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ABSTRACT: Modes of occurrence of elements in coal are
important because they can be used not only to understand the
origin of inorganic components in coal but also to determine the
impact on the environment and human health and the deposition
process of coal seams as well. Statistical analysis is one of the
commonly used indirect methods used to analyze the modes of
occurrence of elements in coal, among which hierarchical clustering
is widely used. However, hierarchical clustering may lead to
misleading results due to its limitation that it focuses on the
clusters of elements rather than a single element. To tackle this
issue, we use the first part of a well-known Bayesian network
structure learning algorithm, i.e., Peter−Clark (PC) algorithm, to
explore the relationships of the coal elemental data and then infer modes of occurrence of elements in coal. A data set containing 95
Late Paleozoic coal samples from the Datanhao and Adaohai mines in Inner Mongolia, China, is used for the performance
evaluation. Analytical results show that many instructive and surprising insights can be concluded from the first part of the PC
algorithm. Compared with the hierarchical clustering algorithm, the first part of the PC algorithm demonstrates superiority in
analyzing the modes of occurrence of elements in coal.

1. INTRODUCTION
Coal is an important nonrenewable resource. Almost every
nongaseous element has been found in coal.1 It is of great
significance to accurately analyze the modes of occurrence of
elements in coal because: (1) they can be used to infer the origin
of minerals in coal and the geological process of coal
formation;1−3 (2) they can provide useful information for the
recovery of critical elements, such as rare earth elements (REE),
Ge, Ga, and U, from coal and coal combustion products;4−6 (3)
they are also helpful to solve many technical problems
encountered in mining, processing, and coal utilization;7,8 and
(4) understanding the modes of occurrence of toxic elements
(e.g., As, Hg, and Se) in coal can diminish serious impacts on the
environment and human health.1,9,10

There are two categories of analytical methods for
determining the modes of occurrence of elements in coal: direct
and indirect methods.1,11 Direct methods include laser ablation-
inductively coupled plasma-mass spectrometry (LA-ICP-MS),
electron microprobe analysis (EMPA), scanning electron
microscopy with energy-dispersive X-ray spectroscopy (SEM-
EDS), X-ray diffraction (XRD), X-ray fluorescence spectrom-
etry (XRF), X-ray photoelectron spectroscopy, transmission
electron microscopy, sensitive high-resolution ion microprobe,
proton-induced X-ray emission, optical microscopy, etc. Indirect
methods include float-sink methods, selective leaching, and
statistical analysis methods (e.g., correlation analysis, cluster

analysis, and principal component analysis).1,11 Among the
statistical analysis methods, agglomerative hierarchical cluster-
ing is commonly used. It initially treats each element as a single
cluster, then calculates the distance between different clusters,
and merges the two closest clusters to form a new cluster at each
clustering stage. This process is repeated until a complete
clustering tree is formed.12 Denoting the coal elemental data as a
vector X = [x(1),x(2), ···,x(n)], and single element as x(i) = [x1(i),x2(i),
···,xm(i)]T, i = 1···n, wherem and n are the sample size and element
number, respectively, then the similarity between element x(i)
and element x(j) can be denoted as D(x(i),x(j)). Pearson
correlation is commonly used to measure the similarity between
two elements. Xu et al.13,14 demonstrated that the agglomerative
hierarchical clustering based on the average-linkage principle is
significantly better than those based on complete linkage, single
linkage, and centroid linkage. Average linkage denotes the
average distance between elements of two different clusters,
w h i c h c a n b e e x p r e s s e d a s
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, where |Cp| and |Cq|

represent the count of elements in clusters Cp and Cq,
respectively.
However, such a hierarchical clustering algorithm has a

disadvantage; i.e., it focuses on the clusters of multiple elements
rather than a single element; once an initial cluster is clustered
wrongly, the subsequent clustering process may further lead to
wrong results that cannot be reasonably explained. Therefore, it
is not accurate to analyze the modes of occurrence of elements
belonging to different clusters.
Bayesian network is one of the common machine learning

models with broad applications in different fields of artificial
intelligence, including causal inference, uncertain knowledge
expression, and pattern recognition.15−20 Parameter learning
and structure learning are two components of Bayesian network
learning, with structure learning being its core part. Structure
learning is the core part that can learn the relationships between
vertices from the given data set.21,22

In this paper, we focus on the application of the Bayesian
network to analyze the modes of occurrence of elements in coal
and advocate the use of the first part of the Peter−Clark (PC)
algorithm, a Bayesian network structure learning algorithm to
explore the associations of coal elemental data. Samples used in
this study are from the Datanhao and Adaohai mines in the
Daqingshan Coalfield, Inner Mongolia, China. The results
obtained by the first part of the PC algorithm are more reliable
and more consistent with the geochemical principles than the
results of the aforementioned hierarchical clustering algorithm.
The accuracy of the results has been validated with previous
investigations and their geochemistry nature.

2. GEOLOGICAL SETTING AND SAMPLE DATA
Samples used in this study were collected from the Datanhao
and Adaohai mines in the Daqingshan Coalfield in Inner
Mongolia, China (Figure 1). TheDaqingshan Coalfield contains
16 mines, with the Datanhao and Adaohai mines located
southeast of the coalfield (Figure 1B). The coal-bearing strata in

the Daqingshan Coalfield include the Pennsylvanian Shuan-
mazhuang Formation and the Early Permian Zahuaigou
Formation,23 and the main mineable coalbed is the Late
Paleozoic coal (i.e., CP2 coal) located in the upper portion of the
Shuanmazhuang Formation. The coalbed has a thickness
varying from 4.72 to 42.79 m, with an average of 22.58 m.
The roof of the coalbed has a variable thickness and mainly
consists of mudstone and sandy mudstone.23 Also, both the
thickness and lithology of its floor vary considerably with a
thickness from 0.2 to 2.0 m and a lithological composition of
sandy sandstone, medium-coarse sandstone, and fine sand-
stone.23 The coal rank in the Daqingshan Coalfield ranges from
high volatile bituminous coal and medium volatile bituminous
coal to low volatile bituminous coal from northwest to southeast
(Figure 1B) due to the influence of igneous intrusion.23,24

A total of 62 samples from the CP2 coal of the Datanhao mine
were collected by Zhao et al.,25 which are divided into three
categories, including 20 coal benches, 40 partings, and 2 roof
strata samples. In addition, a total of 48 samples from the CP2
coal of the Adaohai mine were collected by Dai et al.,23 which are
also divided into three categories, including 33 coal benches, 11
partings, and 4 roof samples. Our focus in this paper is on the 62
samples of the Datanhao mine and the 33 coal bench samples of
the Adaohai mine. According to Zhao et al.,25 XRF was used to
determine the contents of major-element oxides after all of the
62 samples were ashed at 815 °C. Samples (particle
size < 1 mm) were also examined in a polished section using
SEM-EDS techniques, to identify the modes of mineral
occurrence. ICP-MS was used to determine the concentration
of most trace elements in all samples and arsenic as well. In
addition, ICP-MS with collision cell technique was used to
analyze the arsenic and selenium in the samples. According to
Dai et al.,23 optical microscopic observation and powder XRD
are used to determine the mineralogy. Vario MACRO (an
elemental analyzer) was used to determine the percentages of C,
H, and N in the coal. XRF was used to determine the oxides of
major elements for the coal ash (815 °C), including SiO2, Al2O3,
CaO, K2O, Na2O, Fe2O3, MnO, MgO, TiO2, and P2O5, and

Figure 1. Location of the Daqingshan Coalfield (A) and coal rank distribution in the different mines of the coalfield (B). Reprinted with permission
from ref 23. Copyright 2012 Elsevier.
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arsenic as well. ICP-MS was used to determine trace elements in
the coal samples except for Hg, F, and Cl. In addition, the
permeability of mercury was determined using a Milestone
DMA-80 Hg analyzer. Fluorine and Cl were determined by
pyrohydrolysis with an ion-selective electrode.
According to Zhao et al.25 and Dai et al.,23 Datanhao coal and

Adaohai coal belong to medium volatile bituminous coal and
low volatile bituminous coal, respectively. In addition, both
Datanhao (0.51% total sulfur on average, dry basis) and Adaohai
(0.78% total sulfur on average, dry basis) coals are low-sulfur
coals (coals with total sulfur content <1%).23,25 The Datanhao
mine is not far from the Adaohai mine (Figure 1B) but the
nature of their coals is very different. Compared with common
Chinese coals, the Datanhao coal has high concentrations of
Al2O3, SiO2, TiO2, CaO, andMnO (on whole-coal basis).10,25 In

addition, compared with world hard coals as reported by Ketris

and Yudovich,26 the CP2 coal of the Datanhaomine is rich in Zr,

Hf, Th, Be, F, Zn, Ga, Nb, Mo, Cd, In, Sn, Ta, Hg, Pb, and rare

earth elements and yttrium (REY), but the content of Li, B, Cr,

Ni, As, Rb, Sr, Cs, and Tl is lower.25 Compared with common

Chinese and world coals as reported byDai et al., the CP2 coal of

the Adaohai mine is rich in CaO, MgO, P2O5, F, Ga, Zr, Ba, Hg,

Pb, and Th but has a lower SiO2/Al2O3 ratio.
23,26 Tables in the

supplementary materials list the concentrations of major oxides,

trace elements, and REY of samples from Datanhao mine and

Adaohai mine, respectively.

Table 1. PC-Skeleton Algorithma

aReprinted in part with permission from ref 28,32. Copyright 2007, 2014 Microtome Publishing.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c04109
ACS Omega 2023, 8, 39096−39109

39098

https://pubs.acs.org/doi/10.1021/acsomega.3c04109?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c04109?fig=tbl1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c04109?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


3. METHOD
The Bayesian network structure is a directed acyclic graph which
consists of vertices and directed edges.27 The undirected graph
obtained from a directed acyclic graph G by replacing directed
edges with undirected edges is the skeleton ofG that encodes the
conditional independence relations of vertices.28 Bayesian
network structure learning algorithms can be used to learn the
network structure of the given data set.29−31

The PC algorithm is a well-known algorithm for learning the
structure of Bayesian networks. Since its learning result is
reliable when dealing with sparse graphs with many variables, it
can be used for learning the Bayesian network structure in high-
dimensional cases,28,32 which is suitable for analyzing coal
elemental data. The PC algorithm mainly includes two
components: estimating the skeleton and partially orienting
the edges. In this study, we use the first part (hereafter referred

to as the PC-skeleton algorithm) to obtain the skeleton of the
given coal elemental data.
Let the set of vertices [V = v(1),v(2), ···,v(n)] correspond to the

coal elemental data X = [x(1),x(2), ···,x(n)], and each vertex v(i)
correspond to x(i). The set of edges representing associations of
elements can be expressed as E ⊆ V × V (i.e., the edge set is a
subset of ordered pairs of distinct vertices). Bayesian network
structure learning algorithm can be used to obtain the skeleton
of directed acyclic graph G = (V, E) based on the coal elemental
data. LetM, N, andW be three disjoint subsets of vertices in G,
W is said to d-separateM from N, if along every path between a
vertex in M and a vertex in N there is vertex w satisfying one of
the following two conditions: (1) w has converging arrows and
none of w or its descendants are in W, or (2) w does not have
converging arrows and w is in W27 The adjacency set of the
elemental vertex v(i) in G, denoted by Adjacent(G, i), are all

Figure 2. Pearson correlation coefficients between elements in the Datanhao coal. (A) Trace elements; (B) major elements; and (C) REY.
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elemental vertices which are directly connected to v(i) by an edge
(directed or undirected). The elements of Adjacent(G, i) are
also called neighbors of (or adjacent to) v(i). The core idea of the
PC-skeleton algorithm is to first perform conditional independ-
ence tests and then construct a skeleton that covers as many
conditional independencies as possible. After each new size of
the conditioning sets is updated, the algorithm stores the
adjacency set Adjacent(G, i) of all elemental vertices. These
stored adjacency sets are used whenever the algorithm searches
for conditioning sets of given size . Consequently, an edge
deletion has no effect on which conditional independencies are
tested for other pairs of elemental vertices at this level of .32

Specifically, when analyzing the modes of occurrence of
elements in coal, each element represented by a vertex has its
own geochemical meaning and operates independently in each
iteration of structure learning. This is an advantage that

hierarchical clustering algorithms do not possess and is the
reason that hierarchical clustering algorithms can produce
misleading results. A skeleton of Bayesian network structure can
be obtained at the end of the PC-skeleton algorithm
execution.28,32

Assume the distribution P of the coal elemental data X is a
multivariate normal. For a given directed acyclic graph G, the
distribution P is faithful to G implying that the conditional
independence relations correspond to d-separations and vice
versa.28 For i ≠ j ∈ {1, ···, n}, k ⊆ {1, ···, n}\{i, j}, ρi, j|k denotes
the partial correlation between x(i) and x(j) given {x(r); r ∈ k}.
Then, ρi, j|k = 0 if and only if x(i) and x(j) are conditionally
independent given {x(r); r∈k}.33 The PC-skeleton algorithm
(Table 1) thus can estimate partial correlations to obtain
estimations of conditional independencies. The partial

Figure 3. Pearson correlation coefficients between elements in the Adaohai coal: (A) Trace elements; (B) major elements; and (C) REY.
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correlation ρi, j|k can be calculated recursively with the following
identity
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The null hypothesis is H0(i, j|k):ρi, j|k = 0, to be tested against
the two-tail alternative H1(i, j|k):ρi, j|k ≠ 0. H0 with significance
l e v e l α w i l l b e r e j e c t e d i f

| | | | | >n k Z i j k3 ( , ) (1 /2)1 , where Φ(·) denotes
the cumulative distribution function of (0, 1)
The only tuning parameter of the PC-skeleton algorithm

(Table 1) is α, which is the significance level for testing partial
correlations. In this study, the conditional independence test
with a significance level of 0.05 is used to learn the skeleton of
the coal elemental data. Using the width of an edge represents
the minimum value of | |n k Z i j k3 ( , , ) that can cause the
edge, and therefore, wider edges are considered as more reliable,
i.e., it represents the stronger association between two elemental
vertices.
The PC-skeleton algorithm (Table 1) has been implemented

in the R programming language. All of the sample data of CP2
coal from the Datanhao and Adaohai mines are used as the input
as the PC-skeleton algorithm (Table 1), and the results can be
obtained and discussed in the following section.

4. RESULTS AND DISCUSSION
To verify the effectiveness of the PC-skeleton algorithm (Table
1) in learning the skeleton of the Bayesian network structure of
coal elemental data and analyzing the modes of occurrence of
elements in coal, the whole-coal basis sample data of CP2 coal
from the Datanhao and Adaohai mines are used in this study.
Based on the geochemical characteristics of elements and the

investigations by Dai et al.23 and Zhao et al.25 using direct
analytical methods (e.g., SEM-EDS, XRD), the following pairs
of trace elements are geochemically similar and are expected to
be adjacent in the skeleton: Sr versus Ba, Nb versus Ta, Zr versus
Hf, Cd versus Zn, Hg versus As, and Rb versus Cs. In addition,
the major-element oxides, including CaO, MgO, MnO, and
Fe2O3, are expected to be adjacent. Aluminum oxide and SiO2
are also expected to be adjacent.1 Furthermore, edges are
expected to exist between REY to reflect their associations. The
Pearson correlation coefficients among the elements of
Datanhao and Adaohai coals are shown in Figures 2 and 3,
respectively. The larger the circles are, the stronger the
correlation between the two elements is. The different colors
represent different correlations; blue and red represent positive
and negative correlations, respectively. Adapting the average-
linkage hierarchical clustering algorithm (ALHCA)13 as a
control group, the clustering results of the Datanhao and
Adaohai coals are shown in Figures 4 and 5, respectively.
4.1. Analysis of Datanhao Coal. The performance of the

PC-skeleton algorithm (Table 1) is tested using 62 samples
(whole-coal basis) from the Datanhao mine.
4.1.1. Major Elements. The high proportions of kaolinite,

quartz, carbonate, and anatase in coal samples from the
Datanhao mine are the reason for the relatively high
concentrations of Al2O3, SiO2, CaO, MnO, and TiO2, as
reported by Zhao et al.25 Furthermore, aluminum oxide mainly
occurs in kaolinite (the dominant clay mineral in samples from

Figure 4. Average-linkage hierarchical clustering result of the Datanhao data with Pearson correlation.
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the Datanhao mine), and the high concentration of SiO2 is not
only due to high proportions of clay minerals but also due to the
high proportions of quartz.25 Meanwhile, a number of studies
showed that quartz and clays (particularly the prevalent kaolinite
and illite) are the main hosts of Si and Al.11,34−37

Zhao et al.25 have found the presence of Mn in the EDS
spectra of siderite and ankerite, indicating thatMn occurs mainly
in Fe-bearing minerals. In addition, Zhao et al.38 showed that
calcite, ankerite, and siderite in the Datanhao mine are well
correlated, and Ca occurs mainly in calcite and ankerite. These
previous studies are totally consistent with the obvious
associations of Fe2O3, MnO, CaO, and MgO in the skeleton
shown in Figure 6.
4.1.2. Strontium (Sr) and Barium (Ba). The modes of

occurrence of Sr and Ba in coal have been extensively
investigated,11,37,39−41 and the results indicate that both Ba
and Sr mainly have an association with carbonate and phosphate
minerals. In the skeleton (Figure 6) obtained by the PC-skeleton
algorithm (Table 1), the association between Sr and Ba in the
Datanhao coal is obvious.
4.1.3. Cadmium (Cd) and Zinc (Zn).Note that Cd and Zn in

the Datanhao coal show an obvious association in the results
(Figure 6) of the PC-skeleton algorithm (Table 1), consistent
with the modes of occurrence of Cd and Zn in coal and other
geologic materials.11 Zinc in coal generally occurs in sulfides
such as pyrite and sphalerite, and cadmium in coal is also
primarily found in sphalerite.11,42−46

4.1.4. Niobium (Nb), Tantalum (Ta), Zirconium (Zr), and
Hafnium (Hf). Zirconium versus Hf, and Nb versus Ta are
closely associated in the skeleton shown in Figure 6, respectively.
Zhao et al.25 proposed the possibility of anatase as the carrier of
Zr, Hf, Nb, and Ta in the coals from the Datanhao mine,
although the content of anatase in the samples is low in the
samples. This can be supported by the Nb and Zr peaks found in

the EDS spectra of anatase from noncoal samples.25 Previous
studies, e.g., Jiu et al.,45 Zhang et al.,47 and Zhang et al.,48 further
supported such association of Zr, Hf, Nb, and Ta in coal.
4.1.5. Mercury (Hg) and Arsenic (As).Zhao et al.25 found that

Hg in the Datanhao coal occurs mainly in sulfides. However, the
arsenic concentration in the Datanhao coals is not available.
Based on the results of SEM and EMPA, Minkin et al.49

suggested that arsenic in coal occurs mainly in pyrite. Dai et al.,11

Hower et al.,50 Arbuzov et al.,51 and Arnold44 also concluded
that arsenic in coal is mainly in pyrite and a portion is associated
with organic matter. These observations are again consistent
with the association of As and Hg shown in the skeleton (Figure
6).
4.1.6. Rubidium (Rb) and Cesium (Cs). For Rb and Cs in

coal, Dai et al.,11 Eminagaoglu et al.,35 Li et al.,52 and Ribeiro et
al.53 concluded that they are mainly associated with clay
minerals. These two elements are also strongly associated with
each other in the skeleton shown in Figure 6.
4.1.7. Thorium (Th) and Uranium (U). As shown in Figure 6,

thorium and uranium exhibit obvious associations in the
skeleton. Zhao et al.25 noted that the main carriers of Th and
U in Datanhao coal are both Ca-bearing REE-phosphate
minerals, most likely to be monazite. This association can be
supported by the presence of Th and U detected in monazite
from the Datanhao coal by Zhao et al.38 using SEM-EDS. Other
studies also supported the association of Th and U.1,54

4.1.8. Cobalt (Co), Nickel (Ni), Vanadium(V), and
Chromium (Cr). Coals influenced by mafic volcanic ash input
or by the input of detrital materials from mafic rocks in
sediment-source regions are generally rich in transition elements
or metals (e.g., V, Cr, Co, and Ni).55−61 Zhao et al.25 calculated
the Al2O3/TiO2 ratios of samples from the Datanhao mine and
found that a small number of samples are located in the mafic

Figure 5. Average-linkage hierarchical clustering result of the Adaohai data with Pearson correlation.
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field, which likely explains the association of Co with Ni, and V
with Cr in Figure 6.
4.1.9. Fluorine (F), Silicon Dioxide (SiO2), and Phosphorus

Pentoxide (P2O5). According to Zhao et al.,25 fluorine of the
Datanhao coal mainly occurs in kaolinite. Moreover, according
to other researchers, fluorine in coal generally occurs in clay
minerals, such as kaolinite, montmorillonite, illite, mica, and
fluorapatite.62−67 These observations support the association of
F with SiO2 and F with P2O5 of Datanhao coal in the skeleton
shown in Figure 6.
4.1.10. Titanium Dioxide (TiO2), Lithium (Li), and

Scandium (Sc). Using SEM-EDS, Zhao et al.38 indicated that
some EDS-detectable Ti most likely occurring as submicron
oxides are contained in kaolinite. As shown in Figure 6, titanium
oxides are associated with Li, Sc, and Nb, elements commonly
found in clays.
According to other studies, high concentrations of Li in

Pennsylvanian coal from the Haerwusu mine in the Junger
Coalfield, also located in Inner Mongolia, China, are thought to
be associated with aluminosilicate minerals.68 Wang et al.69 used
the selective leaching method to demonstrate that Li in coal is
predominantly hosted in clay minerals (e.g., kaolinite and illite).
Recent studies70−72 also showed that Li in coal mainly occurs in
clay minerals, consistent with the results present in this study.
For scandium, Finkelman et al.73 found that more than half of

the Sc present in bituminous and low-rank coals was associated
with aluminosilicate minerals (e.g., clays) based on the selective
leaching method. The concluding comments of Dai et al.11 are
that Sc in coal mainly occurs in aluminosilicates and organic
matter, consistent with those reported by Chitlango et al.,58

Hower et al.,70 Hower et al.,74 and Strzałkowska.75

4.1.11. Molybdenum (Mo), Germanium (Ge), Copper (Cu),
and Antimony (Sb). Although there is no clear explanation for
the associations of Mo with Ge, Mo with Sb, and Mo with Cu in
the Datanhao coal, we can consider the possible associations
between them from other studies. Dai et al.11 concluded thatMo
in coal is mainly associated with sulfides and organic matter; Ge
in coal is almost entirely organically associated; and Sb in coal is

largely associated with sulfides (mainly pyrite) and organic
matter.76−79 However, Goldschmidt80 states that Ge is found in
low-temperature sulfide minerals and Cu in coal mainly occurs
in the sulfides. Therefore, this seemingly unusual association is
consistent with geochemical principles.
4.1.12. REY. As observed under SEM by Zhao et al.,25,38 the

main carrier of REY is phosphate (mostly likely monazite). REY
forms four subgroups in the skeleton (Figure 6) obtained by the
PC-skeleton algorithm (Table 1), which obviously reflects the
strong associations between the REY elements.50,75,81,82

4.2. Analysis of Adaohai Coal. The performance of the
PC-skeleton algorithm (Table 1) is also tested using 33 coal
bench samples (whole-coal basis) from the Adaohai mine.
4.2.1. Major Elements. Dai et al.23 stated that both Al and Si

are major constituents of the aluminosilicate minerals (kaolinite
and illite) in the Adaohai coal. And they found carbonates
(calcite, dolomite, and magnesite) in most of the studied
samples, explaining the association of Fe2O3, MnO, CaO, and
MgO in the skeleton shown in Figure 7, as these oxides are
probably derived from magmatic hydrothermal fluids.23

4.2.2. Strontium (Sr), Barium (Ba), and Phosphorus
Pentoxide (P2O5). Both Sr and Ba are strongly associated with
P2O5 as shown in the skeleton (Figure 7). Dai et al.

23 indicated
that Sr, Ba, and P2O5 occur mainly in gorceixite and fluorapatite,
and this is supported by SEM-EDX data and the comparison of
the XRD results with the chemical analysis. Other studies also
support the association of Sr and Ba.11,37,39−41

4.2.3. Niobium (Nb), Tantalum (Ta), and Thorium (Th).
Niobium and Ta are almost geochemically inseparable,13,47,48

and as Dai et al.23 suggested, thorium in the Adaohai coal mainly
comes from detrital materials of the source region, which may be
the same source as Nb and Ta. Therefore, it is not surprising that
Th and Nb are adjacent in the skeleton (Figure 7).
4.2.4. Potassium Oxide (K2O), Rubidium (Rb), and Cesium

(Cs). Both Rb and Cs are strongly associated with K2O (Figure
7) in the results of the PC-skeleton algorithm (Table 1). Dai et
al.23 noted that Rb, Cs, and K2O in the Adaohai coal have high
aluminosilicate affinity, and are probably associated with

Figure 6. Skeleton of Bayesian network structure of the Datanhao coal. (The thickness of the connection indicates the strength of the association
between the two elemental vertices.).
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diaspore and clay minerals. Previous studies35,52,53 also
supported the association of Rb and Cs, consistent with the
results presented in this paper.
4.2.5. Titanium Dioxide (TiO2), Scandium (Sc), Indium (In),

and Bismuth (Bi).These elements are universally found in heavy
mineral assemblages, where TiO2 and Sc are lipophilic elements
present in aluminosilicates.23,58,70,74,75 An interesting result is
that In and Bi show obvious associations in the skeleton (Figure
7). Dai et al.11 concluded that although various modes of
occurrence of In and Bi in coal have been reported,83−87 their
degree of certainty is not high. Goldschmidt80 mentions that In,
though primarily a chacophile/siderophile element, is associated
with tin detrital minerals and that Bi is found with Nb and Ta in
granites. Thus, the association of these elements may indicate a
common detrital source.
4.2.6. Vanadium(V), Chromium (Cr), Cadmium (Cd), Zinc

(Zn), Tin (Sn), and Tellurium (Te).Dai et al.23 suggested that the
elements in this group from the Adaohai coal are probably
associated with unidentified traces of sulfide minerals.
As shown in Figure 7, vanadium, Cr, Cd, and Zn are associated

with the skeleton. From the results of previously reported
studies, we found some associations of Cr with sulfide minerals.
Huggins et al.88 found that a small amount of Cr in coal occurs in
chromian magnetite and sulfides. Ruppert et al.89 investigated
the modes of occurrence of Cr in Pliocene lignite from the

Kosovo Basin, southern Serbia, and found that Cr is associated,
to a lesser extent, with authigenic minerals (e.g., sulfides and
Ni−Fe sulfates). In addition, Dai et al.11 concluded that Cd and
Zn in coal mainly occur in sphalerite. Zhuang et al.90 discovered
a sulfide association for Zn and Cd by investigating coal samples
from the Chongqing coal district, Southwestern China. Tian et
al.91 found that Zn and Cd are strongly associated with pyrite by
a combination of float-sink and low-temperature ashing. Recent
studies, e.g., Arnold et al.,44 Jiu et al.,45 and Li et al.,46 further
supported such association of Cd and Zn in coal.
Tellurium and Sn show an obvious association in the skeleton

(Figure 7). Although various forms of Sn in coal have been
reported, its common mode of occurrence has not been clearly
identified.11 Vassilev et al.92 found Sn in sulfide (pyrite and
marcasite) and carbonate (rhodochrosite, dolomite, and
ankerite) impurities of Bobov Dol coals in Bulgaria. Tian et
al.91 combined low-temperature ashing and float-sink technique
to demonstrate a clear association of Sn with pyrite in coal.
Bullock et al.93 found Te enrichment at the pyrite rim of the coal
using LA-ICP-MS techniques. In addition, Bullock et al.94

indicated that the average concentration of Te is associated with
early syngenetic and later cleat-filling pyrite by investigating
British Carboniferous coals.
4.2.7. Cobalt (Co), Molybdenum (Mo), Nickel (Ni), and

Rhenium (Re). As shown in Figure 7, Co, Mo, Ni, and Re are

Figure 7. Skeleton of Bayesian network structure of the Adaohai coal. (The thickness of connection indicates the strength of the association between
the two elemental vertices.).
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closely associated, which is to be expected for these siderophile
elements.80 This relationship is interesting as there is very little
information on the modes of occurrence of Re.95−97 Dai et al.11

pointed out that the certainty of the modes of occurrence of Re
in coal is low because none has been verified, and the association
of Re with Co, Mo, and Ni in the Adaohai coal implies likely
sulfide association.
4.2.8. Uranium (U) and Antimony (Sb). Although U and Sb

in Adaohai coal show an obvious association in the skeleton
shown in Figure 7, no clear geochemical explanation has been
found. As concluded by Dai et al.,11 Sb in coal is mainly
associated with sulfide (mainly pyrite) and organic matter, and
U in coal generally exhibits organic associations.
4.2.9. Zirconium (Zr) and Hafnium (Hf). According to Dai et

al.,23 if Zr partially occurs in clay minerals, it may explain the
unusual lack of the association of Zr with Hf in the skeleton
(Figure 7) obtained by the PC-skeleton algorithm (Table 1).
4.2.10. REY. REY forms three subgroups in the skeleton

(Figure 7) obtained by the PC-skeleton algorithm (Table 1), in
which Tm is not adjacent to any other elements. The other two
groups contain the remaining elements in REY, where yttrium is
adjacent to Se and Lu is adjacent to Be.
4.3. Performance Evaluation. 4.3.1. Datanhao Coal.

Strontium versus Ba, Cd versus Zn, Nb versus Ta, Zr versus Hf,
Hg versus As, and Rb versus Cs are adjacent in the skeleton
(Figure 6) obtained by the PC-skeleton algorithm (Table 1),
respectively. Except for Cd versus Zn, all of the above groups
have distinct wider edges representing the more reliable
association relationships of elements. Zirconium versus Hf, Hg
versus As, and Rb versus Cs are clustered together at the early
clustering stages (Figure 4) by the ALHCA, respectively. As
shown in Figure 2A, rSr−Ba = 0.72 (r, Pearson correlation
coefficient), rCd−Zn = 0.40, rNb−Ta = 0.91, rZr−Hf = 0.92, rAs−Hg =
0.81, and rCs−Rb = 0.94.
As shown in Figure 6, Al2O3 and SiO2 are adjacent to each

other in the skeleton. Oxides (e.g., CaO, MgO, MnO, and
Fe2O3) are also connected, with the widest edge between MnO
and Fe2O3. In the results from ALHCA, Al2O3 and SiO2 are
clustered together at the early clustering stages (Figure 4).
Calcium oxide, MnO, and Fe2O3 are clustered together at the
early clustering stages, but MgO is clustered together with Sr at
the early clustering stages rather than being clustered together
with the cluster formed by CaO, MnO, and Fe2O3 (Figure 4).
The correlation coefficient of Al2O3 and SiO2 is 0.79 (Figure
2B). Calcium oxide, MgO, MnO, and Fe2O3 have correlation
coefficients greater than 0.71 with each other (Figure 2B).
The light REE (La, Ce, Pr, Nd, and Sm) and heavy REE (Ho,

Er, Tm, Yb, and Lu) are closely associated in the skeleton
(Figure 6), respectively. Except for Eu and Y, the middle REE
(Gd, Tb, and Dy) is closely associated. In the result of ALHCA,
REY clusters together at the early clustering stages (Figure 4),
which is consistent with the geochemical characteristics of REY.
Except for Eu and Lu (rEu−Lu = 0.49), the correlation coefficients
between REY all exceed 0.52 and the majority of them exceed
0.70 (Figure 2C).
4.3.2. Adaohai Coal. In the skeleton (Figure 7) obtained by

the PC-skeleton algorithm (Table 1), Cd with Zn, Nb with Ta,
and Sr with Ba are adjacent to each other, respectively. And Cd
with Zn, Nb with Ta have distinct wider edges. Cadmium with
Zn and Nb with Ta are clustered together at the early clustering
stages (Figure 5) by the ALHCA, respectively. As shown in
Figure 3A, rCd−Zn = 0.73, rNb−Ta = 0.93, and rSr−Ba = 0.98.

As shown in Figure 7, Al2O3 and SiO2 are adjacent and the
edges connecting them are obviously wide. Calcium oxide,
MgO, MnO, and Fe2O3 which mainly occur in the carbonate
minerals,23 are connected in the skeleton and there are also
distinctly wide edges between them (Figure 7). In the result of
the ALHCA (Figure 5), Al2O3 and SiO2 are clustered together at
the early clustering stages; calcium oxide, MgO, MnO, and
Fe2O3 cluster together at the early clustering stages (Figure 5).
The correlation coefficient of Al2O3 and SiO2 is 0.93 (Figure
3B). Calcium oxide, MgO, MnO, and Fe2O3 have correlation
coefficients higher than 0.78 with each other (Figure 3B).
Light REE (La, Ce, Pr, Nd, and Sm) andmiddle REE (Eu, Gd,

Tb, and Dy) are closely associated in the skeleton (Figure 7).
Yttrium, heavy REE (Ho, Er, Yb, and Lu), Y, Be, and Se are
closely associated in the skeleton, except for Tm (Figure 7). In
the result of the ALHCA, REY elements are obviously clustered
together overall, but Ga and Ge are also clustered together with
them at an early clustering stage (Figure 5). All correlation
coefficients between REY exceed 0.59, and the majority of them
exceeds 0.70 (Figure 3C).
In terms of sulfur, both the Datanhao and Adaohai coals are

low-sulfur coals.23,25 Sulfur in low-sulfur coal, as reported by
Chou98 and Dai et al.,99 was derived primarily from parent plant
materials, and in most cases, low-sulfur coals formed in
nonmarine influenced environments.98−101 Sulfur in such low-
sulfur coals has a very little effect on both abundance and modes
of occurrence of other elements in coal,102−104 different from
that in high-sulfur coals (total sulfur higher than 3%).105−107

Therefore, the impact of sulfur on the modes of occurrence of
trace elements in Datanhao and Adaohai coals is not significant.

5. CONCLUSIONS
In this study, we conducted extensive experiments by applying
the PC-skeleton algorithm (Table 1) to samples collected from
the Datanhao and Adaohai mines to learn the skeleton of the
coal elemental data (i.e., the dependence relationships between
elements). Experimental results show that the PC-skeleton
algorithm (Table 1) is more effective in inferring modes of
occurrence of elements in coal than the average-linkage
hierarchical clustering algorithm. Based on the comprehensive
studies, the main conclusions are drawn as follows:
(1) The ALHCA fails to accurately explain the association

between Sr and Ba in the Datanhao coal (Figure 4).
However, the PC-skeleton algorithm (Table 1) clearly
reveals the association between Sr and Ba in the Datanhao
coal (Figure 6). This result is aligned with the geo-
chemical nature and Ba and Sr are predominantly
associated with carbonate and phosphate minerals.

(2) In the skeleton obtained by the PC-skeleton algorithm
(Figure 6), the association between Cd and Zn in the
Datanhao coal is obvious, which is consistent with the
geochemical nature. Zinc in coal is typically found in
sulfides like pyrite and sphalerite, and cadmium primarily
occurs in sphalerite as well. However, the association
between Cd and Zn is noticeably absent in the results of
ALHCA (Figure 4).

(3) Thorium in the Adaohai coal mainly comes from detrital
materials of the source region, which is probably the same
source as Nb and Ta. It is reasonable that thorium and
niobium show an association in the skeleton (Figure 7),
but thorium is not closely associated with Nb or Ta in the
result of ALHCA (Figure 5).
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The PC-skeleton algorithm (Table 1) always clusters each
element during iteration; thus, each element represented by a
vertex does not lose its geochemical meaning during the
clustering process, unlike the case of hierarchical clustering.
Consequently, the PC-skeleton algorithm (Table 1) is more
accurate in analyzing the modes of occurrence of elements in
coal. Therefore, it can provide new insight into inferring the
modes of occurrence of elements in coal.
While the results are totally consistent with established

geochemical principles and published research on the modes of
occurrence of elements in coal, we acknowledge that there are
still a few anomalies. A few unexpected relationships e.g., the
relationship of Tl and F (Figure 7), the relationship of U and Sb
(Section 4.2.8), and the lack of relationship of Zr and Hf
(Section 4.2.9) exist. These cases present opportunities for
additional research to clarify the modes of occurrence of
elements in coal.
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