
and 4 × 103 nmol L−1 for

uric acid
Human serum and urine 89% to 109% [105]
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Table 2. Cont.

Nanomaterials Analytes Linear Ranges Limit of Detection Real Samples Recovery Ref

Cr2O3-TiO2 nanocomposites H2O2 5 to 1 × 105 nmol L−1 3 nmol L−1
Tap water, milk and fetal

bovine serum
(FBS) albumin

95.8% to 98% [106]

Mn-ZnS QDs Glyphosate 5 to 5 × 104 ng mL−1 2 ng mL−1 Whole grain 80.6% to 119.9% [107]

N-CDs H2O2 5 × 104 to 1 × 107 nmol L−1 1.4 × 104 nmol L−1 Human plasma 91.0% to 113.0% [108]

CDs@Eu/GMP ICPs Cerebral
acetylcholinesterase

0.1 mU mL−1 to
60 mU mL−1 0.033 mU mL−1 Brain tissues and

cerebral fluid - [109]

Carbon nitride nanoparticles Tetracycline 800 to 4 × 105 nmol L−1 120 nmol L−1 Shrimp samples and
river water 98.7% to 102.8% [110]

Poly(L-lactic
acid) nanofibers Glucose 1 × 105 to 5 × 106 ng mL−1 1 × 105 ng mL−1 - - [111]

Cobalt
(II)-terephthalate MOFs Glucose 5 × 104 to

1.5 × 107 nmol L−1 3.2 × 103 nmol L−1 Human blood 96.9% to 102.6% [112]

ssDNA-PEI-Au-PS: single strand DNA (ssDNA) functionalized polyethyleneimine (PEI) encapsulation of gold-decorated polystyrene (PS) core particles; AgNPs: silver nanoparticles;
PVP: poly(vinylpyrrolidone); NCs: nanoclusters; PdNPs: palladium nanoparticles; Pd NPs/meso-C: mesoporous carbon-dispersed PdNPs; PtNPs: platinum nanoparticles; AuNRs: gold
nanorods; ZnONRs: zinc oxide nanorods; Ig G: immunoglobulin G; NADH: aihydronicotinamide adenine dinucleotide; H-FABP: heart-type fatty acid-binding protein; sIL-2R: soluble
interleukin-2 receptor.
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Comparison with natural enzymes, nanomaterials with enzyme-like characteristics
(i.e., nanozymes), such as magnetic nanoparticles, noble metal nanoparticles, MOFs, hetero-
junctions, etc., exhibit several advantages, including easy production with large-scale,
low cost and high stability in harsh environments. These unique properties endow
them with attractive applications in the fabrication of PADs with high analytical per-
formance [104,111,112]. Zhang et al. developed a ready-to-use PAD for the determination
of H2O2 by simply immobilization of mesoporous carbon-dispersed palladium nanopar-
ticles (Pd NPs/meso-C) and the 3,3′,5,5′-tetramethylbenzidine (TMB) substrate onto a
common chromatography paper [104]. Taking the advantage of large surface area of the
meso-C support and the good dispersity of PdNPs, the PdNPs/meso-C show excellent
catalytic performance to trigger the chromogenic reaction of colorless TMB to blue TMBox
mediated by H2O2. The as-developed PAD exhibited a linear range of 5 to 300 mol L−1,
and can be used to determine H2O2 in complex matrices, such as milk. Kitchawengkul et al.
developed a laminated three-dimensional (3D)-µPAD for colorimetric determination of to-
tal cholesterol (TC) in human blood by using the peroxidase-like activity of nitrogen-doped
CDs (N-CDs) [108]. The 3D-µPAD with a 6 mm circular detection zone was fabricated by a
simple wax screen-printing technique, which consisted of four layers laminated together
vertically. The 3D-µPAD exhibited a linear range of 0.05 to 10 mmol L−1 with an LOD
of 0.014 mmol L−1. In particular, TC in human blood could be determined by the naked
eye within 10 min by simple comparison with a color chart. Overall, the as-proposed
3D-µPAD serves as a simple, low cost, rapid, sensitive and selective alternative for de-
tection of TC in whole blood samples that is friendly to unskilled end users. Cui et al.
fabricated an origami PAD (oPAD) assisted by Pd decorated Cu/Co co-doped CeO2 (CuCo-
CeO2-Pd) nanospheres, for dual-mode electrochemical/visual detection of amyloid-β
(Aβ) peptide with high sensitivity [48]. In this case, the CuCo-CeO2-Pd nanospheres
were introduced as an enhanced “signal transducer layer”, which act as an outstanding
catalyst for catalyzing glucose to produce H2O2 for DPV signal readout and further 3,3′,5,5′-
tetramethylbenzidine (TMB) oxidation for colorimetric analysis. The oPAD exhibited linear
ranges from 1.0 pmol L−1 to 100 nmol L−1 (EC detection) and 10 pmol L−1 to 100 nmol L−1

(visual detection) with LODs of 0.05 pmol L−1 (EC detection) and 0.5 pmol L−1 (visual
detection), respectively. The oPAD was used successfully to analysis Aβ peptide in artificial
cerebrospinal fluid (aCSF) and serum samples. Al Lawati et al. developed a PAD for
the colorimetric/fluorometric monitoring of glucose by co-immobilizing two-dimensional
cobalt-terephthalate MOF nanosheets (2D CoMOFs) and GOX on chromatography pa-
per [112]. Due to its highly porous and extraordinarily stable structures, the 2D CoMOF
increased significantly the stability and performance of GOX, and also acted as a catalyst
to accelerate the reaction of H2O2 produced by the enzymatic oxidation of glucose with
o-phenylenediamine (OPD) serving as a peroxidase substrate, resulting in a yellow-brown
color change and a high fluorescence emission. The as-developed PAD showed high analyti-
cal performance for the quantification of glucose including high accuracy, wide linear range
(50 mol L−1 to 15 mmol L−1) and low LODs (16.3 (colorimetric detection) and 3.2 mmol L−1

(fluorometric detection)), and was used successfully to determine glucose in blood samples
from healthy and diabetic volunteers.

2.3. Fluorometric Paper-Based Analytical Devices

Recently, the nanomaterial-based fluorometric PADs are increasingly being developed
for sensing various targets (as shown in Table 3) [113–161]. The schematic diagram of the
working principle of the fluorometric PAD is shown in Figure 5. The reaction process of
the analyte on the test strip is common with that of the colorimetric test strip. After the
reaction is finished, the fluorometric signals of emission wavelengths at the test and control
zones are recorded by fluorometric spectrophotometer under irradiating with excitation
light. Fluorescent nanomaterials, including metal nanoclusters (NCs), CDs, QDs, UCNPs
and MOFs, have unique properties, such as wide excitation wavelength, narrow emis-
sion band, tunable fluorescence color, highly optical stability and good surface-modified
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flexibility. For instance, Ungor et al. developed a fluorescent PAD with red-emitting
(λemission = 645 nm, d = 1.5 ± 0.3 nm) fluorescent gold nanoclusters (AuNCs) for rapid de-
tection of L-kynurenine (Kyn) with an LOD of 5 µmol L−1, which is in good accordance
with the toxic Kyn concentration of liquor and serum for several cancers (vulvar, ovarian
cancer and leukemia) [116]. Lert-itthiporn et al. reported a fluorescent PAD for membrane-
less gas-separation with subsequent determination of iodate (IO3

−) by fabrication of two
circular reservoirs (donor reservoir and the acceptor reservoir) in a folded chromatography
paper [117]. The IO3

− is reduced to free iodine (I) by iodide (I−) in the donor reservoir,
while the gold core of the bovine serum albumin-stabilized gold NCs (BSA-AuNCs) in
the acceptor reservoir is etched by diffused I from the donor reservoir, which results in
the quenching of the red emission of BSA-AuNCs in the acceptor reservoir. After folding,
the donor reservoir and acceptor reservoir were mounted together through a two-sided
mounting tape to allow membraneless gas-separation of free I from the donor reservoir to
diffuse into the acceptor reservoir. Under the ultraviolet (UV) light (365 nm) irradiation,
the PAD exhibited a linear range from 0.005 to 0.1 mmol L−1, an LOD of 0.01 mmol L−1,
high accuracy (mean recovery: 95.1 (±4.6) %) and high precision (RSD < 3%), which was
applied successfully for the measurement of IO3

− in iodized salts and fish sauces without
prior sample pre-treatment. Yin et al. developed a fluorescent/colorimetric dual-model
PAD based on the quenching effect of graphitic carbon nitride on palladium nanoclusters
(PdNCs) for detection of miRNA let-7a [119]. In this case, the PdNCs not only was used as a
fluorescence probe but also could catalyze a chromogenic reaction for the generation of color
change. Combined with nucleic acid cycle signal amplification, the fluorescent/colorimetric
dual-model PAD exhibited linear ranges of 50 pmol L−1 to 1 mol L−1 (colorimetry) and
10 fmol L−1 to 1 nmol L−1 with LODs 16 pmol L−1 (colorimetry) and 3 fmol L−1 (fluores-
cence), respectively. In addition, the fluorescent/colorimetric PAD has excellent stability
(about 90% of the fluorescent response remaining after 6 weeks) and good reproducibility
(both of intra-assay and inter-assay RSDs were less than 5.5%). The experimental results
demonstrate that the fluorescent/colorimetric dual-model PAD can be used for on-site
detection of miRNAs with good analytical performance.
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Table 3. The typical nanomaterial-enhanced fluorescent PADs for sensing various analytes.

Nanomaterials Analytes Linear Ranges Limit of Detection Real Samples Recovery Ref.

AuNCs/MIL-68(In)-
NH2/Cys Hg2+

0.02 nmol L−1 to
200 nmol L−1 and 200 to

6 × 104 nmol L−1
6.7 × 10−3 nmol L−1 Tap and Lake water 91.3% to 110.2% [115]

γG-AuNCs L-kynurenine (Kyn) - 5 × 103 nmol L−1 Artificial
cerebrospinal fluid - [116]

BSA-AuNCs Iodate 5 × 103 to 1 × 105 nmol L−1 5 × 103 nmol L−1 Iodized salts and
fish sauces 90.5% to 102% [117]

PVP-supported CuNCs Iodine 100 to 500 ng mL−1 29 ng mL−1 - 97% to 108% [118]

Graphitic carbon nitride
nanosheets and ssDNA
functionalized PdNCs

Let-7a

5 × 10−2 to
1 × 103 nmol L−1

(Colorimetry) and 1 × 10−5

to 1 nmol L−1 (Fluorescence)

1.6 × 10−2 nmol L−1

(Colorimetry) and
3 × 10−6 nmol L−1

(Fluorescence)

Human serum 91% to 110% [119]

Imprinted polymer
grafted CdTe QDs Cu2+, Cd2+, Pb2+ and Hg2+ -

10 ng mL−1 (Cu2+),
7 ng mL−1 (Cd2+),

9 ng mL−1 (Pb2+) and
15 ng mL−1 (Hg2+)

Seawater - [120]

CdTe QDs Ag+ and Ag NPs 50 to
1.1 × 104 ng mL−1 (Ag+) 50 ng mL−1 (Ag+)

River water and
antibacterial Products 94% to 115% [121]

CdTe QDs 2,4-dichlorophenoxyacetic acid 560 to 8 × 104 nmol L−1 90 nmol L−1 soybean sprouts and
lake water 86.2% to 109.5% [122]

Mercaptosuccinic-acid
capped CdTe QDs Arsenic 50 to 3 × 104 ng mL−1 16 ng mL−1 Water 92% to 112% [123]

Silica-embedded CdTe
QDs functionalized with

rhodamine derivative
Fe3+ 0 to 3.25 × 103 nmol L−1 26.5 nmol L−1 Lake water and

river water 94.2% to 106.0% [124]

Polythiophene-coated
CdTe QDs Acetylcholinesterase - 2.13 U L−1 Human serum 107% to 112% [125]

Antibody functionalized
CdTe QD and Au NPs Immunoglobulin G 10 to 100 ng mL−1 0.4 ng mL−1 Human serum 97% to 104% [126]

CdTe QDs and antibody
functionalized AgNPs

Matrix metalloproteinase-7
(MMP7) 0.01 to 30 ng mL−1 7.3 × 10−3 ng mL−1 Human serum 91.7% to 113.3% [127]
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Table 3. Cont.

Nanomaterials Analytes Linear Ranges Limit of Detection Real Samples Recovery Ref.

CdTe QDs
embedded SiNPs Alpha fetoprotein (AFP) 0.001 to 20 ng mL−1 400 ng mL−1 Human serum - [130]

CdTe/CdSe QDs Carcinoembryonic
antigen (CEA) 0.05 to 20 ng mL−1 6.7 × 10−3 ng mL−1 Human serum - [131]

ZnSe QDs Cd2+ and Pb2+ 1 to 70 ng mL−1 (Cd2+) and
1 to 60 ng mL−1 (Pb2+)

0.245 ng mL−1 (Ca2+) and
0.335 ng mL−1 (Pb2+)

Lake water
and Seawater 95.0% to 105.1% [132]

CdSexS1-x@ZnS
(core@shell) QDs Oligonucleotide biomarkers - 1.5 × 10−3 nmol - - [133]

GNR-QD core−shell
embedded

MOF structures
Benzaldehyde 2 to 5 × 103 ng mL−1 1.2 ng mL−1 Human exhalation - [134]

ssDNA functionalized
QDs coated MSNs

and GO
MCF-7, HL-60 and K562 cells

180 to 8 × 107 (MCF-7 cell),
210 to 7 × 107 (HL-60 cell)

and 200 to
7 × 107 cells mL−1

(K562 cell)

62 (MCF-7 cell), 70 (HL-60
cell) and 65 (K562 cell)

cells mL−1
- - [140]

N-CDs Hg2+ 1 × 104 to 8 × 105 nmol L−1 10.7 nmol L−1 - - [141]

N-CDs Hg2+ 500 to 2.5 × 104 ng mL−1 500 ng mL−1 Drinking, pond and
tap water 80% to 111% [142]

CDs Folic acid 1 × 103 to 3 × 105 nmol L−1 280 nmol L−1 Orange juice and urine 95.8% to 106.2% [143]

Blue CDs and red CDs Pb2+ 0 to 200 nmol L−1 2.89 nmol L−1 Tap water and
lake water 92.8% to115.2% [144]

CDs and
hexametaphosphate

capped AuNPs
Ca2+, Mg2+ and F− 0 to 4.5 × 105 nmol L−1 (F−) 2.1 × 104 nmol L−1 (F−) Ground water 96.2% to 109.5% [149]

ssDNA functionalized
N-CDs and ssDNA

functionalized CeO2 NPs
miRNAs

1 × 10−7 to 1 nmol L−1

(miRNA210) and 2 × 10−7

to 2 nmol L−1 (miRNA21)

3 × 10−8 nmol L−1

(miRNA210) and 6 × 10−8

nmol L−1 (miRNA21)
Cell lysates 96.9% to 103.0% [151]

CDs@Eu/GMP ICPs Acetylcholinesterase 0 to 60 mU mL−1 2 mU mL−1
Brain tissues and

cerebrospinal
fluid (CSF)

98.3% to 98.8% [152]
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Table 3. Cont.

Nanomaterials Analytes Linear Ranges Limit of Detection Real Samples Recovery Ref.

UCNPs Immunoglobulin E (IgE) 0.5 to 50 IU mL−1 0.13 IU mL−1 Human serum - [155]

Eu@SiNPs Bacillus anthrax spores - 2.38 × 104 spore mL−1 Yellow river water, tap
water and soil 92.9% to 106.9% [156]

NH2-MIL-125(Ti) MOF
and GDH/antibody

functionalized AuNPs
CEA 0.1 to 200 ng mL−1 0.041 ng mL−1 Human serum - [157]

Eu-DPA/PTA-NH2 MOF H2O 0 to 100% v/v 0.01% v/v

Weisu granule,
Cefuroxime axetil

capsule and
Azithromycin capsule

- [158]

Cu(II)-Pyrazolate-based
porphyrinic MOFs Dopamine 2.5 to 1 × 103 nmol L−1 2.5 nmol L−1 Human serum - [160]

Al-MOF nanosheet Malachite green 500 to 2 × 105 ng mL−1 1.6 × 103 ng mL−1 Fish tissue 91.0% to 108.8% [161]
AuNCs: gold nanoclusters; AuNCs/MIL-68(In)-NH2/Cys: glutathione stabilized AuNCs/indium-based MOFs modified with cysteine; BSA-AuNCs: bovine serum albumin-
stabilized AuNCs; γG-AuNCs: γ-globulin (γG) immunoprotein stabilized AuNCs; SiNPs: silica nanoparticles; MSNs: mesoporous silica nanoparticles; UCNPs: upconversion
nanoparticles; Eu@SiNPs: europium (Eu)-doped silicon nanoparticles; GDH: glutamate dehydrogenase; Eu-DPA/PTA-NH2 MOF: Eu-dipicolinic acid/2-aminophthalic acid MOF; ICP:
ion concentration polarization.



Molecules 2022, 27, 508 19 of 31

QDs are generally good donors for the fabrication of FRET sensing platforms since the
fluorescence of QDs is easily quenched by many substances. Liu et al. reported a fluorescent
PAD for detection of Ag+ and AgNPs by inkjet-printing CdTe QDs on Whatman® grade
3030–861 chromatography paper because Ag+ enables to quench the fluorescence of CdTe
QDs via a cation exchange reaction between Ag+ and the CdTe QDs [121]. Under optimized
conditions, the as-proposed PAD exhibited high analytical performance of Ag+ or AgNPs
(pretreated by HNO3), including high selectivity, low LOD (0.05 µg mL−1) and good
accuracy (4.5% and 2.2% RSDs for 1 µg mL−1 and 7 µg mL−1 of Ag+, respectively). In
addition, the practicality of the fluorescent PAD was demonstrated by detecting Ag+

and AgNPs in river water and 12 commercial products, including four textiles, three
gynecologicallotions, one surgical dressing and four baby products. Zhou et al. developed
a 3D rotary fluorescent PAD for multiplexed detection of Cd2+ and Pb2+ by transferring the
liquid phase of ZnSe QDs@ion imprinted polymers to solid glass fiber paper [132]. Under
optimized experiment conditions, the as-proposed 3D rotary fluorescent PAD exhibited a
linear range from 1 to 70 ng mL−1 with an LOD of 0.245 ng mL−1 for Cd2+, and a linear
range from 1 to 60 ng mL−1 with an LOD of 0.335 ng mL−1 for Pb2+, respectively. Qu
et al. developed a fluorescent PAD based on polythiophene (CP)-CdTe QD conjugates
for detection of acetylcholinesterase (AChE) by turning on the fluorescence of the CP-
CdTe QD conjugates via the interaction between CP and thiocholine produced by ATCh
hydrolysis and aggregation induced emission enhancement (AIEE) [125]. Under optimized
conditions, the as-developed fluorescent PAD exhibited a low LOD of 0.14 U L−1. Zhang
et al. developed a fluorescent PAD for the ratiometric fluorescence determination of 2,4-
dichlorophenoxyacetic acid through fluorescence resonance energy transfer (FRET) of
nitrobenzoxadiazole (NBD) and CdTe QDs [122]. Under optimized conditions, the as-
developed fluorescent PAD exhibited a linear range of 0.56 to 80 µmol L−1 with an LOD of
90 nmol L−1. The PAD was applied successfully for detection of 2,4-dichlorophenoxyacetic
acid in spiked soybean sprouts and lake water samples with high recovery rates ranging
from 86.2% to 109.5% and the RSD less than 4.19%.

As a new class of fluorescent nanomaterials, CDs (also known as carbon QDs and
carbon dots) have been used to fabricate fluorescent PADs because of their superior merits,
such as easy synthesis, biocompatibility, environmental friendliness, fluorescence tunability
and stable luminescent emission [141–152]. Wang et al. developed an instrument-free
fluorescent PAD for detection of Pb2+ by directly inject-printing dual-emission CDs (blue
CDs and red CDs) in A4 paper [144]. The blue fluorescence was quenched by Pb2+, while
the red fluorescence was kept unchanged. The as-developed fluorescent PAD can detect
as low as 2.89 nmol L−1 Pb2+ under a 365 nm UV lamp irradiation. The fluorescent PAD
was used successfully to determine Pb2+ in real samples, including tape water and lake
water. Tian et al. developed a fluorescent PAD for detection of F− in water by immobilizing
the Ca2+, CDs and hexametaphosphate capped AuNPs on the cellulose chromatography
paper [149]. Under a 365 nm UV lamp irradiation, the fluorescence color of the PAD
changed from orange to blue through the aggregation induced FRET mechanism when
various concentrations of F− (0, 100, 200, 300 and 400 mol L−1) were applied. Li et al.
developed a fluorescent PAD based on hybrid polydimethylsiloxane (PDMS)/paper for
detection of folic acid (FA) by using CDs as fluorophores, which were immobilized on
the cellulose paper by Schiff base chemistry [143]. Under optimized conditions, the as-
developed fluorescent PAD exhibited a wide range of 1 to 300 µmol L−1 with an LOD of
0.28 µmol L−1. The feasibility of the fluorescent PAD was further verified by detection
of FA in orange juice and urine samples with satisfactory results. Liang et al. developed
a flower-like AgNPs (FLS)-enhanced fluorescent/visual bimodal PAD for detection of
multiple miRNAs [151]. In this case, the ssDNA functionalized CDs (DNA1-N-CDs) were
immobilized on the FLS layer, which was in situ grown on the surfaces of cellulose fibers
of chromatography paper. The fluorescences of DNA1-N-CDs were quenched by ssDNA
functionalized CeO2 NPs (DNA2-CeO2) through DNA hybridization. In the presence of
miRNA, the fluorescent intensities of DNA1-N-CDs were recovered and strengthened by
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FLS. The disengaged DNA2-CeO2 could result in color change after adding H2O2, leading
to the real-time visual detection of miRNA. The as-developed FLS-enhanced fluorescent
PAD exhibited linear ranges of 0.1 fmol L−1 to 1 nmol L−1 and 0.2 fmol L−1 to 2 nmol L−1

for miRNA210 and miRNA21 with LODs of 0.03 fmol L−1 for miRNA210 and 0.06 fmol L−1

for miRNA21, respectively. The practicability of the FLS-enhanced fluorescence PAD was
demonstrated by successful detection of miRNA210 in different cell lysates.

Because of NIR-excitation and the visible light emission nature of UCNPs, the flu-
orescent PADs using UCNPs as the label can avoid the interference of autofluorescence
and scattering light from biological samples and paper substrates, resulting in an improve-
ment in the detection accuracy of the PAD [153–155]. Recently, He et al. developed a
UCNP-based fluorescent PAD for detection of total immunoglobulin E (IgE) in human
serum through resonance energy transfer between UCNPs and organic dye tetramethyl-
rhodamine (TAMRA) [155]. The UCNP-based fluorescent PAD exhibited a linear range
of 0.5 to 50 IU mL−1 with an LOD of 0.13 IU mL−1. The practicability of the UCNP-based
fluorescent PAD was demonstrated by the determination of IgE in 20 human serum samples.
The results of the UCNP-based PAD were well consistent with those of the commercial
ELISA kit. The RSDs (n = 3) of the PAD varied from 2.7% to 19.7%. The results suggested
that the UCNP-based fluorescent PAD could be used as a POCT device for individual
diagnostic and real-time detection.

Recently, a MOFs-based fluorescent PAD has been developed for the detection of vari-
ous targets [157–161]. Lv et al. developed a fluorescent PAD for detection of CEA through
wet NH3-triggered structural change of NH2-MIL-125(Ti) impregnated on paper [157]. The
NH2-MIL-125(Ti)-based PAD exhibited a linear range of 0.1 ng mL−1 to 200 ng mL−1 with
an LOD of 0.041 ng mL−1. Yue et al. developed a portable smartphone-assisted ratiomet-
ric fluorescent PAD for detection of malachite green (MG) by using fluorescent Al-MOF
nanosheet and rhodamine B (RhB) as fluorescent probes [161]. The as-developed fluores-
cent PAD exhibited a wide linear range of 0.5 to 200 µg mL−1, a low LOD of 1.6 µg mL−1,
satisfactory recoveries (in the range of 81.90% to 108.00% and low RSD (in the range of
1.00% to 4.69%). The practicability of the fluorescent PAD was verified by detection of MG
in spiked fish tissues. The as-obtained results were in good agreement with those obtained
by high performance liquid chromatography (HPLC).

2.4. Paper-Based Surface-Enhanced Raman Spectroscopic Analytical Devices

The basic principle of SERS is that the signal of the analyte is strongly amplified
through LSPR phenomena (i.e., electromagnetic hot spots) generated by light when it
interacts with labels (plasmonic metal nanoparticles), such as gold nanorods (GNRs) and
AgNPs, as shown in Figure 6. The PAD-based SERS substrates have gained considerable
attention since they enable on-site label-free detection of a wide variety of analytes and
provide “fingerprint” signatures of analytes (as shown in Table 4) [134,162–176]. Saha
and Jana developed a PAD-based SERS assay for the detection of proteins by mixing
plasmonic nanomaterials (silver coated AuNPs (Ag@AuNPs)) and analyte in the mobile
phase, where the analyte induced Ag@Au nanoparticles form controlled aggregates and
generate electromagnetic hot spots inside the microfluidic channel, resulting in a strong
SERS signal [173]. The as-developed PAD-based SERS assay exhibited high reproducibility
and sensitivity, which can be used to detect 1 fmol L−1 concanavalin A within 3 min.
Qi et al. developed an oPAD for miRNA detection through modification of DNA-encoded
Raman-active anisotropic AgNPs in the hydrophilic channels [171]. In the presence of
analyte, the Raman signals on DNA-encoded AgNPs were amplified through a target-
dependent, sequence-specific DNA hybridization assembly. The simple and low-cost
oPAD is generic and applicable to various miRNAs, which holds promising applications
in point-of-care diagnostics because it can be used to detect as low as 1 pmol L−1 within
15 min. Wu et al. developed a PAD for detection of acrylamide (AAm) in food products by
using the strawberry-like SiO2/Ag nanocomposites (SANC) immersed chromatography
paper [172]. Under the optimized conditions, the as-developed PAD SERS assay exhibited
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a wide linear response from 0.1 nmol L−1 to 50 µmol L−1 with a low LOD of 0.02 nmol L−1

and good recoveries of 80.5% to 105.6% for practical samples, including cookies, chips and
bread. In addition, the total assaying time of the PAD was less than 10 min. The result
indicated that the PAD SERS assay could be a promising strategy in food analysis and
verification. Li et al. developed a colorimetric/SERS dual-mode PAD for sensing SO2 by
immobilization of 4-mercaptopyridine (Mpy)-modified GNRs-reduced graphene oxide
(rGO) hybrids (rGO/MPy-GNRs), anhydrous methanol and starch-iodine complex into
cellulose-based chromatography paper through a vacuum filtration method [174]. The
PAD can be used not only as a naked-eye indicator of SO2 changed from blue to colorless
but also as a highly sensitive SERS substrate because of the SO2-triggered conversion of
Mpy to pyridine methyl sulfate on the GNRs. The PAD-based SERS method exhibited
a wide linear range from 1 µmol L−1 to 2000 µmol L−1 with a low LOD of 1 µmol L−1.
The colorimetric/SERS method was employed for the detection of SO2 in wine, and the
as-obtained results matched well with those obtained from the traditional Monier-Williams
method. In addition, the color intensities and profiles of the SERS spectra of the colorimet-
ric/SERS dual-mode PAD after 10 weeks are very similar to those of freshly prepared PADs,
indicating excellent stability of the colorimetric/SERS dual-mode PAD. This study provides
a new strategy for designing of paper-based sensing platform for a wide range of on-site
testing applications. Moreover, taking advantage of different nanomaterials, Xia et al.
developed a smart PAD (named as vapor generation (paper-based thin-film microextrac-
tion system) capable of both sensitive on-site fluorescence detection and accurate SERS
quantification of volatile benzaldehyde (BA) by utilizing stimuli-responsive core@shell
GNR@QD-embedded MOF structures [125]. The fluorescence emission of carboxyl-capped
QDs was completely quenched by amino-modified GNRs via electrostatic interaction. In
the presence of BA, the GNRs-QD assemblies was dissociated through the Schiff base
reactions between the amine group of 4-mercaptonoaniline and the aldehyde moiety of
BA, resulting in the increase in the fluorescence and Raman signal of the hybrid systems.
In addition, gaseous BA molecules can be efficiently and selectively concentrated on the
GNR surface through the “cavity-diffusion” effect of porous MOF shells, allowing the
discrimination of BA in exhaled breath rapidly and precisely even at the sub-ng mL−1

level with excellent specificity against other volatile organic compounds. The as-developed
fluorescent/SERS dual-mode PAD was used successfully to accurately discriminate lung
cancer from controls.
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Table 4. The typical nanomaterial-based SERS PADs for sensing various analytes.

Nanomaterials Analytes Linear Ranges Limit of Detection Real Samples Recovery Ref

GNR-QD core−shell embedded
MOF structures Benzaldehyde 0.1 to 10 ng mL−1 0.1 ng mL−1 Human exhalation - [134]

GNRs Fluorescein and napthalenethiol -
∼1 × 10−7 nmol L−1 (Fluorescein)

and 5 × 10−10 nmol L−1

(Naphtalenethiol)
Tap water - [162]

GNRs modified with
4-mercaptophenylboronic acid

(4-MBA) and 1-decanethiol
(1-DT) molecules

Glucose 5 × 105 to 1 × 107 nmol L−1 1 × 105 nmol L−1 Blood 88% [163]

AuNPs Cocaine - 10 ng mL−1 Human plasma - [164]

AuNPs
Age-related macular degeneration

aqueous humors: THV-I1043,
THV-I1454 and THV-I1656

- - Aqueous humors - [165]

AuNPs Clenbuterol 1 × 10−4 to 1 × 102 ng mL−1 1 × 10−4 ng mL−1 Swine hair 104.8% to 116.2% [166]

AgNPs P-selectin 100 to 500 ng mL−1 104.2 ng mL−1 (ca. 0.7 nmol L−1) - - [167]

Flower-like AgNPs Chloramphenicol 1 × 10−2 to 1 × 105 ng mL−1 1 × 10−2 ng mL−1 Pork 90% to 102% [168]

Silver nanocubes Adenine 10 to 1 × 105 nmol L−1 0.89 nmol L−1 Urine 89% to 107% [169]

4-aminothiophenol-modified
rGO/ Ag NPs

Formaldehyde (FA) and
acetaldehyde (AA) 4.5 × 10−4 to 480 ng mL−1 1.5 × 10−4 ng mL−1 (FA) and

1.3 × 10−3 ng mL−1 (AA) Wine and human urine 104.6% to 112.8% [170]

ssDNA functionalized
anisotropic AgNPs Has-miR-21 - 1 pmol L−1 - - [171]

Strawberry-like SiO2/
Ag nanocomposites Acrylamide 0.1 to 5 × 104 nmol L−1 0.02 nmol L−1 Cookies, chips and bread 80.5% to 105.6% [172]

Silver coated AuNPs
functionalized with 4-Mercapto

Pyridine and glucose or
4-mercapto pyridine and biotin.

Streptavidin and concanavalin A -
1 × 10−5 nmol L−1 (Streptavidin)

and 1 × 10−6 nmol L−1

(Concanavalin A)
- - [173]

4-mercaptopyridine
(Mpy)-modified GNRs-

rGO hybrids
SO2 1 × 103 to 2 × 106 nmol L−1 1 × 103 nmol L−1 Wine 87.1% to 116.8% [174]

ZnO NPs SO2 5 × 103 to 3 × 105 ng mL−1 2 × 103 ng mL−1 Wine - [175]

MoO3−X nanosheets Rhodamine 6G - 100 nmol L−1 - - [176]



Molecules 2022, 27, 508 23 of 31

2.5. Comparison of the Detection Methods of Paper-Based Analytical Devices

The above introduced detection methods of PADs indicate that their detection perfor-
mances have been greatly enhanced with the great advance of nanofabrication science. For
the convenience of the readers, the merits and drawbacks of the four major PAD detection
methods (EC, colorimetric, fluorometric, SERS PADs) are compared and summarized in
Table 5.

Table 5. The comparison of four representative detection methods of PADs.

Detection Methods The Main
Nanomaterials Advantages Disadvantages Limit of Detection Ref.

EC PADs

AuNPs, graphene,
MOF, multiple
metallic NPs

composites and
functionalized NPs

High sensitivity, rapid
response and easy

miniaturization

Equipment-
dependent,

complicated
operation, easy
interfered with

complex matrices

1 pg mL−1 level for AuNPs,
0.1 pg mL−1 level for

graphene, 0.1 mmol L−1

level for MOF, 1 × 10−3 pg
mL−1 level for multiple
metallic NPs composites
and 1 × 10−2 pg mL−1

level for functionalized NPs

[40,50,56,68,75]

Colorimetric PADs

Functionalized
AuNPs and AgNPs,

enzyme-like
nanomaterials

Simplicity and
convenience, readout

with naked eye,
rapidness, low cost and

low sample
consumption

Poor sensitivity,
limited to

qualitative or
semi-

quantitative
analysis

10 pg mL−1 level for
functionalized AuNPs,
100 pmol L−1 level for
functionalized AgNPs,

1 pmol L−1 level for
enzyme-like nanomaterials

[48,89,95]

Fluorometric PADs NC, QD, CD, MOF Low cost, easy
operation

Reader-
dependent

1 pmol L−1 level for NC,
1 pg mL−1 level for QD,

1 × 103 pg mL−1 level for
CD, 10 pg mL−1 level

for MOF

[115,127,144,157]

SERS PADs AuNPs and AgNPs

On-site label-free
detection, offered

fingerprint signatures,
high sensitivity

Equipment-
dependent

1 pg mL−1 level for AuNPs
and AgNPs

[166,170]

3. Conclusions and Perspective

The PADs have gained remarkable consideration as simple, low-cost and powerful
POCT platforms since the first commercialized lateral flow immunoassay (LFIA) was used
for a home pregnancy test. Although PADs have achieved great success in the rapid
testing area, some parameters on the analytical performance of PADs need to be further
improved to meet the specific needs of different detection fields. Integrating nanomateri-
als/nanotechnology into PADs can help improve their analytical performance, including
sensitivity, selectivity, reproducibility, stability and multiplexed analysis. For instance, the
sensitivity of ePADs can be increased significantly when carbon nanomaterials with high
conductivity and high specific surface area are used as electrode materials or electrode
modifiers. The AuNPs are commonly used color indicators of colorimetric PADs. The
sensitivity of colorimetric PADs will be further increased when AuNPs are conjugated
with other catalytic NPs, such as CeO2 NPs, and/or enlarged through the metallic atoms
(such as Au or Ag) surface deposition strategy. In comparison with organic dyes, the
fluorescent nanomaterials, including QDs, CDs and metallic NCs, have wide excitation
wavelength, high fluorescence brightness and strong resistance to photobleaching, resulting
in the excellent stability, reliability and accuracy of PADs. Because the upconverted phos-
phorescence of UCNP can efficiently avoid the interference of biological autofluorescence,
the reliability and accuracy of PADs can also be improved by using UCNP as a fluorescence
probe. Nanozymes such as CeO2 NPs and MOFs have higher robustness than natural
enzymes. Therefore, the PADs exhibit high stability and sensitivity, while the nanozymes
are used for signal amplification in the PAD fabrication. Meanwhile, the nanomaterials
have surface-functionalized flexibility for creating multiple reactive/recognizable sites
with analytes to achieve multiplexed analysis. In addition, the nanomaterial-based PADs
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are compatible with dual-mode detection, such as colorimetry–fluorescence and EC-optical
detection, which enables the reliability and accuracy of the PADs.

The nanomaterial-based PADs have managed great achievements for sensing various
targets, including ions, small molecules, nucleic acids, proteins and pathogens, in the
bench research. However, there are limited examples that have transformed from proof-
of-principle analytical devices to commercial products. More efforts should be made
continuously to develop novel strategies for increasing the longevity, robustness and
reliability in the real-time monitoring, which are largely dependent on the synthesis of
advanced nanomaterials, introduction of a new sensing mechanism and multiple detection
modes, development of a reliable microfabricating methodology/standard and simplifying
the detection procedures. The next generation of PADs will be simple, cost-effective and
multiplexed and be able to provide on-site qualitative/quantitative analysis by the naked
eye and/or portable equipment, such as smartphones and wearable electronic devices.
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