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Abstract: Leishmaniasis is a parasitic morbid/fatal disease caused by Leishmania protozoa. Twelve
million people worldwide are appraised to be currently infected, including ca. two million infections
each year, and 350 million people in 88 countries are at risk of becoming infected. In Colombia,
cutaneous leishmaniasis (CL) is a public health problem in some tropical areas. Therapeutics is
based on traditional antileishmanial drugs, but this practice has several drawbacks for patients.
Thus, the search for new antileishmanial agents is a serious need, but the lack of adequately funded
research programs on drug discovery has hampered its progress. Some Colombian researchers have
conducted different research projects focused on the assessment of the antileishmanial activity of
naturally occurring and synthetic compounds against promastigotes and/or amastigotes. Results of
such studies have separately demonstrated important hits and reasonable potential, but a holistic
view of them is lacking. Hence, we present the outcome from a systematic review of the literature
(under PRISMA guidelines) on those Colombian studies investigating antileishmanials during the
last thirty-two years. In order to combine the general efforts aiming at finding a lead against
Leishmania panamensis (one of the most studied and incident parasites in Colombia causing CL)
and to recognize structural features of representative compounds, fingerprint-based analyses using
conventional machine learning algorithms and clustering methods are shown. Abstraction from such
a meta-description led to describe some function-determining molecular features and simplify the
clustering of plausible isofunctional hits. This systematic review indicated that the Colombian efforts
for the antileishmanials discovery are increasingly intensified, though improvements in the followed
pathways must be definitively pursued. In this context, a brief discussion about scope, strengths and
limitations of such advances and relationships is addressed.

Keywords: leishmania parasites; leishmanicidal; neglected tropical diseases; chemoinformatics;
machine learning; Colombia; Leishmania panamensis

1. Introduction

Leishmaniasis is a vector-borne parasitic zoonosis caused by protozoa of the genus Leishmania,
which is considered as an important neglected tropical disease (NTD). Clinically, this disease is
classified as cutaneous (CL), mucosal (ML), or visceral leishmaniasis (VL). Central and South America
are among the most affected regions, registering an annual incidence of 54,950 cases between 2001 and
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2018 [1]. Among the 18 American countries where leishmaniasis is considered an endemic disease,
Brazil, Colombia and Peru are those with the highest number of cases, involving 16432, 6362 and 6321
respectively, for 2018 [1]. In Colombia, the incidence rate of this disease was 26.2 cases per 100,000
population, with 98.6% of the cases related to CL [2]. Such an incidence was due to the presence
of several parasites species, including L. venezuelensis, L. equatorensis, L. lainsoni, L. colombiensis, L.
mexicana, L. amazonensis, L. infantum, L. guyanensis, L. braziliensis and L. panamensis [3–6], with the last
three Leishmania species being the most representative etiological agents [4,6].

Despite the efforts involved in the development of new chemotherapeutic options/alternatives,
the use of pentavalent antimony compounds still remains the first-line treatment today [7]. These
drugs are recognized by their side effects [8–10], which implies an additional effort to monitor patients
under treatment [11]. Moreover, the increasing number of therapeutic failure (mainly associated
with parasite drug resistance) [12,13] establishes the need to persist in the search for more effective
and safer antileishmanial agents. In this context, the accumulated knowledge about leishmaniasis
pathophysiology, parasite biology and advancements in high-throughput screening, big-data analysis,
analytical platforms, extraction/isolation and organic synthesis, open up new opportunities regarding
the fight against NTDs such as leishmaniasis.

In 2013, the state-of-the-art regarding leishmaniasis research in Latin America showed that Brazil
and Colombia were the most-contributing countries. However, Colombia’s scientific production was
far from that of Brazil (almost six-fold lower production) [14]. After our current search, we found that
this scenario has not practically changed, due to the fact that the burden/liability has been assumed by
a small set of research groups basically disconnected from industry partners. Despite this, Colombian
research on antileishmanials has led to the discovery of interesting chemical entities (both from natural
and synthetic origin) with prospective activity against promastigotes and/or amastigotes of different
Leishmania species. Their results have separately demonstrated high potential involving possible hits,
but a holistic and comprehensive overall view of the outcome of those studies remains to be uncovered.
Such a view would allow understanding/delineating the current status and future directions on further
drug discovery-based initiatives against Leishmania parasites.

Increasing efforts are constantly paid by researchers around the world to improve the current
drug discovery pipelines. Hence, the advances of computational methods and their application to
them constitute a significant component. Accordingly, the use of novel and better algorithms have
led to a large number of publications showing the extent of their applicability in computer-aided
drug design projects [15–17]. The impact of chemoinformatics, understood nowadays as a discipline
intersecting chemistry and computer science [18], has been moreover boosted by the development of
machine learning algorithms in recent years [19–21]. Its use has extended across all levels of a typical
drug discovery pipeline.

The so-called in silico methods have been thoroughly applied to a wide range of scientific problems,
including the search for new treatments against infectious diseases, and more specifically, NTDs such
as leishmaniasis, as extensively reviewed [22–25]. Chemoinformatics has also greatly influenced the
renascence of natural products, not only as a tool for identification of their vast biological potential but
also aiming to fight NTDs [26–31]. Hence, a notorious use of chemoinformatics within the forthcoming
Colombian research projects focused on antiparasitic agents is no less than expected.

As an endeavor to describe and characterize the status to date of the antileishmanial-focused
Colombian studies, we present herein a systematic and comprehensive review of Colombian studies
that have performed in vitro leishmanicidal trials. An approach to the chemical space conformed by
the compounds involved in those research projects is disclosed for the first time. Finally, machine
learning models are established for those compounds acting on amastigotes of L. panamensis (causative
agent of CL in Colombia), including a particular emphasis on their interpretability and its relationship
with important structural features.
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2. Results and Discussion

2.1. Study Characteristics

The systematic review was performed under the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) statement guidelines: the flowchart is outlined in Figure 1.
After removal of duplicate studies, 1029 articles were screened and 900 (87.46%) were then excluded.
At this point, we intended to delineate how the leishmaniasis research has been approached in
Colombia. Hence, we classified the excluded studies within the following categories: entomology
(vector studies), therapeutics (e.g., pharmacokinetics/pharmacodynamics studies), parasite biology,
disease pathophysiology, epidemiology, diagnosis, case report, miscellaneous (i.e., studies with mixed
goals and those with goals outside the previously described categories) and unrelated (i.e., those
studies that, although were retrieved by the search, actually did not focus on the leishmaniasis subject).
Most of the excluded papers were centered on entomological approaches (22%), followed by the ones
with therapeutics goals (18%). The full results of this classification are shown in Supplementary Figure
S1. Regarding the 129 papers that passed this phase, each one was read and analyzed at the full-text
level (access to all the selected papers was granted) and 29 of them were afterward excluded according
to inclusion/exclusion criteria, which resulted in 100 studies for the qualitative synthesis. In this
phase, we could identify that 46 studies provided outputs comparable to each other, which enabled
performing a quantitative synthesis.

Figure 1. PRISMA flow diagram of this systematic review. Adapted from Moher et al. [32]. Compliance
with the items in the statement guideline is presented in Supplementary Table S1.

2.2. General Findings

Publications showed an increasing trend between 1998 and 2020 (Figure 2A) as an indicator
of the research importance on the discovery of new antileishmanial compounds. Remarkably, one
institution leads the academic production in this field (ca. 40%), despite the wide distribution of
leishmaniasis through several regions within the country (Figure 2B). Owing to the importance of
this disease as a public health problem in Colombia, this fact calls for the local investment in other
regions to improve the research capabilities on antileishmanials, even more considering the positive
effect by the drug development from public research on the burden of neglected diseases [33]. It
is worth noting that, despite that leishmaniasis’ global burden has noticeably decreased between
2007 and 2017, CL—the most prevalent leishmaniasis form in Colombia—and ML did not follow this
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trend, showing a significant disability-adjusted life year (DALY) rate increase (31.5%) in the same
period [34]. The above-mentioned events and the therapeutic failure-related drawbacks of current
antileishmanial drugs justify the persistent need for the discovery/development of more efficient and
safer chemotherapy to treat CL. However, such a pipeline is generally prolonged (ca. 10 years) and
very expensive (a general cost among $1.4–2.9 billion) [35,36], generating a clear imbalance between
the required investment and the local budget, which is a common limitation in developing countries.
The condition in the case of NTDs-related research is even worse, since no big pharmaceutical company
is committed to participate in an antileishmanial discovery program due to the unattractive incentives
to cover the costs for the development of drugs against NTDs [37]. An alternative is related to promote
effective partnerships with non-profit organizations, such as Drugs for Neglected Diseases initiative
(DNDi) as a well-known example, whose modus operandi has covered those gaps to drive various
compounds into lead optimization and pre-clinical phases [38].

Figure 2. Evolution of the included scientific publications and geographical distribution of reported
leishmaniasis cases in Colombia. (A) Time course of publications showing absolute (left-hand, y-axis)
and cumulative frequency (right-hand, y-axis). (B) Number of reported cutaneous leishmaniasis (CL)
cases for 2019 distributed through the political-administrative Colombian regions [39].

Although Colombia is a megadiverse country, most of the evaluated substances were obtained
from synthetic approaches (Figure 3A). Regarding natural products, they were mostly obtained
from terrestrial organisms (93%), while aquatic ecosystems (both marine and freshwater) remain as
unexplored habitats (Figure 3B). Most of the studies (82.9%) used plants as a source of substances to be
evaluated in antileishmanial assays, but the number of such records seems to be very low in comparison
to other countries. These deeds call into question the efficiency of the natural products research in
terms of antileishmanials discovery. Hence, a lack of organized/systematic programs, appropriately
funded and directed to explore the potential of Colombian biodiversity under collaborative research
networks, was evidenced.

Figure 3. Classification of evaluated substances and environments explored for the research of
antileishmanial agents in Colombia. (A) Publications classified according to the type of substance
tested. (B) Publications evaluating natural products subdivided into the habitat source.
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In addition, other sources should also be examined to look for novel, effective leishmanicidal agents.
For instance, marine organisms have been considered as promising suppliers of compounds with novel
structures and noteworthy antiparasitic activity [40–42], including antileishmanial properties [43–45].
In this sense, it may be worthwhile considering marine specimens in future studies, especially marine
microorganisms, whose chemical composition and biological activity—to our knowledge—remain to
be deeply explored. Among the studies employing natural products, 22 evaluated the antileishmanial
activity of crude extracts or solvent/chromatographic fractions (Table 1). Activity of the ethanol
extract of Bomarea setacea aerial part can be highlighted, since it exhibited half-maximal effective
concentrations (EC50) between 4.9 and 5.1 µg/mL against L. amazonensis, L. braziliensis and L. donovani
promastigotes [46]. Only four studies showed promising activities against the clinically relevant stage
of the parasite (i.e., intracellular amastigotes), comprising EC50 values under 10 µg/mL [47–50]. From
those studies, the dichloromethane extract from leaves of Conobea scoparioides was found to be the most
promising extract (EC50 = 1.30 µg/mL, selectivity index = 48.8) against L. panamensis [47]. This plant
has been traditionally used for the treatment of leishmaniasis in Colombia [47]. However, despite
the encouraging result, we did not find post-studies about the putative antileishmanial compounds
isolated from C. scoparioides.

Table 1. Summary of the antileishmanial potential of crude extracts retrieved from the articles included
in this systematic review.

Leishmania Species a Parasites Form b EC50
(µg/mL) c E/F d Source e Ref h

L. braziliensis; L. infantum; L.
panamensis Promastigote N/A e 1 Annona spraguei [51]

L. braziliensis; L. panamensis Promastigote N/A e 3 Annona muricata [52]
L. amazonensis; L. braziliensis; L.

infantum; L. panamensis
Promastigote,

Intracellular amastigote 1.30 88 Conobea scoparioides [47]

L. amazonensis; L. braziliensis; L.
donovani Promastigote 10.70 36 Rollinia pittieri [53]

L. amazonensis; L. braziliensis; L.
donovani Promastigote 4.90 26 Bomarea setacea [46]

L. braziliensis Intracellular amastigote 12.40 1 Ervatamia coronaria [54]
L. panamensis Intracellular amastigote 6.25 8 Xylopia discreta [48]
L. braziliensis Promastigote 17.40 13 Rosmarinus officinalis [55]

L. amazonensis Axenic amastigotes 9.00 94 Renealmia alpinia [56]
L. mexicana Axenic amastigotes >50.00 452 f Several g [57]

L. panamensis Intracellular amastigote 15.40 6 Physalis peruviana [58]
L. panamensis; L. braziliensis; L.

major; L. guyanensis Promastigote 42.23 10 Origanum vulgare [59]

L. panamensis Intracellular amastigote,
Axenic amastigotes 38.50 6 Piper daniel-gonzalezii [60]

L. panamensis Intracellular amastigote 18.50 13 Heliotropium indicum [61]

L. panamensis; L. major Promastigote,
Intracellular amastigote 6.16 3 Zanthoxyllum

monophyllum [49]

L. panamensis Intracellular amastigote 48.07 1 Artemisia annua [62]

L. braziliensis; L. panamensis Promastigote,
Intracellular amastigote 9.19 4 Lippia alba [50]

L. panamensis Intracellular amastigote 30.70 8 Pilocarpus alvaradoi [63]

L. braziliensis in vivo on golden
hamsters N/A f 1 Arnica montana [64]

L. panamensis Promastigote,
Intracellular amastigote 23.42 2 Sarconesiopsis magellanica [65]

L. panamensis Promastigote N/A f 4 Galleria mellonella [66]
L. infantum; L. braziliensis Promastigote 47.70 12 Enterobacter hormaechei [67]

a Leishmania species used in the antileishmanial assays. For studies involving more than one species, the most
sensitive species are highlighted in bold font. b Parasite forms (i.e., promastigote, intracellular amastigote or
axenic amastigote) employed in the antileishmanial assays. For studies involving more than one parasite form, the
highlighted one in bold font indicates the result presented in this table. c Leishmanicidal half-maximal effective
concentration (EC50). The lowest EC50 value reported in each study. d E/F = Number of Extracts/Fractions Assayed;
e Scientific name of the source of the most active crude extract/fraction. f In these studies, the EC50 values were not
calculated/informed. g This study screened several plants from different Latin American countries. None of the 17
Colombian screened plants were found to be active in the range of test concentrations. h Ref = Cited reference.
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Antileishmanial assays can be performed on different Leishmania species as well as parasite forms
as experimental models, and this fact limits the comparison possibilities owing to the differential
response of the test parasite. Thus, in order to know the distribution of Leishmania species and forms
within the group of included papers, we examined the experimental model employed in the assay. As
expected, the main model used to evaluate the antileishmanial potential was intracellular amastigotes
(50%), followed by the evaluation on promastigotes (35%) (Figure 4A). Regarding Leishmania species,
most of the studies were conducted on L. panamensis (Figure 4B). This fact can be considered reasonable
due to the fact that L. panamensis is the etiological agent most frequently reported in Colombia [3,6].
However, recent studies reported that L. braziliensis and L. guyanensis have relevant epidemiological
reports and wide spatial distribution in Colombia [68,69]. Considering Colombia as a country with a
significant number of pathogenic Leishmania species in circulation, these facts are very critical, bearing in
mind that parasite sensitivity to antileishmanial agents relies on Leishmania species [70,71]. For instance,
a study evaluated dehydroabietylamine derivatives and found species-dependent susceptibility for
several of them [72], being consistent with other reports [73,74]. Indeed, owing to the role of intra-
and inter-species Leishmania susceptibility [71,75,76], the incorporation of drug-resistant strains during
antileishmanial research programs have been strongly recommended [77]. Presumably, the availability
of high-throughput infection models has limited the Colombian research using other Leishmania species,
since we found that 43.0% of the studies involved the green fluorescent protein (GFP)-transfected L.
panamensis strain [78], representing 61.0% of such studies.

Figure 4. Characteristics of antileishmanial assays reported in those papers included in the present
review. (A) Distribution of antileishmanial in vitro (subdivided into parasite forms, i.e., intracellular
amastigotes, promastigotes and axenic amastigotes) and in vivo assays. (B) Distribution of Leishmania
species involved in the antileishmanial in vitro assays. (C) Distribution of parasite forms used in
antileishmanial in vitro assays against L. panamensis.

Additionally, we discerned that most of the reviewed basic studies were initiated from an
exploratory basis, starting from in vitro studies to find bioactives against one or two Leishmania parasites
and using synthetic compounds or natural substances (i.e., crude extracts, solvent/chromatographic
fractions and isolated compounds). Some studies (<10%) continued in order to involve in vivo trials
and/or expand the structural alternatives by synthesizing more compounds with related structures.
However, there is still a lack of studies continuing down to further development, since none of the
tested compounds have entered biomedical or clinical phases, possibly due to budget and/or continuity
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issues or disconnection with pharmaceutical partners whose financial capacity and/or infrastructure
might impulse such a kind of innovative, required solutions.

On the other hand, a set of 836 compounds were retrieved from 75 articles. We have mined 1060
records from these papers (Table 2), since some studies involved evaluations against different Leishmania
species, even different antileishmanial models (i.e., promastigotes, axenic amastigotes and intracellular
amastigotes). However, intracellular amastigotes were found to be the most used antileishmanial assay
model (65%, involving 46 articles) among in vitro trials against L. panamensis (Figure 4C). This valuable
information was further exploited for the first time to perform a chemoinformatics-based analysis
using these leishmanicidal results (as EC50 values).

Table 2. Summary of antileishmanial activity of those compounds retrieved from the articles included
in this systematic review.

Parasite Form a Antileishmanial Activity Category b Number of Records c

Intracellular amastigotes

High 127
Intermediate 68

Low 221
Not Determined 162

Not Available 112

Axenic amastigotes

High 28
Intermediate 27

Low 37
Not Determined 32

Not Available 28

Promastigotes

High 29
Intermediate 44

Low 81
Not Determined 50

Not Available 14

Total d 1060
a Parasite form employed in the antileishmanial assay. b Categories according to the resulting negative decadic
logarithm of the half-maximal effective concentration in mol/L (pEC50) for each compound: High = pEC50 ≥ 5.00
(EC50 ≤ 10.0 µM), Intermediate = 4.60 ≤ pEC50 < 5.00 (25.0 µM > EC50 ≥ 10.0 µM), Low = pEC50 < 4.6 (EC50 > 25.1
µM), Not Determined = compounds included into the respective study, but the EC50 value was over the maximum
evaluated concentration, Not Available = compounds included into the respective study, but the antileishmanial
assay did not return an EC50. c Number of records regarding those test compounds with a pEC50 value within
the respective antileishmanial activity category and parasite form. d The raw data of this table is presented in
Supplementary Table S2.

2.3. Chemoinformatics Analyses on Retrieved Compounds

A custom-made library was then compiled from the systematic review-derived records. Such a
library gathered 836 compounds, containing 90.3% synthetic compounds and 9.7% natural products.
Activity and structural details (as EC50 in µM and Simplified Molecular-Input Line-Entry System
(SMILES) codes, respectively) of these compounds can be found in Supplementary Table S2. The
chemical space of the whole compound set was firstly examined in order to perform a structural filtering
and qualitative characterization according to structural fragments/scaffolds. Therefore, a preliminary
structural similarity analysis between test compounds was performed using the FragFp descriptor
available in DataWarrior [79]. Compound 431 (having a linked thiophen-epoxybenzo[b]azepine moiety)
was arbitrarily selected as a reference compound to calculate such a descriptor. The resulting similarity
chart is presented in Figure 5. After such an analysis, some clusters were revealed with FragFp values,
according to the heatmap based on the structure similarity index, between 0 (red = very different) and
1 (green = very similar). Such a scale indicated that our custom-made library gathered compounds
related to 53 different FragFp-derived main clusters, which comprise small subsets (covering 6–23
compounds) of very structurally similar compounds depending on compound origin (e.g., the synthetic
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approach or natural source used in the respective study). Hence, several attempts to study/model
a statistically validated structure–activity relationship were unsuccessful. However, this structure
similarity analysis clustered the test compounds into several classes with FragFp ≥ 0.4, indicating that
the library involves particular scaffolds that deserve a more robust analysis.

Figure 5. Similarity chart of the custom-made library. This plot was obtained after structure similarity
analysis using the substructure fragment dictionary-based binary fingerprint descriptor (FragFp) [79].
The library comprised 836 compounds retrieved from the systematic review-derived information about
Colombian research on antileishmanials. Structures of some compounds (enclosed in boxes) for those
clusters possessing FragFP ≥ 0.4 were arbitrarily selected to illustrate the compound subset, according
to the detailed information presented in Supplementary Table S2. Compound 431 was randomly
designated as the reference compound to calculate the FragFp descriptor.

Regarding the antileishmanial activity of retrieved compounds (Table 2), Figure 6A shows the
general distribution of activity values for pure compounds expressed as negative decadic logarithm of
the half-maximal effective concentration in mol/L(pEC50). As can be seen, despite the relatively large
number of publications included, most of the tested compounds from these Colombian campaigns
are rather poorly active. Only a limited fraction (18%) of the compounds displays EC50 values in the
range 1–10 µM (5 < pEC50 < 6), whereas the number of substances with activity in the sub-micromolar
range (pEC50 ≥ 6) is below 5%. This observation let us infer that the efforts made so far to find
antileishmanial agents in Colombia should be considerably strengthened, if actual positive results are
wanted. Otherwise, the studies will remain belonging to exploratory-oriented basic science rather than
needed/applied medicinal and natural product chemistry projects.
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Figure 6. Antileishmanial activity of pure compounds expressed as pEC50. (A) Number of compounds
associated with activity ranges and (B) distribution of activity according to parasite species and form.

As mentioned before, several Leishmania species have been included within the considered reports.
Analysis of the activity of the studied compounds by Leishmania species (Figure 6B) reinforces the
previously discussed necessity of further and more efficiently driven projects (as observed, most of
the boxes appeared in a range of pEC50 between 4 and 6). Interestingly, there are some compounds
with remarkable activity against intracellular amastigotes of L. major. Similarly, some compounds
have displayed exceptionally high activity against intracellular amastigotes of L. donovani and L.
panamensis (mainly found within the whiskers zone of the corresponding distribution). Following the
well-recognized criteria for hit compounds for infectious diseases (including VL) [80], solely those
compounds with EC50 below 10 µM could be considered as hits. Nonetheless, lack of information
regarding structure–activity relationships, tractability of the chemotype, conformity with the rule of five
and selectivity (>10-fold) may be considered as the major issue to define them as truly hit compounds.

2.3.1. Chemical Space of Selected Compounds

The elevated number of papers determining activity against L. panamensis might be seen as directly
related to the high incidence of reported cases of infection by this species in Colombia, as mentioned
earlier. Thus, we decided to focus our attention on the compounds described therein, looking for
possibly relevant structural information that could be used as a first-line tool for further investigations.
The dataset was therefore filtered, keeping only entries for pure compounds that were tested against L.
panamensis. More specifically, and in order to reach some degree of comparability, exclusively those
entries with activity determinations on intracellular amastigotes were used in the subsequent analyses.
This form of the parasite/model was preferred over axenic amastigotes and promastigotes within the
publications (see above), supporting our decision for deeper examination. A total of 484 compounds
were considered for further studies, comprising 9.1% natural products and 90.9% synthetic compounds.

Structural information of the resulting group of compounds was extracted by using the Molecular
ACCess System (MACCS) keys (167 bits) [81] and the Morgan fingerprints (radius = 2, 1024 bits) [82]
implemented in RDKit [83]. These two sets of general molecular fingerprints were used aiming at
a general glance of the corresponding chemical space. Owing to the typically high performance of
t-distributed Stochastic Neighbor Embedding (t-SNE) as a dimensionality reduction method [84], we
decided to look for possible compound clustering using such an algorithm and the fingerprints as
independent inputs (Figure 7A). Although not directly comparable, both fingerprints offered some
degree of clustering after t-SNE. Principal component analysis (PCA) was not able to represent clusters
of similar compounds in a simple representation (data not shown). The partial generation of clusters
of compounds by t-SNE would indicate actual structural relations among them, at least to some
extent, as described by each fingerprint, i.e., some structural features seem to appear reiteratively
within some groups of compounds. However, the limited clustering (high dispersion) also indicates a
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quite significant structural diversity within the whole group of compounds (wide chemical space).
Hierarchical clustering analysis (HCA) proved to be consistent with the spatial distribution provided
by t-SNE (see Supplementary Figure S2).

After exhaustive analysis of the clusters obtained by HCA and extraction of the corresponding
maximum common substructure (MCS), only three of the clusters were completely coincident between
fingerprints, whereas a fourth was partly in agreement (the MCS from the cluster using Morgan
fingerprint was part of a larger substructure found when using MACCS keys). This result highlights
the well-known differences among fingerprints, which would translate to changes in outcomes coming
from direct comparisons of fingerprints. The four common clusters are depicted in Figure 7A by
different colors.

Representative compounds from each cluster are also included in Figure 7B, whose MCSs
are highlighted. As expected, the relative location of each common cluster in the scatter plots is
different. However, it is noteworthy to mention that three of them are quite well separated from the
others, suggesting very particular features compared to the rest of the compounds. Interestingly, the
compounds in the cluster in red were not particularly separated from other compounds compared
to those previously mentioned. The seemingly marked lack of resolution of this particular cluster
(especially when using Morgan fingerprints) might be due to high structural diversity of its compounds,
whereupon the fingerprint features would be rather strongly shared (overlapped), ending up with
many common bits with other clusters.

Figure 7. Representation of the chemical space of compounds tested against intracellular amastigotes
of L. panamensis. (A) t-distributed Stochastic Neighbor Embedding (t-SNE) plot showing four common
clusters to Molecular ACCess System (MACCS) (left) and Morgan (right) fingerprints, highlighted
by red, blue, orange and dark green dots. Light gray dots represent the rest of the compounds.
(B) Chemical structures of representative compounds of each selected cluster (enclosed in boxes colored
according to the previous plot) with maximum common substructure (MCS) highlighted by pink
contours. (C) t-SNE plot with dots colored by activity. Green dots: active compounds (pEC50 ≥ 5),
red dots: intermediate and poorly active compounds (pEC50 < 5), empty dots: compounds without
EC50 determination.
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Looking for insights into the possible effect of structural diversity on the antileishmanial activity,
the t-SNE-derived scatter plots were colored by activity threshold (actives in green, pEC50 ≥ 5.0;
Figure 7C). It is evident that the most active compounds are not concentrated in any specific cluster,
i.e., none of the scaffolds so far analyzed in Colombian studies are clearly favored over the others.
Particularly, the cluster in red (Figure 7A) is mainly constituted by poorly active compounds (red in
Figure 7C), while it is difficult to establish the potential of compounds in the cluster in green (Figure 7A)
owing to the lack of EC50 determinations for some of them (empty circles in Figure 7C).

2.3.2. Machine Learning

After filtering off entries whose EC50 determinations were not available (e.g., only biological
determination of percentage of inhibition at specific compound concentrations reported), a final set of
428 compounds was obtained. Owing to the inherent structural similarities among some compounds
but also the huge differences in other cases (as shown above), and to the restricted capacity of the
linear algorithms to provide reliable models (as mentioned before), machine learning was selected
as a tool to analyze this dataset. Two different extensively used supervised learning algorithms
were chosen to accomplish the task: random forest (RF) and support vector machines (SVM). Both
MACCS and Morgan fingerprints were independently used for building the models. Preliminary
evaluation of the classification variants of the selected algorithms showed decent performance (data not
shown) and encouraged us to use actual activity values rather than an arbitrarily defined categorical
dependent variable. Having decided for regression models, a coarse-to-fine scheme was followed for
the optimization of the corresponding hyperparameters. In case of RF models, the number of trees in
the forest, the minimum number of samples required to be at a leaf node, the minimum number of
samples required to split an internal node, the maximum number of features to consider for the best
split and the number of samples to draw from the training set during bootstrap were considered for
optimization. The dataset was randomly split into training and test set (80:20%), ensuring maximum
coverage of activity range for the latter. For both fingerprints, models offered maximum performance
using 1 sample as a minimum to be at a leaf node and the total number of features as maximum. Those
models were named M1 and M2, for MACCS and Morgan, respectively. While M1 used 306 trees, 7
samples to split a node and 75% of samples drawn during bootstrap, M2 required 127 trees, 2 samples
and 94% of the samples, respectively.

In case of SVM models (M3 and M4 for MACCS and Morgan, respectively), the optimization
was performed considering variations in the kernel functions, the kernel coefficient, the epsilon-tube
and the regularization parameter C. The optimized models made use of the Radial Basis Function
(RBF) kernel. The best performance for M3 was achieved with epsilon = 0.1, C = 2.5 and gamma =

0.04. M4 performed better when it used the combination of hyperparameters epsilon = 0.08, C = 2.8
and gamma = 0.05.

All the models were trained and tested for predictivity using ten repetitions. Table 3 shows the
corresponding validation parameters as a mean of the ten runs. As can be seen, the generated models
offered barely acceptable cross-validation (CV) scores, with limited prediction power. Nonetheless,
M1–M4 outperformed classical linear models. The limited robustness for M1–M4 was not less than
expected coming from such a diverse dataset. It is impossible to properly ensure comparability of
activity data due to presumable changes in the specific procedures, despite using the same parasite
forms/models (i.e., not all the compounds were experimentally tested at the same time and under
the same exact conditions or not even in the same laboratory). Moreover, we did not take into
account the implicit data error (which is sometimes not adequately informed, either), whose impact on
computational modeling was already highlighted long ago [85]. It must be noted however that the
data error is still not included in most of the Quantitative Structure-Activity Relationships/Quantitative
Structure-Property Relationships (QSAR/QSPR) studies published in scientific journals. Regardless,
both algorithms provided comparable results in terms of internal and external validation (Table 3).
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Table 3. Statistical performance of machine learning models.

Validation Parameter a M1 b,d M2 b,e M3 c,d M4 c,e

R2
train 0.813 0.925 0.847 0.849

MAEtrain 0.250 0.155 0.202 0.183
R2

CV 0.621 0.621 0.600 0.592
MAECV 0.359 0.354 0.370 0.358

R2
test 0.670 0.666 0.583 0.689

MAEtest 0.322 0.324 0.352 0.339
a R2: coefficient of determination, MAE: mean absolute error, CV: 10-fold cross-validation. b RF = Random Forest.
c SVM = Support Vector Machines. d MACCS = Molecular ACCess System. e Morgan.

Although RF using Morgan (M2) fingerprints displayed significantly higher R2 than that from
MACCS (M1) during training, both internal and external validation coefficients were indistinguishable
between models. In the case of SVM, the use of Morgan fingerprints (M4) demonstrated better
predictability of the external set of compounds, albeit comparably low performance during CV. Beyond
the isolated statistical values, and in spite of their closely related performance, M2 afforded the lowest
deviations in predicted antileishmanial activity, represented by the lowest dispersion of data points
around the regression line between experimental and predicted values (Supplementary Figure S3; all
the corresponding activity predictions are included in Supplementary Table S3).

With the limited but still acceptable capacity of the obtained models, we were interested in
deciphering the governing structure–activity relationships behind them. Although the machine
learning algorithms are typically known for their black box nature, recent advances have been made
in order to extract information regarding feature importance, like the use of the SHAP (SHapley
Additive exPlanations) theory and the derived Shapley values [86,87]. Taken from game modeling,
the SHAP theory helps to explain the contribution each single feature has on the outcome obtained.
Implementation of this theory to gain detailed information from machine learning models has already
been shown for drug discovery projects [88,89], making it possible to define the most important
fingerprint bits contributing to the variance in activity. We applied the SHAP theory to the optimized
models. In the case of RF models (M2 and M4), the Gini importance was also analyzed. The results
are shown in Figure 8. There was an overall agreement between Gini and SHAP values for both M1
and M2, e.g., features 99 and 125 were consistently the top two in M1 (Figure 8A,C), whereas for
M2 features, 1 and 259 appeared the most relevant by both methods (Figure 8B,D). High correlation
between Gini and SHAP values have already been observed and reported [88]. Interestingly, the
observed profound effect of feature 99 on the prediction of activity also prevailed in M3 (Figure 8E),
suggesting some similarity between algorithms. The SHAP values also allowed inferring a significant
effect of features 125 and 95 on M3 predictions, which were within the top ten features affecting M1 as
well. This marked coincidence of features would indicate that both algorithms were able to identify
basically the same structural features (held by the MACCS fingerprints) as responsible for the variance
in activity. The SHAP values were also in agreement with the Gini importance values for M2, e.g.,
features 1, 259, 352 and 547 were ranked as the top four in both cases (Figure 8B,D). However, analysis
of the corresponding SHAP values for M4 revealed a completely different distribution of features
affecting the outcome of the model (Figure 8F). Only features 352 and 547 remained as part of the top
ten, although with less importance. Being affected by several features at comparable costs implied that
there was not any specific feature with a clear strong impact on M4 predictions, as it was observed
above for the other models.
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Figure 8. Relevant structural features for machine learning models. (A) Gini importance for M1,
(B) Gini importance for M2, (C) SHapley Additive exPlanations (SHAP) values for M1, (D) SHAP values
for M2, (E) SHAP values for M3 and (F) SHAP values for M4. Only the ten top features are shown.

Detailed analysis of the definition of the MACCS keys with higher SHAP values revealed that
both M1 and M3 relied on similar structural patterns overall. Features 99 and 125, found in both cases,
and 162 and 101, being exclusive for each model respectively, are related to the presence of C = C and
aromatic rings. For M1, feature 114, which represents the presence of ethyl units bound to any atom,
was also important, while the presence of methyl groups bound to heteroatoms was relevant for M3
(feature 93). Particularly interesting was the fact that M3 predictions were affected by the number
of oxygen atoms in the molecule (feature 140 for O > 3). In contrast, the presence of chlorine atoms
(feature 103) was important for M1.

Analyzing the individual contributions of each feature to the general outcome for M2 showed
that the presence of feature 1 in the compounds was deleterious for the activity (Figure 9A). A similar
general result was observed for features 352 and 751, although at considerably lesser extent. In contrast,
the presence of feature 259 significantly favored the predicted activity values. Features 547, 561 and
1017 are other examples of features positively contributing to the activity. A comparable analysis in
case of M4 was not straightforward due to the already mentioned high number of features responsible



Molecules 2020, 25, 5704 14 of 25

for the activity. However, absence of features 352 and 984 seemed beneficial for the activity, whereas
features like 887 and 835 appeared to play a positive role (Figure 9B).

Figure 9. Contribution of structural features to M2 and M4. (A) SHAP values for M2 and (B) SHAP
values for M4, colored by feature value (red: presence, blue: absence). (C) Force plot for a representative
poorly active compound (190), (D) force plot for a representative compound with intermediate activity
(586) and (E) force plot for a representative compound with high activity (164) as predicted by M2. Plot
(E) includes the most important fingerprint bits affecting the prediction.
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A more comprehensive analysis of the underlying structure–activity relationships for the
compounds in the present dataset is not practically achievable because of the strong structural
differences among compounds. Nevertheless, several additional insights could be retrieved from
in-depth exploration of the individual Shapley values. Thus, taking advantage of the likelihood of
drawing Morgan fingerprints offered by RDKit, representative compounds with low (compound 190),
intermediate (compound 586) and high (compound 164) antileishmanial activity were further studied.
Model M2 was chosen for this analysis based on its apparently low deviation in predictions and clearly
outlined important features. Figure 8C–E shows the corresponding force plots for those compounds. It
can be observed how the activity of the inactive compound (190, Figure 9C) is strengthened by the
presence of feature 394, while features 61, 456 and 314 could be responsible for the low value as they
are pushing it down. Surprisingly, only the latter feature is part of the top ten features affecting the
general outcome of the model. On the other hand, the activity of compound 586 (Figure 9D) was
apparently caused by the presence of features 73 and 55. Moreover, absence of feature 1 significantly
contributed to the activity of this specific compound, too, being the most important feature for M2, as
previously noted. In the case of the active compound (164, Figure 9E), the activity was dominated
by the presence of several features, including 109, 104, 678, 619, 547 and 259. To make predictions,
the model predominantly used most of those features. In addition, the presence of feature 1 in this
compound decreased the predicted value, as expected from the general trend observed. Features 109,
547 and 678 correspond to the 5,6-dihydro-2H-pyran-2-one moiety (Figure 9E). Meanwhile, features
259 and 619 are related to the aliphatic chains in vicinity of the hydroxyl groups. Particularly, feature 1
in this compound structure refers to the hydroxylated chiral carbons. Presumably, M2 might have
learned some effects on activity due to chirality of those stereocenters.

2.3.3. Drug-Likeness Filtering

In order to get an idea of some interesting scaffolds to be considered in future investigations,
further analyses were carried out on the group of active compounds. As a first step, their drug-likeness
was partially assessed checking for the presence of undesirable moieties according to the filters for
Pan-Assay INterference compounds (PAINs) implemented in the FAFDrug4 web server [90]. Despite
that 85% of the active compounds passed the three filters available in the server, more than 60% of them
might still be considered as potentially reactive substances containing groups susceptible to covalent
binding (e.g., 23% of the active compounds contain Michael acceptor groups). Only a reduced set of
twenty-eight compounds with confirmed activity on intracellular amastigotes passed the mentioned
filters. However, more than half of these compounds (57%) showed compliance with the rule of five
(Ro5) as well (one violation of the Ro5 was mainly found for the rest).

On the other hand, selectivity index (SI), defined as the ratio between cytotoxicity and
antileishmanial activity, was considered for the last filtering step. This process revealed that whereas
sixteen compounds (57%) showed SI > 2, only three of them (11%) displayed actual interesting
selectivity values as to be considered for further development (Table 4). Figure 10 shows some of the
best candidates after the aforementioned filtering.

Interestingly, a similarity search in SciFinder revealed that the scaffolds comprised by the
above-mentioned compounds (Figure 10) have been rather uniquely considered as antileishmanial
agents in Colombian research projects. Thus, in spite of the somewhat common nature of most of
those scaffolds, their specific combinations have not yet become part of other studies focused on
antileishmanial substances. No additional reports were found for the combination of chloroquine
and pyrazole scaffolds nor for the combination of indolinone and tetrahydroquinoline scaffolds
(as in compounds 511 and 465, respectively). Similarly, no further studies on leishmanicidal
sulfonylhydrazides of beyerene- or stevioside-like diterpenes (e.g., 84) have been published. On
the other hand, compound 191 represents a group of substances (styrylquinolines) quite commonly
included in medicinal chemistry projects. Nonetheless, studies on their potential as antitrypanosomatid
agents has been limited as well. To the best of our knowledge, there is only one recent study focused
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on the leishmanicidal properties of a group of related compounds (4-aminostyrylquinolines) [91].
Decent activity against amastigotes of L. pifanoi and moderate selectivity indexes were therein
reported. Additionally, assessment of the antileishmanial potential of alkenylquinolines was
previously reported [92]. In this case, rather poorly active compounds were evinced, limiting
the possible identification of interesting candidates. Seemingly, most of those compounds showed
better antitrypanosomal activity.

Table 4. Selected candidates after Pan-Assay INterference compounds (PAINs) filtering.

Compound Species EC50
a Cellular Line IC50

b SI c Ro5 d Violations

3 L. panamensis 4.03 U-937 15.6 3.9 0
84 L. braziliensis 2.26 U-937 6.99 3.1 1
85 L. braziliensis 2.53 U-937 8.75 3.5 2
191 L. panamensis 0.57 U-937 8.02 14 0
192 L. panamensis 7.48 U-937 17.7 2.4 0
341 L. panamensis 4.81 U-937 12.7 2.6 0
343 L. panamensis 6.18 U-937 21.3 3.4 0
345 L. panamensis 5.90 U-937 15.6 2.6 0
465 L. braziliensis 3.30 BMDM 724 91 1
487 L. panamensis 7.07 U-937 19.7 2.8 2
489 L. panamensis 3.70 U-937 9.62 2.6 2
490 L. panamensis 3.41 U-937 9.69 2.8 1
499 L. panamensis 6.50 U-937 16.7 2.6 2
511 L. panamensis 4.47 U-937 322 72 2
566 L. panamensis 5.51 U-937 13.1 2.4 1
804 L. panamensis 0.60 U-937 3.87 3.9 2

a EC50 = half-maximal effective concentrations (expressed in µM) determined in intracellular amastigotes of the
respective Leishmania species; b IC50 = half-maximal inhibitory concentrations (expressed in µM) determined in
human monocytes (U-937) or bone marrow-derived macrophages (BMDM) as listed in the respective cell line; c SI =
selectivity index; d Ro5 = rule of five.

Figure 10. Chemical structures of the best antileishmanial candidates from Colombian campaigns.
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3. Methods

3.1. Systematic Review

3.1.1. Search and Eligibility Criteria

The search was carried out in Scopus, Web of Science, PubMed and Scielo databases (last search on
6 July 2020) using an appropriated search equation for each database with the keywords and Boolean
operators as follows: leishmani* OR antileishmani* OR leishmanicid*. The search results were then
refined according to the filter tools available in each database to select the documents affiliated to
Colombia, excepting the Scielo database. In this database, the search equation was “(leishmani* OR
antileishmani* OR leishmanicid*) AND (colombia)”, as this database does not provide a filter option
by country affiliation. After data retrieval from databases, the inclusion criteria were defined for those
articles containing the following characteristics/information: (1) original articles, (2) in vitro or in vivo
antileishmanial activity, (3) assays with synthetic compounds, (4) assays with pure isolated compounds
of natural origin and (5) tested crude extracts. Retrieved studies were excluded if they involved only
known/recognized antileishmanial drugs, or if accessibility to full-text versions was not accomplished.

3.1.2. Study Selection

The selection of studies was made in two phases [93]. First, the search results were uploaded to
the Rayyan web application [94]. Two reviewers independently screened the titles according to the
inclusion criteria. Articles marked as “included” by the two reviewers were promptly selected for the
next phase. In the cases of unmatched marks (i.e., articles that were marked as “included,” “excluded”
or “maybe” by only one reviewer), the papers were analyzed by the two reviewers; if the disagreement
persisted, the final decision was made by the third author. Then, the full-text version of the initially
filtered articles was read and selected applying the inclusion/exclusion criteria.

3.1.3. Data Collection

A preliminary data collection form was built according to the review goals, and its suitability
was evaluated in a pilot procedure with ten randomly selected papers. Then, the final version
of the data collection form was used for the survey/examination of each paper that passed the
title-screening phase. The three authors cured the resulting spreadsheet. Since the analysis and
characterization of the reported antileishmanial compounds are one of the main objectives of this
review, a chemoinformatics approach to the chemical space represented by the compiled compound
library was further accomplished. This analysis was based on fingerprints using conventional machine
learning algorithms and clustering methods.

3.2. Chemoinformatics Analysis

3.2.1. Data Preparation

After compilation of the systematic review-derived antileishmanial records, the structures of
retrieved compounds were individually sketched in MarvinSketch (ChemAxon, Budapest, Hungary)
and converted into SMILES as a line notation for chemical structure. This notation uses the American
Standard Code for Information Interchange (ASCII) character encoding. Once the custom-made library
was completed, a structure filtering analysis was firstly performed using the substructure fragment
dictionary-based binary fingerprint descriptor (FragFp), incorporated in DataWarrior v5.0.0 [95]. A
structure comparison between compound sets can be achieved with this descriptor (analogous to
Molecular Design Limited (MDL) keys), as it considers structural moieties through 512 predefined
fragments into a dictionary [79]. Each fragment is contained into one bit of the FragFp descriptor;
therefore, a bit is defined as 1 if a respective fragment occurred in the structure at least one time.
Thus, a list of all dictionary fragments (as part of the substructure query) is generated and the overall,
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comparison led to the substructure filtering. This filtering is visualized through a similarity chart (e.g.,
a scatter plot) according to the FragFp index.

Compounds’ structures were additionally characterized by MACCS keys [81] and Morgan
fingerprints [82] as selected molecular representations. MACCS keys consist of 166 bits accounting for
either absence or presence of specific structural patterns. Morgan fingerprints encode for structural
features on a radial basis, i.e., having a circular shape, and they account for structural fragments. In
this work, a radius of 2 and length of 1024 bits were chosen. Both sets of fingerprints were calculated
using RDKit 2020.03.1 [83], where Morgan fingerprints are defined as a modification of the extended
connectivity fingerprints (ECFP) [96]. Activity data were transformed into the corresponding pEC50

(negative decadic logarithm of the EC50 in mol/L). Finally, the PAINs and Ro5-based filtering was
accomplished using the FAF-Drugs4 web server [90].

3.2.2. Chemical Space by t-SNE

t-distributed Stochastic Neighbor Embedding (t-SNE) is an unsupervised, non-linear technique that
allows the visualization of high-dimensional data [84]. It works in three steps: first, similarities among
samples in the high-dimensional space are defined, by measuring the corresponding probabilities using
Gaussian distributions; secondly, similarities among samples in the low-dimensional space (typically
two-dimensional (2D)) are calculated, but in this case using Student’s t-distribution with one degree
of freedom (known as Cauchy distribution) instead. Finally, and in order to genuinely recreate the
high-dimensional distribution, optimization of the distributions is conducted by gradient descent using
Kullback–Liebler divergence as the loss function. The perplexity and maximum number of iterations
were manually tuned. t-SNE implementation in Scikit-learn [97] was used in the present work.

3.2.3. Random Forest

As a supervised machine learning algorithm, random forest (RF) makes use of groups of decision
trees, and is therefore part of the ensemble learning methods [98,99]. Each tree is trained from a
bootstrapped sample of data, where typically a random subset of features is considered for node
splitting. The final predictions correspond to the average of all the predictions made from those
individual learners. Node splitting is controlled by reduction of the Gini index (Gini “impurity”). The
sum of the reduction in Gini impurity is termed as Gini importance [100]. The number of trees in the
forest (5–1000), the minimum number of samples required to be at a leaf node (1–10), the minimum
number of samples required to split an internal node (2–16), the maximum number of features to
consider for the best split (total number of features, base 2 log of the total, and squared root of the total)
and the number of samples to draw from the training set during bootstrap (5–95%) were subjected to
optimization in this work. RF regression models were built using Scikit-learn.

3.2.4. Support Vector Machines

Support Vector Machines (SVM) is another supervised machine learning algorithm, whose principle
is to define hyperplanes for effective segregation of the data typically into classes of objects [101]. Those
data points closest to the hyperplanes are called support vectors. The best hyperplanes are selected
by minimization of the margin (gap between the support vectors delimiting it). Implementation of
SVM usually requires so-called kernel functions that help finding the hyperplanes by increasing the
dimensionality of the data (transformation from lower to higher dimensional space). The regularization
parameter C trades off misclassification error and decision boundary (margin size). The kernel function
(linear, polynomial, sigmoid and radial basis function (RBF)), the kernel coefficient gamma (1 × 10–6 to
1), the epsilon-tube (0.1–0.5) and the regularization parameter C (1–100) were optimized during the
present work. SVM in regression models (SVR) were built with Scikit-learn.
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3.2.5. Hyperparameter Optimization

Both RF and SVM models were submitted to hyperparameter optimization in a coarse-to-fine
approach. The process was carried out in two instances. The first one consisted of random sampling of
the corresponding hyperparameter grid. The best combination of hyperparameters was selected based
on the coefficient of determination obtained during a 5-fold cross-validation (CV) scheme. Afterwards,
an exhaustive evaluation of hyperparameter combinations in the proximity of the best set detected in
the previous step was performed. The same scoring function was used in the last step. The whole
process was achieved applying the corresponding Scikit-learn implementations.

3.2.6. Final Models

Final RF and SVM regression models were built using the corresponding optimized
hyperparameter sets. Each model was fitted ten times and predictions were obtained accordingly.
Performance of the models was evaluated by the coefficient of determination (R2) and the mean
absolute error (MAE) calculated for the respective activity predictions, and expressed as an average.
10-fold CV assessed internal validity of the models.

3.2.7. Analysis of Contributions by SHAP Values

The concept of Shapley values was developed early in cooperative game theory [102], where the
calculation of the contribution of each single player to the global outcome is highly important. Thus,
properly rewarding each player, in order to provide a unique result prediction, is what the Shapley
values represent. This theory was recently extended aiming at a measure of feature importance in
different predictive models [86]. The introduced SHAP (SHapley Additive exPlanation) values help
explain how the predicted output changes according to the appearance of any feature. Their application
for machine learning models’ explanations has been proven [87], including their outstanding potential
for machine learning-based drug discovery projects [88,89]. Computation of SHAP values was carried
out using an open implementation under Python [87,103].

4. Conclusions

Although Colombia is one of the countries with more pathogenic Leishmania species in circulation,
scientific research was found focused on L. panamensis. Since other species such as L. braziliensis
and L. guyanensis are becoming significant etiological agents (associated with an important number
of CL cases), these Leishmania species should be included in the forthcoming research programs
on antileishmanial discovery. Furthermore, our findings highlight the need for involvement of
more research centers, allowing strategic collaborations that can lead to more multidisciplinary
approaches. Indeed, considering the CL burden in Colombia, along with the demand for more
effective and safer chemotherapeutic options, it is essential that public investment (national and
regional) maintain and even prolong/improve the effective financial support for the research on
leishmaniasis control (particularly the development of antileishmanial agents). Pondering on studies
involving the GFP-transfected L. panamensis strain, and the difficulties and challenges associated
with the leishmanicidal screening assays, the development of more GFP-transfected species (e.g., L.
braziliensis, L. guyanensis) would positively impact the antileishmanial-oriented studies. Regarding
natural products, it was expected to find a higher number of studies. The internal regulations for
accessing genetic sources has probably limited bioprospecting studies in this field. In this regard, this
assumption should be exhaustively evaluated. In any case, we concluded that nature remains as an
underexplored resource concerning its leishmanicidal potential and the limited number of studies
show a biased attentiveness on plants.

Moreover, a holistic analysis of the activity data retrieved from our systematic literature revision
exposed that more than 50% of them have low to non-existent activity against Leishmania parasites.
Consequently, future investigations on small molecules targeting this disease should be guided by
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medicinal chemistry principles using rational approaches. Additionally, the bottlenecks and gaps
across the antileishmanials development pipelines can be overcome with public–private partnerships,
combining knowledge from academia and infrastructure and financial support from pharmaceutical
companies within an efficient and effective scientific and technical cooperation.

Profound chemoinformatics analyses indicated apparently high chemical diversity within the
group of compounds with measured activity against intracellular amastigotes of L. panamensis (the
largest available group of compounds). Interestingly, this chemical space could be condensed within a
relatively small number of compound clusters without any visibly privileged scaffold. Furthermore,
classical machine learning algorithms facilitated uncovering some underlying structure–activity
relationships, affording a set of models with decent capacity to predict antileishmanial activity.
Combination of these models with SHAP theory could be a valuable tool in further research to be
developed in Colombia, as foreseeing the possible activity and associating it with SAR information
might serve as a simple but effective initial guidance.

Supplementary Materials: The following are available online, Figure S1: Distribution of the Colombian scientific
literature on leishmaniasis, Figure S2: t-SNE plot using MACCS and Morgan fingerprints colored by HCA, Figure
S3: Experimental versus predicted activity (pEC50) for machine learning models, Table S1: PRISMA checklist,
Table S2: List of compounds and their antileishmanial activity retrieved from the reviewed literature, Table S3:
Antileishmanial activity predicted by machine learning models.
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