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Introduction

Non-small cell lung cancer (NSCLC) is a common 

malignancy worldwide (1). Currently, effective early diagnosis 

of NSCLC remains limited primarily by the lack of accurate 
biomarkers, and NSCLC is usually diagnosed late in its 
progression (2,3). Clinical strategies for NSCLC treatment 
usually have a high risk of recurrence and metastasis, with 
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5-year survival of less than 30% after treatment (4,5). Given 
these characteristics, there is an urgent need to understand 
the mechanisms underlying NSCLC pathogenesis and 
treatment failure. 

Both pathogenesis and therapeutic failure are often 
accompanied by intricate mechanisms, encompassing 
genetic factors and environmental influences (5,6). 
Currently,  the rapid advancement of  sequencing 
technologies, including RNA-seq and MeRIP-seq, has 
improved our understanding of epigenetic modifications 
at the post-transcriptional level (7-9). In particular, the 
most quintessential post-transcriptional regulation of gene 
function, RNA N6-methyladenosine (m6A), in NSCLC 
has been extensively documented (10). This effect on 
RNA, specifically RRACH (R for A or G, H for A, U 
or C) is dynamically governed by three key enzymes 
that are often called “writers, erasers, and readers” 
(11,12). Writers primarily include the methyltransferase 
complex of methyltransferase-like 3/14 (METTL3/14)-
WT1-associated protein (WTAP), which adds methyl 
groups (-CH3) to the sixth nitrogen atom of adenines of 
newly transcribed RNAs (naïve RNAs). Erasers include 
demethylases, including fat mass and obesity-associated 
protein (FTO), and AlkB homolog 5 (ALKBH5) that 
remove methyl groups (11,13). These modifications by 
writers and erasers transmute naïve RNAs into pre-RNAs, 
which subsequently undergo further splicing modifications 
to produce mature RNAs, which are then transported out of 
the nucleus. Readers, including YTH N6-methyladenosine 
RNA binding protein (YTHDF), YTHDF domain-
containing protein (YTHDC), heterogeneous nuclear 
ribonucleoparticles (hnRNPs), and insulin-like growth 
factor 2 mRNA-binding protein (IGF2BP), discern 
these mature RNAs, influencing both their stability and 
translation (11-13) (Figure 1). 

The METTL protein family is composed of METTL3, 
4, 5, 14, 16, and 25B, which share a conserved S-adenosyl 
methionine binding domain and contribute to m6A 
modification (14). Specifically, METTL3, together with 
METTL14 and WTAP, forms the primary heterocomplex 
of m6A writers (14). Other METTL family members form 
the auxiliary structures involved in catalysis. METTL3 
is the primary m6A-producing enzyme and the only 
subunit with catalytic activity, whereas METTL14 lacks 
catalytic activity and is commonly considered a structural 
subunit that binds to target RNA, promoting the action 
of METTL3 (15). METTL3 is predominantly localized 
to human chromosome 14q11.2, with pronounced 

enrichment in nuclear speckles. METTL3 is also present 
in the cytoplasm, possibly engaging in methyltransferase-
independent functions related to translation initiation 
(16,17). As studies on METTL3-mediated RNA m6A 
modification have progressed, studies have highlighted 
the active involvement of METTL3 in both NSCLC 
pathogenesis and therapeutic resistance, as well as using 
METTL3 as a potential therapeutic target (17-19). 
However, a comprehensive analysis of these studies to 
discuss the relationship between METTL3 and NSCLC, 
as well as suggestions for the prospective applications of 
METTL3 in clinical settings, is currently lacking. 

To address this gap in literature, we reviewed the current 
understanding of the roles and mechanisms of METTL3 in 
NSCLC. Furthermore, we suggest prospective applications 
and future perspectives of METTL3 (Figure 2). 

METTL3 contributes to NSCLC tumorigenesis 
and progression 

Recent epigenetic study has revealed a strong correlation 
between RNA m6A modification by METTL3 and both 
tumorigenesis and malignant progression of NSCLC (18). 
This modification plays a significant role in the general 
regulation of cancer-cell proliferation, migration, and 
invasion (20). Moreover, METTL3-mediated m6A 
modification regulates the epithelial-mesenchymal 
transition (EMT), abnormal angiogenesis, and the tumour 
microenvironment (TME) by targeting multiple RNAs (18). 
METTL3 is a potential independent prognostic factor to 
predict NSCLC survival (21). 

METTL3 functions in NSCLC by regulating mRNAs

Mutations in multiple critical genes, including those 
encoding epidermal growth factor receptor (EGFR), 
TP53, and KRAS, contribute to the onset and progression 
of NSCLC (22). Interestingly, METTL3 expression is 
increased in patients with NSCLC with EGFR exon 19 
mutations compared with patients with wild-type EGFR; 
this promotes EMT, migration, and proliferation by 
regulating the translation of EGFR mRNA (23). Patients 
with NSCLC with high METTL3 expression combined 
with EGFR mutations exhibit shorter progression-free 
survival compared to those with EGFR mutations and 
METTL3 low expression, suggesting that METTL3 and 
EGFR work synergistically (24). In contrast, the expression 
of METTL3 is downregulated in KRAS mutant NSCLC 
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tissues (24). Compared with the expression levels in TP53 
non-mutated NSCLC tissues, METTL3 expression is not 
significantly altered in TP53-mutant NSCLC tissues (25).

Cigarette smoking is a major risk factor contributing 
to both onset and progression of NSCLC by upregulating 
METTL3 expression, which subsequently silences 
tumour-suppressor gene expression or activates oncogenes 
expression that are regulated by METTL3-mediated 
RNA m6A modification (26,27). For example, hypoxia-
inducible factor-1 alpha (HIF-1α) is a key transcription 
factor in cancer (28). High expression of HIF-1α and 

downstream genes promotes cancer progression through 
multiple mechanisms (28). Cigarette smoking increases 
HIF-1α expression that, in turn, increases METTL3 
transcription in NSCLC (29). Increased METTL3 
expression mediates m6A modification of cyclin-dependent 
kinase 2-associated protein 2 (CDK2AP2)  mRNA, 
suppressing CDK2AP2 expression that promotes cell-cycle 
and NSCLC progression (29). Death-associated protein 
kinase 2 (DAPK2), a tumour suppressor gene, contributes 
significantly to smoking-related NSCLC progression. Jin 
et al. (30) demonstrated that METTL3 and YTHDF2 
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Figure 1 Mechanism underlying the m6A modification of RNAs. RNA m6A modification is mediated by a complex interplay among writers 
(METTL3, METTL14, and WTAP), erasers (FTO and ALKBH5), and readers (YTHDC, YTHDF, HnRNP, and IGF2BP). This process 
involves the addition and removal of-CH3 from naive RNA to form a pre-RNA, which is then spliced into mature RNA. These modifications 
ultimately regulate RNA decay, stability, and translation. Specifically, METTL3 recognizes and catalyses the RRACH (GACU) sequence 
motif by transferring a methyl group onto its adenosine residue. 
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Figure 2 METTL3-mediated RNA m6A modification in NSCLC. Mechanisms of METTL3 in the carcinogenesis and therapeutic 
resistance of NSCLC are analysed, providing an interrelationship interpretation of the pathogenesis of NSCLC from the novel perspective 
of METTL3-mediated RNA m6A modification. Clinical applications of METTL3 in NSCLC as a biomarker for diagnosis, treatment, and 
prognosis are suggested. NSCLC, non-small cell lung cancer; EMT, epithelial-mesenchymal transition.

induce aberrant m6A modification of DAPK2 mRNA in 
NSCLC tissues, resulting in the reduced expression of 
DAPK2, which significantly facilitates the proliferation and 
migration abilities of NSCLC by activating the nuclear 
factor (NF)-κB signalling pathway. Secreted frizzled-
related protein 2 (SFRP2) also inhibits NSCLC. Zhao  
et al. (31) found that METTL3 negatively regulates SFRP2 
expression, which, in turn, activates the Wnt/β-catenin 
signalling pathway to promote NSCLC tumorigenesis. 
Consistent with this study, the Fraser syndrome protein 
1 (FRAS1) transcript undergoes METTL3-regulated 
m6A modification that correlates with poor prognosis in  
NSCLC (32). The METTL3-FRAS1 axis contributes to 

NSCLC cell proliferation, colony formation, and tumour 
growth by regulating CDON which cooperates with 
YTHDF1 (32). Furthermore, METTL3 acts as an oncogene 
directly by promoting BCL2 mRNA translation and 
expression via m6A modification in NSCLC, enhancing the 
viability and migration of tumour cells (33). 

Lung adenocarcinoma (LUAD), the dominant type 
of NSCLC, is common in non-smokers and typically 
arises from the smaller bronchial epithelium (34). LUAD 
tissue often has poorly defined boundaries; moreover, it is 
frequently accompanied by fibrosis and subleukocyte scar 
formation (35). Current LUAD analyses have revealed 
significant increases of METTL3 expression in cancer 



Translational Lung Cancer Research, Vol 13, No 5 May 2024 1125

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2024;13(5):1121-1136 | https://dx.doi.org/10.21037/tlcr-24-85

tissues, demonstrating its pivotal role in the pathogenesis of 
LUAD, as well as strong links to decreased overall survival 
(36,37). A large amount of evidence has demonstrated 
the significant roles of METTL3 in LUAD, including 
stemness maintenance, proliferation promotion, migration 
facilitation, progression acceleration, and apoptosis 
inhibition (36,37). The function of METTL3 in LUAD 
onset is contingent on its methyltransferase activity. For 
example, enolase 1 (ENO1) is a glycolysis enzyme, which 
participates in cancer progression. Ma et al. (38) reported 
that the increased METTL3 expression facilitates the 
binding of ENO1 mRNA with YTHDF1, resulting in 
enhanced ENO1 translation. This consequently promoted 
spheroid generation in LUAD cells and intrapulmonary 
tumour formation in mice by stimulating glycolysis and 
tumorigenesis in patients with LUAD. Similarly, Choe  
et al. (39) reported that increased METTL3 expression 
enhances the translation of oncogenic bromodomain-
containing protein 4 (BRD4) mRNA, thereby promoting 
LUAD tumorigenicity. F-box and WD repeat domain 
containing 7 (FBXW7) functions as a tumour suppressor 
in human cancer. Wu et al. (40) reported that METTL3 
functions in increasing m6A modification of FBXW7 
mRNA, promoting its translation, inhibiting apoptosis 
while promoting proliferation in LUAD cells (40). 

EMT is a significant factor in tumour progression (41). 
Current study has suggested significant contributions 
of METTL3 to its regulation by targeting multiple 
mRNAs. For example, JUNB is a dominant transcriptional 
regulator of EMT (42). A study by Wanna-Udom et al. (42) 
demonstrated that the increased expression of METTL3 
in LUAD enriches m6A modification of JUNB mRNA 
and promotes its stability, which subsequently leads to 
transforming growth factor β-induced EMT, facilitating 
LUAD progression. In line with this, it has been shown 
that in an inflammatory microenvironment, interleukin 
(IL)-6 transcriptionally activates METTL3 expression (43). 
This activation promotes the proliferation, migration, 
invasion, and EMT of LUAD cells by increasing Yes-
associated protein 1 (YAP1) mRNA expression, activating 
the YAP1/TEAD signalling pathway (43). Trophinin-
associated protein (TROAP) mRNA expression is regulated 
by METTL3 and is highly expressed in NSCLC, which 
accelerates its progression through the PI3K/AKT and 
EMT pathways, suggesting TROAP as a novel target for 
NSCLC therapy (44). 

Communication between tumour cells and the TME 
facilitates tumour growth by regulating immune escape, 

inflammation, and metastasis,  contributing to the 
tumorigenesis and tumour progression (45,46). Cancer-
associated fibroblasts (CAFs) are a major component of 
the TME that are linked strongly to NSCLC metastasis 
by mediating m6A modifications in tumour cells (47-49). 
CAFs accelerate the malignant progression of tumours 
by producing cytokines and growth factors (49,50). For 
example, CAFs secrete collagen type X alpha 1 (COL10A1) 
and RAC3 that indicate poor prognosis in NSCLC.  
Li et al. (51) and Chen et al. (52) reported that the function 
of CAFs in NSCLC depends on METTL3 modification of 
RAC3 and COL10A1 mRNAs that upregulates their m6A 
levels, stability, and translation. METTL3-modified RAC3 
and COL10A1 promote NSCLC growth, suggesting that 
they are downstream targets of METTL3. The axes of 
METTL3-RAC3 and METTL3-COL10A1 may provide 
therapeutic targets for NSCLC treatment. Moreover, 
CAFs may secrete METTL3 (53). The CAF-derived 
METTL3 alleviates programmed cell death ligand-1 
(PD-L1)-mediated immunosuppression of NSCLC by 
targeting IL-18. Subsequently, IL-18 enhances NSCLC 
immunosuppression by stimulating NF-κB signalling (53). 

Together, these findings demonstrate that the abnormal 
expression of METTL3 functions both directly as an 
oncogene and regulates oncogene expression indirectly. 
Specifically, the aberrant m6A modification mediated by 
METTL3 on tumour-related genes such as CDK2AP2, 
DAPK2, SFRP2, FRAS1, BRD4, JUNB, YAP1, TROAP, 
COL10A1, and RAC3, as well as serving directly as an 
oncogene by regulating Bcl-2, ENO1, FBXW7, and IL-
18, triggering the onset and exacerbating the progression 
of NSCLC, provides novel insights into the mechanisms 
driving NSCLC advancement, showing great potential 
for diagnosis and prognosis in NSCLC, and identifying 
a potential therapeutic target for patients with NSCLC 
(Figure 3).

METTL3 functions in NSCLC by regulating non-coding 
RNAs

Non-coding RNAs, including microRNAs (miRNAs), circular 
RNAs (circRNAs), and long non-coding RNAs (lncRNAs) 
play important roles in NSCLC proliferation, apoptosis, 
migration, and invasion, in which METTL3 is essential 
for their regulation. For example, increased expression of 
METTL3 enhances miR-21-5p maturation, which, in turn, 
targets FDX1 and increases tumorigenicity (54). Besides, 
Wang et al. (55) demonstrated that the increased expression 



Su et al. Mechanisms of METTL3 in NSCLC1126

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2024;13(5):1121-1136 | https://dx.doi.org/10.21037/tlcr-24-85

Figure 3 METTL3 contributes to the onset and progression of NSCLC. The targets, mechanisms, and roles of METTL3 [mRNAs  
(28-32,38-40,42-44,52,53), non-coding RNAs (54-67)] in NSCLC are summarised and analysed. Notably, METTL3 triggers and exacerbates 
these NSCLCs primarily by promoting angiogenesis, immune escape, EMT, and tumour cell biological functions (glycolysis, apoptosis, and 
mitophagy). NSCLC, non-small cell lung cancer; EMT, epithelial-mesenchymal transition.

of METTL3 promotes the splicing of a miR-143-3p 
precursor to enhance its biogenesis, augmenting lung 
cancer angiogenesis by targeting the 3’-untranslated region 
(3’-UTR) of vasotocin-1 (VASH1) mRNA and suppressing 
its expression. Therefore, METTL3/miR-143-3p/VASH1 
axis is an unfavourable prognostic factor for the progression 
and overall survival rate of LUAD (55). Another study 

demonstrated that METTL3 is significantly upregulated 
in LUAD cell lines and regulates LUAD progression by 
interacting with miR-590-5p to increase the expression of 
its direct target lncRNA NUTM2A-AS1 (68).

RNA pumi l io  RNA binding  fami ly  member  1 
(circPUM1) plays important roles in the tumorigenesis 
of several cancers and is expressed in both NSCLC 
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tissues and cell lines (69). Li et al. (56) discovered that the 
increased circPUM1 expression leads to NSCLC tumour 
proliferation and glycolysis by downregulating miR-590-
5p and upregulating METTL3. Ubiquitin-conjugating 
enzyme 2C (UBE2C), often overexpressed in cancers, 
plays an indispensable role in cancer progression (57). 
Given the correlation between UBE2C expression and 
pan-cancer as well as poor prognosis in humans, Jiang  
et al. (57) reported that METTL3 upregulation reduces 
the degradation rate of lncRNA SNHG1 in NSCLC. This 
particular RNA functions as a competing endogenous RNA 
that sponges miR-140-3p and increases the expression 
of UBE2C in lung squamous cell carcinoma (LUSC) cell  
lines (57). These findings suggest that METTL3 contributes 
to the function of the SNHG1/miRNA-140-3p axis, 
regulating UBE2C expression and NSCLC progression. 
Another study demonstrated that the coordination between 
METTL3 and YTHDC1 promotes the upregulation of 
circIGF2BP3 (58). This RNA then acts as a sponge for miR-
328-3p and miR-3173-5p, which competitively increases 
the expression of PKP3 (58). Subsequently, PKP3 interacts 
with the RNA-binding protein FXR1 to stabilize OTUB1 
mRNA (58). The resulting increase in OTUB1 facilitates 
PD-L1 deubiquitination, leading to CD8+ T cell immune 
escape in patients with NSCLC, ultimately exacerbating the 
disease (58).

LncRNAs contain over 200 bases that do not code for 
proteins; however, they are linked to tumorigenesis and 
metastasis by serving as oncogenes or by interacting with 
target mRNAs, miRNAs and proteins (70,71). The functions 
of lncRNAs in NSCLC have been extensively reported; they 
are considered as risk factors for NSCLC that regulate the 
proliferation, metastasis, and immune resistance of NSCLC 
via interactions with METTL3 (72). For example, lncRNA 
ABHD11-AS1 is overexpressed in NSCLC tissues and cells; 
moreover, this overexpression is strongly correlated with 
an unfavourable NSCLC prognosis (59). Xue et al. (59) 
demonstrated that the upregulation of METTL3 caused 
the m6A modification on ABHD11-AS1 to enhance its 
expression, which subsequently targeted and suppressed 
the expression of KLF4 (a cancer inhibitor), thereby 
promoting proliferation and the Warburg effect in NSCLC 
cells. These findings collectively suggest that ABHD11-
AS1 might act as an oncogene in NSCLC tumorigenesis, 
which partially depends on the assistance of METTL3-
mediated RNA m6A modification. Similarly, Li et al. (60) 
revealed that increased expression of METTL3, together 
with YTHDF2, controlled the stemness and EMT features 

of LUAD cell lines by modulating the intrinsic levels of 
miR-146 and lncRNA TUSC7 by activating the Notch 
signalling pathway and targeting Snail mRNA. The lung 
cancer-associated transcript 3 (LCAT3), a novel oncogenic 
lncRNA, is overexpressed in LUAD; this overexpression 
correlates with poor prognosis (61). The upregulation of 
LCAT3 is attributed to m6A modification facilitated by 
METTL3, which subsequently results in the stabilization of  
LCAT3 (61). Mechanistically, LCAT3 recruits far upstream 
element binding protein 1 (FUBP1) to the MYC far 
upstream element sequence, activating MYC transcription 
and promoting lung cancer cell proliferation, survival, 
invasion, and metastasis (61). Collectively, these oncogenic 
effects are achieved through the METTL3/LCAT3- 
FUBP1/FUSE axis. 

The increased expression of lncRNA nuclear paraspeckle 
assembly transcript 1 (NEAT1) is associated with decreased 
survival in patients with NSCLC. Qi et al. (62) found 
that the abnormally increased expression of NEAT1 was 
strongly linked to METTL3-mediated m6A modification 
that stabilized NEAT1. This subsequently increased the 
expression of high-mobility group AT-hook 1 (HMGA1) 
by sponging miR-361-3p. Therefore, METTL3 triggered 
the signalling via the NEAT1/miR-361-3p/HMGA1 axis 
that functioned to promote NSCLC tumorigenesis and 
metastasis. Similarly, lncRNA deoxyguanosine kinase 
antisense RNA 1 (DGUOK-AS1) has been reported 
to be a driver in NSCLC. Feng et al. (63) found that 
the upregulation of DGUOK-AS1 promoted NSCLC 
metastasis indirectly by targeting TRPM7 mRNA, which 
was regulated through METTL3/IGF2BP2-mediated m6A 
modification. 

The oncogenes in NSCLC are c-MYC, METTL3, and 
LINC01006. Liu et al. (64) found that c-MYC increased 
METTL3 expression, and METTL3 in turn functioned 
as an upstream regulator of  LINC01006 via m6A 
modification to stabilize LINC01006. Moreover, both 
c-MYC and LINC01006 functioned by targeting miR-
34a/b/c and miR-2682 (64). This study indicated a positive 
feedback loop, with METTL3 as its central regulator. 
This provides another reason to explore the therapeutic 
targeting of METTL3 for NSCLC. Exosomes also have 
been found to increase the expression of METTL3. Xu 
et al. (65) demonstrated that M2 macrophage exosomal 
LINC01001 induced METTL3 expression, which, in 
turn, targeted NASP mRNA to alter glycolysis in NSCLC 
cells to promote NSCLC progression. Other lncRNAs 
that have been regulated by METTL3 in NSCLC include 
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LINC01833, which promotes NSCLC progression by 
regulating heterogeneous nuclear ribonucleoprotein A2/
B1 expression (66); lncRNA DLGAP1 antisense RNA 2 
promotes NSCLC aerobic glycolysis and tumorigenesis 
by regulating the YTHDF1/METTL3/c-Myc axis (67)  
(Figure 3).

In summary, recent investigations into the relationship 
between METTL3 and NSCLC collectively affirm that 
METTL3-mediated m6A epigenetic modifications to RNAs 
play significant roles in the pathogenesis, development, 
and overall health status of NSCLC. Consequently, using 
METTL3 as a biomarker can possibly help in the clinical 
diagnosis and prognostic assessment of patients with 
NSCLC. Finally, targeting the regulation of METTL3 is a 
potential strategy for treating patients at multiple stages of 
NSCLC. 

METTL3 is strongly associated with therapeutic 
resistance in NSCLC 

The resistance of tumour cells to therapeutic drugs is a 
significant contributor to treatment failure. Besides its 
role in regulating cellular functions, METTL3 has been 
implicated in the modulation of therapeutic sensitivity in 
NSCLC. 

METTL3 contributes to NSCLC chemoresistance 

Chidamide, cisplatin, and gefitinib are usually used as the 
first-line drugs in NSCLC treatment. However, resistance 
is common during treatment. Ding et al. (73) found that 
chidamide upregulates the expression of METTL3 and 
WTAP, which subsequently promotes c-MET mRNA m6A 
modification to increase c-MET expression and reduce 
sensitivity to crizotinib (a kinase inhibitor used for treating 
NSCLC with ALK mutations), in a c-MET/hepatocyte 
growth factor (HGF)-dependent manner. Furthermore, 
a separate study demonstrated that miR-4443 expression 
is elevated in exosomes derived from cisplatin-resistant 
NSCLC tumour tissues compared to those derived from 
cisplatin-sensitive tissues (74). This elevation inhibited 
cisplatin-induced FSP1-mediated ferroptosis in vitro and 
promoted tumour growth in vivo (74). Further mechanistic 
analyses revealed that miR-4443 regulates the expression 
of FSP1 through an m6A-dependent mechanism involving 
METTL3, which has been identified as a direct target of 
miR-4443 (74). Additionally, increased METTL3 expression 

significantly correlated with susceptibility to cisplatin, more 
advanced tumour stage, nodal involvement, and lymph-node 
metastasis in NSCLC (75). This suggests that METTL3 
plays a role in disease progression and chemoresistance 
by regulating AKT1 mRNA m6A levels to promote its  
expression (75). Similarly, study on the mechanism of 
cisplatin resistance in NSCLC cells has revealed that 
exosome-mediated circVMP1 promotes NSCLC tumour 
progression and resistance to cisplatin by targeting miR-524-
5p-METTL3-SOX2 signalling (76). Therefore, targeting 
METTL3 also may be a viable therapeutic strategy for 
overcoming chemoresistance in NSCLC. 

Gefitinib often leads to acquired drug resistance in 
patients with LUAD, resulting in treatment failure. Increased 
expression of small nucleolar host gene 17 (SNHG17) 
contributes to LUAD progression and gefitinib resistance 
by aggravating the malignant phenotypes (77). METTL3-
mediated SNHG17 m6A modification stabilizes SNHG17 
transcripts and induces SNHG17 overexpression, which 
subsequently represses LATS2 expression by recruiting 
EZH2 to the promoter region of LATS2 (77). Collectively, 
these findings suggest that METTL3 triggers the action of 
SNHG17/EZH2/LATS2 signalling in promoting gefitinib 
resistance. Additionally, gefitinib resistance induced by EGFR 
mutations is also regulated by METTL3-mediated m6A 
modification. The EGFR-tyrosine kinase inhibitor (EGFR-
TKI) gefitinib is the standard first-line therapy for patients 
with EGFR mutant NSCLC (78,79). However, acquired 
resistance often occurs during this treatment (80). Gao  
et al. (81) demonstrated that relative to gefitinib-sensitive 
tissues, METTL3 expression is increased in gefitinib-
resistant tissues. Further mechanistic study has revealed that 
the combination of METTL3 and EMT gives rise to the 
activation of the PI3K/Akt signalling pathway, modulating 
gefitinib sensitivity (81). In line with this study, Dai  
et al. (82) indicated that LINC00969 regulated resistance 
to gefitinib by interacting with EZH2 and METTL3, 
transcriptionally regulating the level of H3K27me3 in the 
NLRP3 promoter, and post-transcriptionally modifying 
the m6A level of NLRP3 in an m6A-YTHDF2-dependent 
manner, thus epigenetically repressing NLRP3 expression 
to suppress the activation of classical NLRP3/caspase-1/
GSDMD-related pyroptosis signalling, endowing an 
antipyroptotic phenotype, and promoting TKI resistance. 
Therefore, METTL3 can provide a molecular marker 
for predicting the efficacy of EGFR-TKI therapy and 
represents a potential therapeutic target. Liu et al. (83) 
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demonstrated that METTL3-mediated autophagy plays 
a crucial regulatory role in reversing β-elemene resistance 
to gefitinib in NSCLC cells. Increased expression of 
METTL3 in LUAD tissues has been shown to reduce the 
methylation of RNA m6A in drug-resistant cells, increase 
the expression of key autophagy pathway genes, including 
those that encode chelate 1, microtubule-associated protein 
1b-light chain 3-II, autophagy-related genes (ATG5 and 
ATG7), increasing β-elemene production, and ultimately 
reversing gefitinib resistance (83). These findings provide 
insights into additional potential targets for molecular 
therapy and NSCLC therapeutics for patients whose 
tumours are resistant to gefitinib (Figure 4).

METTL3 is strongly linked to NSCLC immunotherapeutic 
resistance

Immunotherapy has become the first-line treatment for 
advanced NSCLC, but most patients experience treatment 
failure (84,85). Interaction between PD-1 and PD-
L1 drives resistance (86). METTL3 showed significant 
associations with the immune microenvironment, as well as 
tumour mutation burden and PD-L1 levels, suggesting that 
METTL3 mediated m6A RNA methylation is indicative of 
therapeutic effects of anti-PD-L1 treatment (21,87). Sun 
et al. (88) reported that in NSCLC, METTL3/YTHDF2-
mediated m6A modification increased the expression of 
LINC02418, which subsequently interacted with TRIM21 
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mRNA to suppress PD-L1 expression and promote CD8+ 

T cell infiltration. Therefore, the METTL3/YTHDF2-
LINC02418-Trim21-PD-L1 axis contributes to NSCLC 
immunotherapeutic resistance. M2 phenotype tumour-
associated macrophages (TAMs) are enriched in the tumour 
tissues of patients with immunoresistant LUAD (89,90). 
Wu et al. (91) found that M2-TAMs function to promote 
immunoresistance by increasing METTL3 expression and 
the total m6A RNA level.

METTL3 functions in NSCLC radiotherapy resistance 

Ionizing radiation is the standard radiation therapy for 
NSCLC; particularly carbon-ion radiotherapy, a radical 
nonsurgical treatment with high local control rates and 
rare serious adverse events (92,93). A recent study found 
that NSCLC cells developed resistance to carbon ion 
radiotherapy that might be due to METTL3-mediated 
m6A modification. Xu et al. (94) showed that METTL3 
expression was increased in NSCLC cells with carbon-ion 
radiotherapy, which modified H2A histone family member 
X (H2AX) mRNA to decrease its expression, reducing DNA 
damage repair and cell survival.

In summary, these studies demonstrate that METTL3-
mediated RNA m6A methylation plays a significant role in 
modulating therapeutic sensitivity in NSCLC, highlighting 
METTL3 as a potential predictor or target of resistance to 
chemotherapeutic drugs, immunotherapy, and radiotherapy.

Prospective clinical applications 

Increased METTL3 expression in NSCLC tissues and 
advanced-stage lung cancers compared to adjacent tissues 
has been demonstrated (5). Furthermore, increased 
METTL3 expression triggers the onset and progression 
of NSCLC by modulating the expression for both coding 
and non-coding RNAs (5). Therefore, m6A modification 
by METTL3 could be useful as prospective diagnostic 
or prognostic biomarkers for NSCLC (5). For example, 
Zhang et al. (95) tested FTO and METTL3 as prognostic 
biomarkers for evaluating benign and malignant tumours 
and predicting outcomes in patients with NSCLC. These 
studies also underscore the potential of downregulating 
METTL3 expression or regulating METTL3 targets in 
NSCLC treatment. Li et al. (96) recently reported that 
ammonium tetrathiomolybdate enhanced cell growth at 
low concentrations by increasing METTL3 expression in 
LUAD. Inhibition of METTL3 significantly attenuated 

proliferation by enhancing the expression of the eukaryotic 
translation initiation factor (eIF), underscoring the pivotal 
role of METTL3 in governing protein synthesis and 
cellular growth (96). 

Currently, multiple methods have been reported for 
suppressing METTL3 expression in NSCLC treatment, for 
example, by using small-molecule inhibitors. As reported 
by Xiao et al. (97), STM2457, a small molecule, decreased 
METTL3 expression in NSCLC and increased PD-L1 
expression, improving immunotherapy outcomes based 
on PD-L1 upregulation. Consistent with these data, Yu  
et al. (98) showed that the targeted regulation of METTL3 
reprogramed the TME and improved immunotherapy. 
Interestingly, Du et al. (99) reported that miR-33a decreased 
the expression of METTL3 at both the mRNA and protein 
levels. They transfected miR-33a, targeting the 3'UTR of 
METTL3 mRNA, and attenuated survival and proliferation 
of NSCLC cell lines (99). In addition, Wei et al. (100) 
demonstrated that transfection with miR-600 decreased 
expression of METTL3 and induced apoptosis in NSCLC 
cell lines (as evidenced by increased Bax/Bcl-2 ratios) via 
the PI3K/AKT pathway. Moreover, Huang et al. (101) 
found that METTL3 upregulation led to increased m6A 
modification of miR-1246, promoting NSCLC progression 
by inhibiting the expression of paternally expressed 
gene 3 (PEG3). Conversely, knockdown of METTL3 
or overexpression of PEG3 suppressed the malignant 
behaviour of NSCLC cells. Chen et al. (102) demonstrated 
that simvastatin treatment induced decreased expression of 
METTL3, which inhibited EMT progression through an 
IGF2BP2-dependent m6A modification on the target EZH2 
mRNA (102). This suppressed the malignant characteristics 
of lung cancer, curbing further progression. 

Besides inhibiting METTL3 directly for NSCLC 
treatment, targeting METTL3-regulated RNAs may be 
promising therapeutically. For example, metformin has 
been reported to improve the prognosis of patients with 
malignant tumours by inhibiting METTL3-mediated m6A 
modification of THRAP3, RBM25, and USP4 mRNAs to 
repress their expression, hamper cell proliferation, and 
promote apoptosis (103). Besides, Feng et al. (104) reported 
that decreasing expression of METTL3 by β-elemene 
attenuated the malignant behaviour of NSCLC by 
inhibiting phosphatase and tensin homolog (PTEN) mRNA 
degradation. RNA binding motif 10 (RBM10) is a potential 
tumour-suppressor protein that inhibits proliferation and 
promotes NSCLC apoptosis. Cao et al. (105) found that 
RBM10 functions as an RNA-binding protein that inhibits 
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the m6A methylation of MALAT1 by recruiting METTL3 
and altering phosphorylation of the downstream PI3K/
AKT/mTOR pathway, ultimately inhibiting the invasion 
and migration of NSCLC by binding and regulating 
MALAT. Similarly, miR-1915-3p suppression significantly 
impedes migration, invasion, and EMT in NSCLC tissues 
and cell lines (106). Pan et al. (106) reported that METTL3/
YTHDF2 signalling decreased miR-1915-3p levels through 
transcription factor KLF4, which directly binds to the 
3'UTR of SET mRNA and modulates its expression via 
JNK/Jun and NF-kB signalling (Table 1). 

In summary, elevated METTL3 expression plays a 
crucial role in NSCLC pathogenesis via diverse mechanisms 
and pathways. Therefore, METTL3 is a promising 
biomarker for the clinical diagnosis and prognosis of 
NSCLC. Moreover, downregulating METTL3 expression 
or regulating its targets may be effective by inhibiting cell 
proliferation and progression or inducing apoptosis. 

Conclusions 

Ongoing studies on m6A modification show an increasing 
number of reports highlighting the role of METTL3 in 
regulating NSCLC. However, a comprehensive summary 
and analysis of the relevance and potential of METTL3 
in the pathogenesis, clinical diagnosis, treatment, and 
prognosis of NSCLC are lacking. This review provides 
an updated summary of studies on METTL3 in NSCLC 
initiation, progression, chemoresistance, immunoresistance, 

and radioresistance and analysis their interrelationships, 
particularly their potential significance in clinical settings.

Our review analyzes how METTL3 contributes to 
the tumorigenesis and progression of NSCLC, especially 
LUAD, by regulating both mRNA and non-coding RNAs 
through distinct mechanisms. These include the regulation 
of cellular functions, including stemness, proliferation, 
migration, pyroptosis, autophagy, and apoptosis. Moreover, 
the mechanism of METTL3 action in NSCLC also 
involves the regulation of biological processes including the 
EMT, cell cycle, angiogenesis, TME, energy metabolism 
of the Warburg effect and glycolysis, immune escape, and 
immune microenvironment.

These data provide strong evidence to support the use 
of METTL3 expression as a promising biomarker for the 
diagnosis and prognosis of NSCLC. The downregulation 
of METTL3 may provide a potential therapeutic strategy 
for NSCLC treatment by inhibiting cell proliferation and 
progression or inducing cell death. 

However, despite extensive research, we infer that 
current studies on METTL3 modifications in NSCLC are 
limited in their ability to explain the dynamic regulatory 
mechanisms involved in the onset and progression of 
these conditions. Although some studies have suggested 
that targeting METTL3-related regulatory factors and 
signalling pathways may have therapeutic potential for 
NSCLC, further large-scale clinical data are needed to 
support this hypothesis. Therefore, we propose some new 
avenues for future investigation. First, adenosine-to-inosine 

Table 1 Downregulated METTL3 for NSCLC treatment

Inhibitor
METTL3

Target Function Reference

STM2457 PD-L1 Improve immunotherapy (97)

miR-33a METTL3 Attenuate proliferation (99)

miR-600 Bax/Bcl-2 ratio Induces apoptosis (100)

PEG3 miR-1246 Inhibit malignant behaviour (101)

Simvastatin EZH2 Inhibit EMT progression (102)

Metformin THRAP3, RBM25, USP4 Hamper proliferation, promote apoptosis (103)

β-elemene PTEN Malignant behaviour (104)

RBM10 MALAT1 Inhibit proliferation, promote apoptosis (105)

miR-1915-3p KLF4 Impede migration, invasion, EMT (106)

Downregulation of METTL3 directly or indirectly by different inhibitors rescues NSCLC via different targets and mechanisms. NSCLC, non-
small cell lung cancer; PD-L1, programmed cell death ligand-1; EMT, epithelial-mesenchymal transition.
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(A-to-I) editing of RNA is a common RNA modification in 
mammals that is catalysed by adenosine deaminase acting on 
RNA (ADAR) enzymes (107). Several groups have indicated 
the interaction between METTL3 and ADAR-mediated 
RNA editing in multiple cancers, indicating that METTL3 
RNA is subject to RNA editing; moreover, METTL3 itself 
participates in RNA editing, e.g., in glioma (107). However, 
to the best of our knowledge, studies of the interaction 
between METTL3 and ADAR-mediated RNA editing in 
NSCLC are lacking. Therefore, exploring the interaction 
between METTL3 and ADAR-mediated RNA editing 
might be a novel perspective for understanding mechanisms 
of NSCLC pathogenesis. Second, although several methods 
have been reported to be effective in inhibiting METTL3 
expression, exploring more specific methods with large-scale 
clinical data are needed for guiding more precise targeted 
therapies in clinical setting. Finally, the downstream 
targets of METTL3 need to be further identified and 
characterized, which will help us further understand the 
mechanism of METTL3 in NSCLC. 

To sum up, this review has analysed the complex 
relationships between METTL3 and NSCLC, enhancing 
our understanding of its pathogenesis and treatment from 
a novel perspective of METTL3-mediated RNA m6A 
modification, serving as a valuable reference for both 
research and clinical settings. 
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