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Laser‑induced layers peeling 
of sputtering coatings at 1064 nm 
wavelength
Kesheng Guo1,2, Yanzhi Wang1,3*, Ruiyi Chen1, Yuhui Zhang1, Anna Sytchkova4, 
Meiping Zhu1, Kui Yi1, Hongbo He1* & Jianda Shao1,3

Large-scale layers peeling after the laser irradiation of dual ion beam sputtering coatings is discovered 
and a model is established to explain it. The laser damage morphologies relate to the laser fluence, 
showing thermomechanical coupling failure at low energy and coating layers separation at high 
energy. High-pressure gradients appear in the interaction between laser and coatings, resulting in 
large-scale layer separation. A two-step laser damage model including defect-induced damage process 
and ionized air wave damage process is proposed to explain the two phenomena at different energy. 
At relatively high energies (higher than 20 J/cm2), ionization of the air can be initiated, leading to a 
peeling off effect. The peeling effect is related to the thermomechanical properties of the coating 
materials.

Optical coatings can increase the transmittance and reflectance of optical elements such as glass and lenses, 
which are widely used in various laser systems1–3. Sputtered coatings have excellent mechanical properties and 
stability, which are suitable for use in space laser systems4,5. Generally, laser-induced damage threshold (LIDT) 
of dielectric coatings materials is lower than the damage threshold of bulk materials6,7. The laser damage problem 
of dielectric coatings is a key factor in laser systems8,9. The laser damage of the sputtered coatings is related to 
the launch and operation stability of the entire spacecraft mission10,11. The research on the mechanism of laser 
and sputtered coatings is very important.

Nanosecond laser damage is usually attributed to structural defects or absorptive defects12,13. Nanoprecursors 
that initially induce damage are difficult to characterize or observe14,15. Analysis of the laser damage morphology 
can reveal the mechanism behind the damage phenomenon16–18. Research on bulk materials such as fused silica 
found that the multi-longitudinal mode laser interacts with fused silica to form a ripple structure19–21, which is 
related to the laser excited air electrons22. Diaz et al. find that the action mechanism of fused silica in vacuum 
under laser irradiation is related to the ionization of SiO2 material on the surface to form a plasma, which also 
has a ripple structure23,24. This phenomenon of laser-excited air or surface matter forming a plasma correlates 
with the wavelength of the laser25. A 1ω frequency laser is more likely to excite air than a 3ω laser26. The ripple 
structure does not appear when the electron beam evaporated coatings interacts with laser, and it mainly mani-
fests as surface ablation27. The high temperature of the ionizing wave causes the surface of the evaporated coatings 
to ablate quickly28. The research on the interaction mechanism between the sputtered coatings and laser is rare.

In this work, two different laser damage morphologies of dual ion beam sputtering coatings with high-resolu-
tion characterization reveal different damage mechanisms, one of which is large-area film separation. The dam-
age morphologies are related to the laser energy, which show thermomechanical coupling failure at low energy 
and coating layers separation at high energy. The damage features of sputtering coatings are different from the 
ring patterns of fused silica or the surface scalding of the e-beam evaporation coatings. High-pressure gradients 
appear in the interaction between laser and coatings, resulting in large-scale layer separation. Different layer 
stress parameters make the peeling off effect different. A two-step laser damage model including defect-induced 
damage process and ionized air wave damage process is proposed to explain the two phenomena.
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Experiments
Coatings preparation.  The fused silica (HPFS 7980, Corning) substrates have no absorption band between 
185 and 2500 nm. The index of refraction of substrates is 1.45 and transmittance is above 94% at 1064 nm. The 
cylindrical substrates have a radius of 25 mm and a thickness of 5 mm. Detailed materials and optical properties 
of three different coatings (Al2O3/SiO2, Ta2O5/SiO2 and Nb2O5/SiO2) are shown in the Table 1. Before coating, 
ultrasonic and chemical etching should be used to clean the substrate, mainly to remove surface contamination 
and polishing deposition contamination of the substrates. Dual ion beam sputtering equipment (Veeco, Ltd.) is 
used to deposit multilayer coatings.

Laser‑induced damage parameters.  In the experiment, the 1-on-1 laser damage performance test is 
carried out according to the standard ISO 2125429. The schematic diagram of laser damage test platform is 
shown in Fig. 1. The incident angle of laser to three samples is 0 degree. Sample I and II are tested on laser exit 
surface. Sample III is tested on laser incident surface. The pulse width of Nd: YAG laser is 12 ns at 1064 nm (1ω). 
The facula radius of the incident laser on the coatings is about 200 μm at 1/e2 of the maximum intensity. In the 
laser damage experiment, there are 20 points irradiated by each energy step. The online CCD (charge coupled 
device) and offline optical microscope can be used to evaluate whether the test area is damaged.

Experimental results and analysis
Laser damage probability.  Laser damage probability distribution of the Al2O3/SiO2 coatings is shown in 
Fig. 2. It can be obtained that within 30 J/cm2 energy, the probability of laser damage is low, and is about 40% 
around 70 J/cm2. The two-stage damage probability indicates that there are two different defects. One has a lower 
density but is prone to laser damage, and the other has a higher density but requires higher energy.

Laser damage morphology.  Optical microscope (Leica) and optical profiler (Veeco) are used to charac-
terize laser damage morphologies. Morphologies and damage pits depth of Al2O3/SiO2 coatings are shown in 
Fig. 3(c) and (d) correspond to the depth distribution of (a) and (b), respectively. Figure 3(a) is single defect-
induced damage, and (b) is multiple defect-induced damage. Obvious peeling off of coatings layer is observed, 
and no change in the color of the plasma ablation is observed. From the depth profile of Fig. 3(d), the damage 
depth is about 1.2 μm, which is close to the substrate. The defects of sample I is possible from interface of coat-
ings and substrate.

Field emission scanning electron microscopy (FE-SEM; Zeiss) is used to characterize the microscopic mor-
phology of damage pits. Figure 4(a–c) show the damage morphologies of Al2O3/SiO2 coatings at near damage 
threshold, medium energy, and high energy, respectively. Figure 4(d) and (e) are enlarged views of the central 
regions of (b) and (c), respectively. Laser damage near the threshold appears as thermal–mechanical coupling 
failure. The diameter of the damage pit is about 3 μm. The edge contour of the damage pit is clear and shows 
brittleness distortion, which indicates that the defects are far away from the coatings surface and the thermal 
effect is not obvious. The central thermal–mechanical coupling damage pit can still be observed at medium 
energy in Fig. 4(d), but the surrounding coatings are extensively damaged, which is manifested as peeling off. At 
high energy, the central damage pit is not deeper and only appears as more thermodynamic ablation. The area 
of ablation and damage of the surrounding peeling layers is larger.

Ta2O5/SiO2 and Nb2O5/SiO2 coatings also show a similar phenomenon, that is, they only show thermal dam-
age at low energy, and at high energy, in addition to thermal damage, the coatings show peeling off effect. The 
critical energy density of the three coatings is about 20 J/cm2.

Table 1.   Three groups of coatings.

Group name Coating materials Optical performance Layers

I Al2O3/SiO2 T > 99.5%@1064 nm 11

II Ta2O5/SiO2 T > 99%@1064 nm 72

III Nb2O5/SiO2 R > 99%@1064 nm 71

Figure 1.   Laser damage test platform.
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Figure 5 indicates that the size of the damage pit changes with the laser energy. Some damage pits of sample 
I and II are observed at relatively low energy, which are relatively small, especially sample I. Sample III is not 
damaged at relatively low energy, so no damage point was observed at relatively low energy. The damage pit size 
becomes significantly larger after energy above about 20 J/cm2, and with the increase of energy, the development 
of damage pit size approaches a linear increase. Under the same laser energy, sample I has the largest damage pit 
size, and sample III has the smallest size. This is related to the thermodynamic properties of the film composition 
of the samples, which will be explained in detail later.
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Figure 2.   Damage probability curves of Al2O3/SiO2 coatings.
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Figure 3.   Optical microscope morphologies and damage pits depth of Al2O3/SiO2 coatings after laser damage 
test, (c) and (d) correspond to the depth distribution of (a) and (b), respectively.
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Damage mechanism.  To explain the correlation between the occurrence of the peeling effect and the laser 
fluence at 1064 nm. Compared with the shock wave model proposed by Fabbro et al. for the shock wave caused 
by the laser irradiated material30, the shock wave is generated in the solid material, and the propagation speed 
is the speed of sound level. The propagation speed of shock waves in solid materials is much lower than the 
surface destruction speed. Therefore, the model we propose is to ionize air to generate plasma, and the speed 
of expansion and propagation in the air is in the same order of magnitude as the speed of destruction in the 
experiment. The possible formation of air laser supported detonation waves (LSD) is considered31. This happens 
when the free electron energy E can excite the neutral substance in the medium (mainly composed of O2 and N2 
molecules) to ionize32. At the beginning of ionization, the maximum energy obtained by the electrons cannot be 
higher than the following value33:

(1)Em[eV] ≈ 4.9(�[µm])2I[GW/cm2
]

(c)(a)
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Figure 4.   SEM morphologies of Al2O3/SiO2 coatings after laser irradiation: (a) close to laser damage threshold; 
(b) middle laser fluence; (c) high laser fluence; (d) and (e) are enlarged images of the center area of (b) and (c), 
respectively.
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Figure 5.   Laser damage pit diameters as function of energy, three different coatings: I-Al2O3/SiO2, II-Ta2O5/
SiO2, III-Nb2O5/SiO2.
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Among the Eq. (1), I is the laser light intensity, λ is the laser wavelength, The energy of air molecules (mainly 
N2 and O2) ionized by laser is 12 eV. Equation (1) can be used to calculate the laser power density required for 
ionizing air as 2.14GW/cm2 at 1064 nm. According to the conversion formula ( F = 0.5

√

π/ ln 2Iτ  ) of laser 
energy density and power density, the energy density of the laser can be obtained as 27.34 J/cm2. Laser dam-
age will cause the temperature of the coating material around the defect to rise sharply and the absorption will 
increase34,35. The LSD wave front will absorb and reflect the laser34,36–38, making the initial electron avalanche 
ionization energy lower than 27.34 J/cm2, which is about 20 J/cm2 in our experiment.

Thus, when the energy is low, the laser energy is lower than the ionization energy of the air, and no LSD wave 
in air can be generated. At this time, the laser and film defects interact with each other, and the defects absorb 
the laser energy, resulting in thermomechanical coupling damage, such as Fig. 4(a). Due to the deeper defects of 
the sample II compared to sample I and the strong layer binding force, the thermal effect is more obvious and the 
damage area is larger in the process of the sample II absorbing the thermal coupling effect of the defect. When 
the laser energy is greater than the ionization energy of air, LSD waves are generated in the air. Thus, the large-
scale emergence of peeling off of coatings is related to a propagation of LSD wave, which is similarly with ring-
pattern damage morphologies of the fused silica bulk material39. According to the experimental data in Fig. 5, 
the velocity of propagation of peeling off can be obtained as 21 km/s (laser energy: 70 J/cm2, maximum diameter: 
500 μm), which is equivalent to the speed of a surface shock wave23. Multi-layer coatings deposited by dual ion 
beam sputtering usually possess high compressive residual stress40. The temperature of laser-induced plasma is 
higher than 104 K, and the pressure is higher than 1 GPa41. The laser-induced stress wave propagates horizontally 
and vertically in the coatings and reflects at the boundary of the coatings, thereby changing the residual stress 
field of the coatings. At the same time, when the stress wave propagates far away from the center of the laser 
spot, it attenuates exponentially, and gradually disperses. A stress field distribution similar to the shape of Airy 
Pattern is formed in the coatings32. At the same time, due to the high temperature gradient brought by the LSD 
wave, the samples are prone to peeling off. Thermodynamic parameters will affect the peeling size of the samples.

The separation of the coating layers originates from the changes in the local stress of different coating lay-
ers after the temperature rises, considering the case where the temperature has not reached the melting and 
vaporization of the coating layers. The change of coatings stress caused by temperature can be explained by the 
following formula42:

Among them, αc, νc, and Ec are the thermal expansion coefficient, Poisson’s ratio and Young modulus of differ-
ent coating material. ΔT is the amount of change in temperature rise. Table 2 shows the mechanical parameters 
of SiO2, Al2O3, Ta2O5, and Nb2O5 coating materials43,44. The stress change caused by the same temperature change 
in the Al2O3 layer, Ta2O5, and Nb2O5 are 63.59 times, 13.53 times, and 8.99 times that of SiO2 layer, respectively. 
This explains that sample I which contains Al2O3/SiO2 layers is more likely to occur peeling effect caused by 
temperature rise. Thus, the peeling off size of sample I is relatively larger.

Therefore, the laser-induced damage of dual ion beam sputtering coatings is mainly divided into two pro-
cesses, as shown in the Fig. 6. The first step is the defect absorbing laser energy to induce damage, as can be seen 
in Fig. 6(a). In nanosecond laser damage realm, the distribution of defects is random, and the laser intensity is 
Gaussian, so the laser intensity of the defect location is random, and the size of the damage pit is also random. In 
the defect-induced damage process, damage morphology is also correlated with the thermomechanical param-
eters of the coatings, the type of defect, number of defects in the spot range, and the distribution depth of defect. 
In the interaction with the laser, the defect absorbs heat, and the local coatings is melted and gasified, resulting 
in initial damage to the film. Deeper defects require more layers to be destroyed, and the thermal coupling time 
is longer and the scale of the laser damage is larger.

The second step is the damage of ionized air waves, as shown in the Fig. 6(b), which only occurs at relatively 
high energies. Air is a wide band gap dielectric, which is basically transparent to the laser, and basically does 
not absorb laser energy. In the first step, the broken pieces and residual bonds become the precursor of the 
ionized air, providing the initial seed electrons. Electron avalanche occurs during laser irradiation, resulting in 
severe ionization of air and formation of plasma. Plasma almost completely absorbs laser energy. The heated gas 
expands to form a spherical shock wave in all directions, and the air is heated to dozens of eV. The ionization 
front expands, forming a temperature gradient, and then the film undergoes stress peeling off.

(2)σC = −
Ec

1− vc
αc�T ,

Table 2.   Mechanical parameters of four types of different coating layers.

Materials E (GPa) ν α(1/K) × 106

SiO2 73 0.17 0.55

Al2O3 300 0.21 8.1

Ta2O5 140 0.23 3.6

Nb2O5 60 0.20 5.8
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Conclusion
The phenomenon of peeling damage of the dual ion beam sputtering coatings was found and explained. A two-
step laser damage model is proposed, including defect-induced damage process and ionized air wave damage 
process. At relatively high energies (higher than 20 J/cm2), ionization of the air can be initiated, leading to a 
peeling off effect. The peeling effect is correlated with the thermomechanical properties of the coatings materi-
als. For coatings with large stress differences, the peeling off effect is more serious. This article is helpful for the 
analysis of the damage process of the dual ion beam sputtering coatings, which can help improve the ability to 
resist laser damage from a process and design perspective.
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