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Capturing chemical intuition in synthesis of metal-
organic frameworks
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Kyriakos C. Stylianou 1 & Berend Smit 1

We report a methodology using machine learning to capture chemical intuition from a set of

(partially) failed attempts to synthesize a metal-organic framework. We define chemical

intuition as the collection of unwritten guidelines used by synthetic chemists to find the right

synthesis conditions. As (partially) failed experiments usually remain unreported, we have

reconstructed a typical track of failed experiments in a successful search for finding the

optimal synthesis conditions that yields HKUST-1 with the highest surface area reported to

date. We illustrate the importance of quantifying this chemical intuition for the synthesis of

novel materials.
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S ince two decades ago, when metal-organic frameworks
(MOFs) emerged as a versatile class of materials for variety
of applications, the chemistry and applications of MOFs

have been the subject of a large body of research across several
disciplines1,2. MOFs were described by the concept of reticular
chemistry as materials composed of structural building blocks
assembled on a net3. The scientific excitement about MOFs ori-
ginates in the fact that by modifying the building blocks, i.e.,
changing the metal nodes or organic ligands, MOFs can be tuned
for a given application. Therefore, in principle, the number of
possible materials is infinitely large; however, since synthesis and
optimisation of these materials can be time-consuming and
laborious4, only a fraction of them have ever been synthesised.

The synthesis of MOFs involves the self-assembly of the
structural building blocks (known as secondary building blocks
(SBUs)) in a 3D periodic network. However, our understanding
of the self-assembly procedure, i.e., the kinetics and energetics of
framework bond formation, nucleation, and crystal growth, has
remained too limited to guide the synthesis of these materials.
Specifically, since diverse and numerous chemistries exist in
MOFs, even the known synthesis conditions for one MOF are
typically not transferable to new MOFs, and accordingly, this has
prevented chemists to draw a general synthetic route for these
materials. The parameters for a typical MOF synthesis include the
selection of solvents and their composition, temperature, and
reaction time, etc. Considering each parameter as a variable, one
needs to probe the high-dimensional chemical space constructed
by these variables to find sets of synthesis conditions leading
to the formation and crystallization of the desired MOF. Without
any prior knowledge, one could envision a brute force approach
and perform, say, a large grid search of the chemical space using
robotic synthesizers. The cost of this approach increases expo-
nentially with the number of variables, e.g., testing only ten
choices for a space of nine variables requires a billion experi-
ments. With such poor statistics, one may wonder how so many
MOFs could have been synthesized? Clearly, the fact that thou-
sands of MOFs have been synthesized5 indicates that chemists
have been able to beat brute force statistics by orders of magni-
tude. Given that at present there are at best some empirical
guidelines, one can argue that their selection of experimental
conditions must have been positively biased by the chemical
intuition that synthetic groups have acquired. The aim of this
work is to develop a systematic approach to capture this chemical
intuition using machine learning. Recently, machine learning is
starting to be applied to chemical synthesis6–12. Most of these
efforts focus on predicting the outcome of a specific reaction. For
instance, Raccuglia et al.10 proposed and tested successfully the
synthesis of a material by machine learning failed experiments
using decades of old notebooks of chemical synthesis. Ahneman
et al.8 trained a random forest to predict the performance of the
Pd-catalyzed Buchwald-Hartwig reaction.

For MOF synthesis, the ligands and metal nodes are in most
cases sufficiently simple or even commercially available that their
synthesis is often not the bottleneck. Most time and effort are
spent in finding the optimal conditions for the ligands and metal
nodes to self-assemble into crystals. While publications typically
report only the most successful synthesis conditions, the chemical
intuition is built from all experiments, in particular, the sub-
stantial number of partially successful and failed experiments.
Hence, in this work, we start with reconstructing these unre-
ported data for a prototypical MOF in the search for the optimal
synthesis conditions. By analysing the generated data using
machine learning, we capture and quantify the chemical intuition
that researchers develop in their search for these optimal condi-
tions. Later, we show the significance of this quantified intuition

in synthesis of another MOF where we show the intuition can be
transferred while the detailed chemistry is not transferable.

Results
Synthesis and optimisation of the surface area of HKUST-1. To
illustrate our methodology, we focus on a real-life example of
MOF synthesis. HKUST-1 (Hong Kong University of Science and
Technology, also known as Cu-BTC, which is made up of Cop-
per ions and 1,3,5-benzenetricarboxylic acid (BCT)) is a well-
studied MOFs that has been synthesized by a large number of
different groups (see the Supplementary Note 9 for a summary of
the different synthesis methods)13–16. Although all groups report
high-quality powder X-ray diffraction patterns, the different
samples show Brunauer–Emmett–Teller (BET) surface area ran-
ging from ~300 to ~2000 m2 g−113. The comparison of the dif-
ferent synthesis conditions (see Supplementary Note 9 for details)
shows that they differ mainly in solvent composition (e.g., mix-
tures of DMF, water, different alcohols, and others), temperature
(25°–180 °C), and methods (e.g., conventional heating, micro-
wave, electrochemistry, mechanochemistry, ultrasonic, etc.). At
present, we lack the knowledge to explain why there are such
differences in the BET surface areas, yet from a practical point of
view it is important to obtain this material with the highest
surface area 17.

One can safely state that this body of work on HKUST-1
involves hundreds if not thousands of experiments, of which only
the successful conditions have been published. In this work, we
aim to make the case that important and useful information can
be obtained, if these groups would also have published their
(partially) failed experiments. We use a robotic synthesis
procedure to efficiently regenerate part of the failed and partially
successful experiments that have been performed in the course to
synthesize this material. Using a robotic synthesis platform
improves the reproducibility of the generated data. Our robotic
synthesizer uses microwave heating and the synthetic procedure
involves selecting the setting of 9 different parameters that fully
specify the synthesis conditions. Hence, a particular experimental
condition can be described as a point in a 9-dimensional
(chemical) space (Supplementary Table 1 and Supplementary
Note 1). We have selected the ranges of synthesis conditions such
that they include those solvents and temperatures that have been
reported as successful in the literature, but not necessarily using
microwave heating. Our robot can carry out 30 reactions per
cycle, where a cycle is completed typically within one day. A
simple grid search to explore all possible experimental conditions
would require of the order of 109 robot cycles, which illustrates
the need of this chemical intuition, or in our case, in which we
impose a lack of intuition, enhanced sampling techniques.

In the case of HKUST-1, several quite different successful
synthesis conditions have been reported. Since the location of these
sets of conditions are not known a priori, and for instance, might be
clustered in relatively small islands in the high-dimensional space,
pinpointing them is genuinely non-trivial. Simple gradient-based
algorithms are discarded here due to the high probability of
winding up in a local optimum. Genetic algorithms (GAs) have
proven to be a robust global optimization algorithm for searching
such a complex space18,19. The optimisation strategy in a GA is
inspired by natural selection, nature’s optimisation strategy. The 9-
dimensional synthesis vector takes the role of the chromosome,
carrying the synthesis variables as its genes, which are evolved via
selection, crossover, and mutation (see Supplementary Note 1 for
details). Only the mutated genes of successful parents are
transferred to the next generation, thus optimizing the synthesis
conditions generation by generation.
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We start the search for the optimal synthesis conditions
without any chemical intuition, i.e., all components of the 9-
dimensional synthesis vector are considered equally important.
The first run aims to cover the experimental space as widely as
possible, using the MaxMin method20, to obtain the set of 30
most diverse synthesis conditions. Figure 1a shows these
conditions in a multidimensional scaling (MDS) projection.
MDS-plots visualize the similarity between individuals in a
dataset21. In this study, the Euclidian distance of normalized
variables measures the similarity between synthesis trials. In
Fig. 1a, similar synthesis trials are mapped close to each other
while dissimilar experiments are far from each other on the map
(see Method section for details). As expected, but not intuitively
obvious, in such a high-dimensional space the most diverse set is
located at the edges. The synthesis is attempted for each of the
conditions, and the crystallinity and phase purity of the resulting
samples are analyzed. Using those metrics for the objective
function, we evolve the second generation and perform synthesis
for all 30 new conditions. We measure crystallinity, phase purity,
and BET surface area of these samples, and combine those
metrics for the objective function for the third generation (see
Supplementary Note 1 for details).

Figure 1b shows the progress in crystallinity over the three
generations of experiments. The GA generations contain several
different synthesis conditions that yielded samples with ideal
powder X-ray diffraction pattern and phase purity. For highly
crystalline samples in each generation, we determined the BET
surface area (see Table 1), and, not surprisingly, find a wide range
of BETs, including the largest reported BET to date. Figure 2
illustrates that the optimal conditions for the synthesis of HKUST-
1 yielded large crystals, while the samples with a lower BET

showed intergrowth and other deviations that are not captured by
powder diffraction analysis. Since the BET of 2045m2 g−1 close to
the theoretical maximum of 2153m2 g−122, there was no need to
further continue our GA using the BET as objective function.

Capturing chemical intuition using machine learning. The
common practice is to claim victory and publish the synthesis
conditions that yielded the highest experimentally measured BET
value. Instead, we would like to focus on the observation that to
achieve this high BET surface area, we have over 120 failed and
partly successful experiments. In the following, we analyze this
data to quantify the relative importance of the experimental
variables on the outcome of the synthesis. We use the embedded
technique in random decision forest, a machine learning regres-
sion model (See Supplementary Note 8 for discussion and com-
parison to other techniques). The result is shown in Fig. 3a and
provides the relative impact of the probed experimental para-
meters on crystallinity and phase purity. For example, changing
the temperature has three times more impact than changes in the
reactant ratio. It is this type of information that a synthetic
chemist will typically transfer to the next experiments; knowingly,
as rules of thumb, or, subconsciously, in the form of “chemical
intuition.” Machine learning of the recorded data allows us to
quantify this intuition, and to use it for subsequent experiments.

Without prior knowledge, the difference between synthesis
conditions was quantified as the Euclidian distance in 9D space
using an equal weight of all parameters. Building on the chemical
intuition extracted from our machine-learned model, we now
compute the distance in 9D space using the chemical intuition to
weight each dimension in the distance measure. If we normalize
these weights such that the most important variable has a value of
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Fig. 1 Optimisation of synthesis condition of Cu-HKUST-1. a Multidimensional scaling projection of the 9-D space of parameters onto a 2-D plane. In this
representation, similar conditions are plotted close to each other, and connected if they have normalized pairwise distance below 0.1. Grey dots visualize
the extent of the entire bounded (chemical) space, represented by mapping the set of 1000 most diverse synthesis conditions obtained from the MaxMin
method. The red dots are the first 30 of this set which are used for the first experiments (G-1), the orange and blue dots mark the second (G-2) and third
(G-3) generations obtained from the first via the genetic algorithm (GA). b Progress in crystallinity during GA optimization. The colour of dots indicates the
generation in the GA. (HKUST=Hong Kong University of Science and Technology)

Table 1 BET surfaces and the corresponding synthesis conditions of the five samples with the highest crystallinity

Sample BET [m2 g−1] H2O
[ml]

DMF
[ml]

EtOH
[ml]

MeOH
[ml]

iPrOH
[ml]

Reactants
ratio

Temperature
[°C]

Microwave
power [W]

Reaction
time [mins]

1 367 0.5 0.0 5.0 0.0 1.0 0.9 120 174 58
2 526 0.5 1.0 0.0 4.0 0.0 1.8 176 246 44
3 935 0.0 4.5 0.0 0.0 0.0 1.8 123 200 7
4 1596 0.0 4.0 0.0 0.0 2.0 0.8 200 240 60
5 2045 0.5 2.5 2.0 0.0 0.0 1.5 140 200 20
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1, we obtain a chemical space shown in Fig. 3b. This figure shows
how the chemical space for HKUST-1 shrinks in the new metric
(the Euclidian distance, weighted by the importance of variables),
illustrating that less samples can be placed along less important
dimensions without loss of sampling accuracy. Therefore, since
the chemical space can be sampled much more efficiently, the
chance of success is larger for the same number of trials.

Application of learned chemical intuition. We now illustrate
transferring the quantified chemical intuition to a new synthesis.
Most studies on HKUST-1 are focused on the Cu(II) version, but
HKUST-1 can also be synthesized with Zn(II)23. We can now
take three approaches to synthesize Zn-HKUST-1: First, we could
assume that the synthesis of Zn-HKUST-1 to be similar to Cu-
HKUST-1 and simply reuse the successful conditions of Cu-
HKUST-1. For our case, the equivalent of a literature search of
successful synthesis conditions for Cu-HKUST-1 is simply testing
those optimal synthesis conditions we found for Cu(II). None of
the top ten synthesis conditions for Cu(II) yield crystals for Zn
(II). Without chemical intuition, this would put us back to square
one, and we would have to restart the procedure, i.e., we use the
same set of most diverse conditions as used for Cu-HKUST-1.
Using our chemical intuition, however, we can sample the space
more intelligently by assigning the previously determined
importance of variables, resulting in denser sampling of more
important experimental parameters. For this weighted set of 20
diverse conditions, two conditions yielded Zn-HKUST-1 crystals.

The difference in weighted and unweighted synthesis condi-
tions is illustrated in Fig. 4. As we are sampling a high-
dimensional space with a low number of points, the most diverse
conditions lie at the boundaries of each dimension, and only start
populating the interior with sufficient sample points. In the
weighted space representation (Fig. 4b), the set generated without
prior knowledge includes several points that are so close to each
other that they are not expected to yield additional information.
Having determined the (lack of) variation of the sample fitness
for the different variables, the variables of lesser importance may
be sampled less frequently without loss of accuracy. In fact, the
reweighted set samples the most important parameters roughly
10 times more frequently than the least important ones.

We note that our 20 intuition-based samples would need to be
replaced by order of four to five thousand samples without
intuition in order to maintain the same sampling accuracy (see
Supplementary Note 7), illustrating a dramatically increased
chance of successful synthesis for a chemist who leverages
chemical intuition.

Th example of Cu-HKUST-1 and Zn-HKUST-1 illustrate how
quantifying and reusing chemical intuition can be beneficial in a
case, where the chemistry is too specific for the synthesis

conditions themselves to be transferable. In this work, we selected
HKUST-1 as a case study to illustrate the methodology.

Discussion
The main aim of this work was to develop a simple, yet powerful
framework that allows one to use failed and partially successful
experiments to systematically improve synthesis strategies. This
framework does not rely on a detailed understanding of how the
different synthesis conditions impact the outcome. Rather, it
relies on the notion that, over the course of many experiments,
chemists develop an intuition on how to approach the problem of
finding the right synthesis conditions. Here, we have developed a
simple way of capturing this chemical intuition using machine
learning.

Our case study of HKUST-1 was intended as a proof of prin-
ciple that we can capture and quantify chemical intuition, and
effectively use it to develop more efficient synthesis strategies. We
note that the data produced in this work are ideal from a machine
learning point of view. Using a robotic platform provides precise
control over the synthesis variables which results in less noise in
the outcome of reactions and improved reproducibility (See
Supplementary Note 12 for details). Furthermore, we are using
only one synthesis technique. This allows obtaining an accurate
estimate of the chemical intuition using a relatively small set of
experiments. If all groups that have worked on the synthesis of
HKUST-1 would have published also their failed and partially
successful experiments, the data would be significantly less
homogenous because of other influencing variables, e.g., size of
reactor, purity of reactants, etc., but the much larger data set
would also make it easier for machine learning to filter out these
inhomogeneities.

Figure 5 summarizes how we envision the three components of
our framework, synthesis, optimization, and machine learning, to
interact. For example, one can use the GAs to optimize the
synthesis conditions while, in parallel, machine learn the relative
importance of the experimental variables, leading to more
rational experiments. This is the approach we have used for
HKUST-1. For more complex synthesis, however, one can take
this approach one step further by leveraging the machine learning
model in a second way: to score the next generations of the
genetic algorithm in silico, going back to experiment only once
convergence is reached. Appropriately fine-tuned, this has the
potential to significantly reduce the number of experiments
required (See Supplementary Note 4 for details).

An important practical question is how we envision our
approach can be used by other groups. The screening strategy we
used can be easily adapted to other synthesis problems. Define the
chemical space, generate the most diverse set of conditions, and
use a combination of GAs and machine learning to find the
optimal target. Of course, one can only take advantage of the

Fig. 2 Scanning electron micrograph of several Cu-HKUST-1 samples. All these samples have high crystallinity (See Supplementary Note 10) but show a
wide range of surface areas (see Table 1 for surface areas and Supplementary Figure 11 for more images). Scale bars for sample 1, sample 3 and sample
5 show 5 μm, 4 μm, and 10 μm, respectively. (HKUST=Hong Kong University of Science and Technology)
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“chemical intuition” in generating the set of most diverse con-
ditions if we have a sufficient number of failed or partially suc-
cessful experiments using a similar synthesis technique and
similar chemical space. A key component here is that the more
groups share their failed and partially successful experiments, the
more versatile the model’s chemical intuition will become. In this
respect, each MOF synthesis group has a similar challenge, once
the ligands and metal nodes are synthesized: how to find the right
synthesis conditions that crystals will form? The quantified
“intuition” by machine learning is by no means different from the
intuition developed by chemist in the lab; it is useful in many
cases, but one always need to keep in mind that in some cases the
chemistry can be surprisingly different. The software we have
developed for this study is available as a web application on the
Materials Cloud24, together with the “chemical intuition” which
we will be continuously updating and adopting to the needs of the
community. If a large number of groups involved in MOF
synthesis agree on a systematic reporting of failed or partially
successful experiments, this can be an extremely powerful tool
that has the potential to change the way our research community
approach synthetic chemistry.

Methods
Methodology overview. To reconstruct the not reported (partially) failed and
successful data in the literature, we simulate the steps that are taken by someone
with no chemical intuition for synthesis of a MOF by a genetic algorithm (GA)
optimization procedure. We start with the set of most diverse synthesis conditions
based on a simple algorithm for the MaxMin diversity problem20. Chemical
intuition can be incorporated by assigning appropriate weights to different vari-
ables. The diverse set constitutes the first generation of the optimization cycle. A
robotic synthesis and characterization approach is used for synthesis of MOFs, and
measurement of X-ray diffraction patterns. We rank the experiments based on
their crystallinity and BET surface area. This ranking is fed to the genetic algorithm
to generate a new generation of synthesis conditions. Afterwards, the new gen-
eration is synthesized and characterized. This procedure continues until it satisfies
the objective function of the synthesis. All the data generated in the synthesis
procedure is used to train a machine learning model to assess the importance of
synthesis variables. Below we summarize the main steps for each part of this
procedure. A more detailed description can be found in the Supporting
Information.

Genetic algorithm. The genetic algorithm (GA) was used as it is implemented in
the global optimization toolbox of MATLAB25. The population of each generation
was fixed to thirty. At each step, the GA was initialized with the last generation and

its individuals’ fitness. Migration, crossover and mutation genetic functions were
applied. The ranking of the individuals was used as the fitness function which
determines the chance of each parent in generating children in new generation. The
optimization starts with the set of most diverse individuals (see Supplementary
Note 2) to ensure exploration of the chemical space with no bias. For details, see
Supplementary Note 1.

Robotic synthesis and characterization. The synthesis was carried out in a
microwave synthesis reactor (Biotage, Uppsala, Sweden) affixed on a HT robotic
platform (Chemspeed technologies, Füllinsdorf, Basel, Switzerland). The synthesis
steps inclusive of handling and dispensing of the reactants (metal salt, ligand,
solvents) in to the microwave reaction vials, stirring of the dispensed reactant
mixture, capping, crimping, and the transportation of the microwave reaction vials
to the microwave reactor cavity was completely automated and executed using the
Chemspeed autosuite software. All the chemicals were purchased from commercial
sources and used without further purification.

Powder X-ray diffraction (PXRD) patterns were collected using the powder
diffractometer Bruker D8 Advance with TWIN/TWIN optics and LYNXEYE XE-T
detector equipped with high throughput sample changer. The samples were loaded
on a silicon (no background) sample holder and the PXRD pattern was collected in
a 2θ range between 2–20 using a monochromatic copper (Cu) X-ray source (λ=
1.54056 Å). The sample holders were rotated about their central axis during data
collection, minimizing potential effects from preferred orientation. The
diffractometer was controlled using the Bruker’s EVA software. All measurements
were performed at room temperature. Crystallinity and phase purity of samples
were assessed by the full-width at half maximum (FWHM) of the diffraction peaks
of the samples’ powder X-ray diffraction patterns, and with a penalty in fitness for
extra peaks compared to the simulated pattern. N2 isotherms (77 K) were recorded
to apply the Brunauer–Emmett-Teller (BET) model in the relative pressure range
of 0.05–0.30 to determine the surface area of the HKUST-1 MOFs. The isotherms
were collected by using an IGA system (Intelligent Gravimetric Analyzer, Hiden
Isochema Ltd., Warrington, UK) and the BELSORP mini system (MicrotracBEL
Corp., Osaka, Japan). Prior to isotherm collection, the HKUST-1 samples were
activated at 220 °C under dynamic vacuum for 6 h to get the desolvated HKUST-1
(dark blue).

Machine learning. The random forest ensemble learner was used for assessing the
importance of variables26. Random forest is a supervised learning algorithm for
classification and regression problems. A bootstrapped aggregated forest of 200
decision trees with maximum depth of three was trained to predict the outcome of
the synthesis based on the synthesis variables. The mean absolute error (MAE) of
the predictions was smaller than 9% and 14% for cross-validation and not seen data
points, respectively. The importance of variables was estimated by permuting out-
of-bag observations. The machine learning algorithm was implemented first using
the statistics and machine learning toolbox of MATLAB, and then ported to
python (using the scikit-learn package27) for the web application. For more details
see Supplementary Note 3.
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Fig. 3 Captured chemical intuition and the chemical space in the new metric. a Relative impact of the 9 parameters on Cu-HKUST-1 synthesis, as obtained
from machine learning. Maximum impact is normalized to one. The error bars show the standard deviation of the relative importance of variables over
1000 retraining of the random forest with different unique random seeds. b Multidimensional scaling projection of the experimental conditions, in which
the distance is weighted by the relative importance of the variables. The colour of dots indicates the generation in the GA. The grey dots represent the
chemical space in the new metric. Grey dots are the 1000 most diverse conditions obtained using MaxMin method without weighting distances. (HKUST
=Hong Kong University of Science and Technology)
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Multidimensional scaling plots. Multidimensional scaling (MDS) provides a
visual representation of data based on the pairwise distances, similarity or dis-
similarity within a set of points in a high-dimensional space. Here, we choose
metric MDS using the weighted Euclidean pairwise distances between points in
both high-dimensional (HD) and low-dimensional (LD) spaces. The algorithm
aims to preserve the HD distances between objects in the LD representation. The
metric for evaluation of how accurate the LD representation is compared to the
high-dimensional distances is called the stress function:

S ¼ P
i;j¼1;::N di;j � �di;j

� �1=2
.

This function returns the residual sum of squares of the distances in the HD
space (d) to the LD space (�d). We use stress majorization algorithm to minimize
the stress function as implemented in scikit-learn python package. The weights in

the weighted Euclidian distance function, da;b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i
wiðai � biÞ2

s

, are set to 1 for

all variables in Figs. 1a and 4a (no chemical intuition), and equal to the weighted
importance of variables in Figs. 3b and 4b (using chemical intuition).

Code availability. The developed web application software for this study is avail-
able in Materials Cloud via https://doi.org/10.24435/materialscloud:2018.0011/v3.

Data availability
All the data and the developed software in this manuscript are available in
Materials Cloud via https://doi.org/10.24435/materialscloud:2018.0011/v3. Access
to any other materials can be requested by writing to the corresponding author.
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