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Many types of renal disease eventually progress to end-stage renal disease,

which can only be maintained by renal replacement therapy. Therefore, kidney

diseases now contribute significantly to the health care burden in many

countries. Many new advances and strategies have been found in the

research involving kidney diseases; however, there is still no efficient

treatment. Extracellular vesicles (EVs) are cell-derived membrane structures,

which contains proteins, lipids, and nucleic acids. After internalization by

downstream cells, these components can still maintain functional activity

and regulate the phenotype of downstream cells. EVs drive the information

exchange between cells and tissues. Majority of the cells can produce EVs;

however, its production, contents, and transportation may be affected by

various factors. EVs have been proved to play an important role in the

occurrence, development, and treatment of renal diseases. However, the

mechanism and potential applications of EVs in kidney diseases remain

unclear. This review summarizes the latest research of EVs in renal diseases,

and provides new therapeutic targets and strategies for renal diseases.
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1 Introduction

The incidence of kidney disease is increasing and has become a medical burden for

many countries (Lozano et al., 2012). Many types of kidney diseases, such as acute kidney

injury (AKI), nephrotic syndrome, and diabetic nephropathy, eventually progress to end-

stage kidney disease accompanied with many complications (Chawla and Kimmel, 2012).

At present, there is no effective treatment for end-stage renal disease, and the main

treatment is based on renal replacement therapy.

Extracellular vesicles (EVs) are cell-derived, membrane-bound structures loaded with

contents including proteins, lipids, and nucleic acids (Skog et al., 2008). Notably, EVs used

to be considered as metabolic waste produced by cells (Cocucci et al., 2009). In 1967, Wolf

proposed that ‘the type of platelet dust’ is the basis for activation during platelet storage

and confirmed that EVs might be functional (Wolf, 1967). The bioactive components

retain the characteristics of prosecretory cells and travel between cells or tissues. After

being endocytosed by downstream cells, EVs function as secretory cells and affect the

performance of downstream cells (Kalluri and LeBleu, 2020). Many cells, including

dendritic cells, mast cells, T cells, B cells, and epithelial cells can produce EVs (Valadi et al.,
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2007). To date, no cell has been identified that is unable to secrete

EVs, indicating that the secretion of EVs by living cells is a

universal phenomenon, and EVs-mediated information

transmission may be a common feature of communication

between cells. EVs from different cells vary in their contents

and functions.

Recently, EVs have been found to play an important role in

information exchange between cells (Maas et al., 2017). EVs

produced out of the cell can be either paracrine to nearby cells or

be internalized by other cells at distance. EVs are usually

internalized by host cells due to their unique membrane

structure and possible receptor-ligand binding mode, thereby

affecting the phenotype of host cells (Mulcahy et al., 2014).

Recently, this feature of EVs has been explored for their use

as a carrier for certain poorly specific drugs, such as nanoparticle,

during targeted therapy (Kooijmans et al., 2016; Piffoux et al.,

2018). Moreover, exosomes secreted into tissue or body fluids

(such as urine) have become a potential early diagnostic target for

diseases (Merchant et al., 2017). For example, Wilm’s tumor-1

(WT-1) in urine exosomes can be used as a diagnostic indicator

for diabetes (Kalani et al., 2013).

In this review, we emphasize on the updated progress of EVs

in kidney disease, focusing on the progress in the research of

urinary EVs, the research and application of EVs derived from

stem cells in the kidney, and the prospects of diagnosis and

treatment of EVs in kidney disease (Erdbrügger and Le, 2016;

Aghajani Nargesi et al., 2017; Merchant et al., 2017) (Figure 1).

2 The generation, characteristics and
isolation secmethods of extracellular
vesicles

Based on their production, size, and function, EVs are

currently divided into the following three categories:

exosomes, microvesicles, and apoptotic bodies (van der Pol

et al., 2012). Active cells generally possess endocytic activity to

form endosomes, which are converted into multivesicular bodies

(MVBs) through a series of processes. During the maturation of

MVBs, a fraction of them degrades, while the remaining fuse with

the plasma membrane to release their contents called exosomes

(30–100 nm in diameter). Exosomes contain molecules such as

heat shock proteins, transmembrane four superfamily (cluster of

differentiation (CD)9, CD63, CD81), lipids, and RNAs, etc.,

(Ohno et al., 2013). Components of the endosomal sorting

complex required for transportation are involve in the sorting

of MVBs(Colombo et al., 2013). Therefore, interference with

endosomal sorting complex required for transportation affects

the production of exosomes. Microvesicles, also called exfoliated

vesicles, having a volume of 100–1000 nm primarily originate

from the cytoplasm. Microvesicles directly shed from the plasma

membrane and contain molecules such as phosphatidylserine,

integrin, selectin, and CD40 ligand (Lv et al., 2019a). Apoptotic

bodies are mainly produced from apoptotic cells, having

diameters more than 1000 nm (Caruso and Poon, 2018). The

classification and nomenclature of EVs are still controversial,

primarily due to limitation of purification methods. Perhaps the

nomenclature might evolve with further research. In this review,

we have referred to the 2018 EVs guidelines for nomenclature

(Théry et al., 2018). All the ongoing research focuses on

exosomes and microvesicles. Therefore, this review emphasizes

on exosomes and microvesicles in kidney diseases (Figure 2).

There are several extraction methods for EVs, based on their

size and biological activity. These include differential

ultracentrifugation, density gradient centrifugation, filtration,

precipitation, and immunoseparation, and some extraction

kits based on these basic principles (Lobb et al., 2015;

Vergauwen et al., 2017). Among these, the most commonly

used method is ultracentrifugation, which first separates cell

debris and other impurities at different speeds and eventually

extracts EVs under high-speed conditions. For instance,

microvesicles and exosomes can be separated at approximately

10,000 ×g and 100,000 ×g, respectively (Théry et al., 2006).

Ultracentrifugation is the most common and accepted method

for EVs extraction. High purity exosomes can be extracted by

ultracentrifugation, but the conditions of centrifugation are

related to the viscosity of the sample (Xu et al., 2016).

Samples with higher viscosity, such as serum, are usually

centrifuged at longer speeds and times (Livshits et al., 2015).

Density gradient centrifugation is usually combined with

centrifugation to improve the purity of exosomes. The

common carrier is sucrose. Density gradient centrifugation

can separate particles with different densities and is suitable

FIGURE 1
Extracellular vesicles (EVs) play an important role in different
types of kidney diseases.
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for extracting exosomes with low content. However, it is very

strict to control the centrifugation time, otherwise it is easy to

appear impurity particles. The biggest problem of exosome

extraction by filtration method is that a large number of

exosomes are lost in the filtration process. Immunoseparation

method uses antibody-coated technology to extract and isolate

exosomes, but it is not suitable for large sample separation (Li

et al., 2017).

All the current extraction methods have specific sample

requirements, thus, limiting the application of EVs for

treatment or diagnosis. The identification methods for EVs

mainly focus on following three aspects: particle size,

morphology, and purity (Koliha et al., 2016). Nanoparticle

tracking analysis can detect the size and purity of EVs. An

electron microscope can determine the morphology as well as

also particle size of EVs. Western blotting can identify exosome

markers, such as CD63, CD9, and CD81. However, a single

method cannot confirm the identity of EVs, and a combination of

nanoparticle tracking analysis, electron microscopy, and western

blotting is requires (Franzin et al., 2022).

3 EVs and kidney diseases

Although majority of the research on EVs in the kidney

focuses on urinary EVs and stem cell-derived EVs, some recent

studies have focused on the EVs of renal intrinsic cells and

perirenal cells (Dominguez et al., 2017). EVs secreted by these

cells are also involved in communication and the development of

kidney diseases (Camus et al., 2012). Although the existing

research provides basic knowledge, further in-depth research

regarding the possible mechanism are urgently needed. Here,

EVs mainly act as a messenger of information exchange (Gildea

et al., 2014).

3.1 The role of extracellular vesicles in
acute kidney injury

In AKI, the current research focuses on the role of EVs

produced by renal tubular epithelial cells and those derived from

vascular endothelial cells (Livingston andWei, 2016; Dominguez

et al., 2018). In vitro studies, there have revealed that direct

administration of the epithelial-derived exosome activating

transcription factor 3 RNA can alleviate I/R renal injury by

directly inhibit the expression of monocyte chemotactic protein-

1 (Chen et al., 2014). Interestingly, this study demonstrated that

EVs derived from renal tubular epithelial cells function in an

autocrine manner. However, under nonoptimal conditions, EVs

produced by renal tubular epithelial cells seem to play a negative

role. For example, exosomes from albumin-stimulated renal

tubular epithelial cells could activate macrophages and induce

renal tubular interstitial inflammation through CCL2 mRNA (Lv

et al., 2018). Damaged epithelial cells produce exosomes

containing transforming growth factor beta 1, which activates

fibrosis (Borges et al., 2013). Hypoxic renal tubular epithelial cells

can release miRNA-23a-rich exosomes which activate

macrophages triggered their reprogramming into a pro-

FIGURE 2
Extracellular vesicles (EVs) are divided into three categories based on size and function, which include exosomes, microvesicles and apoptotic
bodies. Endosomes formed after endocytosis, and then become multivesicular bodies (MVBs) through a series of processes. MVBs are partly
transported to lysosomes for degradation and partly fusedwith the plasmamembrane or secreted to the outside of the cell to form exosomes due to
its special sorting mechanism. Microvesicles are directly detached from the plasma membrane.
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inflammatory state via suppression of the ubiquitin editor A20,

causing tubular interstitial inflammation (Li et al., 2019). The

microparticles produced by the activated vascular endothelium

can increase the expression of hypoxia-inducible factors in

human proximal tubular epithelial cells; however, the

beneficial or harmful effects of this activation may depend on

different pathological conditions and need further investigation

(Fernandez-Martínez et al., 2014). Moreover, platelet-derived

microvesicles secrete miRNA-191 to induce apoptosis of renal

tubular epithelial cells in I/R AKI (Wu et al., 2019).

3.2 The role of extracellular vesicles in
chronic kidney disease

In chronic kidney disease (CKD), EVs from damaged tubular

epithelial cells promote fibrosis (Liu et al., 2019). Interestingly,

tubular cell-derived exosomes have also been found to promote

cystic formation in polycystic kidneys (Ding et al., 2021). These

exosomes may promote fibrosis by promoting fibroblast

activation and recruiting macrophages. An increase in the

levels of circulating particle D factor may be related to

complement activation, while an increase in circulating

platelet EVs may be related to coagulation (Trappenburg

et al., 2012; Jalal et al., 2018). In patients with CKD

undergoing hemodialysis, hemofiltration is better than

ordinary dialysis. This could be because hemofiltration can

significantly reduce the numbers of miRNA 223 in circulation

and reduce vascular calcification (Abbasian et al., 2018). In

addition to the inherent kidney cells that can activate

inflammation, the EVs produced by inflammatory cells under

certain conditions also play a role. For example, the exosomes

produced by macrophages stimulated by calcium oxalate

monohydrate have a pro-inflammatory effect and enhance

renal cell interleukin (IL)-8 production and the migration of

neutrophils (Singhto et al., 2018; Singhto and Thongboonkerd,

2018). In vitro, the EVs from TNF-α-stimulated monocytes can

induce inflammation and proteinuria in human podocytes (Eyre

et al., 2011).

3.3 The role of extracellular vesicles in
diabetes nephropathy

In diabetes nephropathy, the difference in circulating EVs,

particularly miRNA, is indicative of diabetes (La Marca and

Fierabracci, 2017). Under high glucose conditions, mesangial

cells undergo apoptosis, which may be caused by miR-15b-5p

induction, and macrophage exosomes activate the glomerular

mesangial cell via the transforming growth factor beta 1/

Smad3 pathway (Zhu et al., 2019; Tsai et al., 2020). In

addition, berberine can reduce the release of exosomes from

mesangial cell and mesangial cell damage through the

transforming growth factor beta 1-PI3K/AKT pathway in high

glucose condition (Wang et al., 2018). The exosomes of

glomerular endothelial cells can also trigger epithelial-

mesenchymal transition and podocyte dysfunction under high

glucose conditions (Wu et al., 2017). Platelet microparticles also

play a negative role in diabetes, similar to that in AKI and CKD,

which is not only related to hypercoagulability, but also can

promote glomerular endothelial cell damage (Zhang et al., 2018a;

Yu et al., 2018).

3.4 The role of extracellular vesicles in
renal tumor

In renal tumors, microRNA-210 and microRNA-1233 in

circulation levels show statistically significant differences

between healthy people and patients with kidney cancer

(Zhang et al., 2018b). These differentially expressed

microRNAs may not only serve as an indication for the

outcome of tumors, but also have certain functions. Moreover,

EVs secreted by cancer cells themselves can promote endothelial

angiogenesis, which might be related to tumor metastasis and a

potential target for detection and intervention (Grange et al.,

2011; Gopal et al., 2016).

4 Urinary extracellular vesicles:
Potential disease markers

The study of EVs in the kidney diseases commenced with the

study of urinary EVs (Kanno et al., 1995). These EVs secreted in

urine are often produced from the nephron or renal tubules. The

components in these EVs, such as proteins or RNAs, can directly

or indirectly reflect the physiology of the urinary system

(Pisitkun et al., 2004). For example, markers such as podocin

and podocalyxin for podocytes, Aquaporin-1 for the proximal

tubule, CD9 and Type 2 Na-K-2Cl cotransporter for the thick

ascending limb of Henle, and Aquaporin-2 for the collecting

duct, all of these can be detected in urine EVs. The detectability of

these markers of renal intrinsic components in urine EVs also

demonstrates the great potential of urine exosomes (Pisitkun

et al., 2004). Interestingly, recent studies have also shown that

EVs in urine could also be originate from the circulation

(Pazourkova et al., 2016). Due to the easy of sampling and

availability of urine, EVs in urine have great potential for

noninvasive diagnosis. However, due to individual differences,

EVs in urine are difficult to quantify. At present, there are still

many bottlenecks in this field.

Most of the EVs in urine originate from nephrons or renal

tubules. They transport information from the original secretory

cells to the downstream cells. Research based on urine EVs

mainly focuses on the components, such as proteins or RNAs.

These components can serve as diagnostic marker for kidney
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disease and have become a new noninvasive diagnostic tool or

therapeutic target (Huebner et al., 2015; Zhang et al., 2016a; De

Palma et al., 2016; Lv et al., 2019b). For example, microRNA 29c

and CD2AP mRNA in urine EVs are related to kidney fibrosis;

microRNA-451–5p and WT-1 mRNA are related to diabetes;

microRNA-145, microRNA-141, microRNA-196a-5p,

microRNA-501–3p, and CDH3 mRNA are related to prostate

cancer; microRNA-204–5p is related to kidney cancer; and

microRNA-21–5p is related to epithelial cancer (Lv et al.,

2013; Lv et al., 2014; Filella and Foj, 2016; Mohan et al., 2016;

Royo et al., 2016; Matsuzaki et al., 2017; Rodríguez et al., 2017; Xu

et al., 2017; Abe et al., 2018; Kurahashi et al., 2019). Differences in

exosome RNA or protein have been detected in urinary EVs of

patients with bladder cancer, hypertension, and urinary tract

infection (Lee et al., 2018; Perez-Hernandez et al., 2018; Mizutani

et al., 2019). These differential expressions were found at early

stage or advanced stage which were suitable for early diagnosis or

progress detection, respectively. However, its specific application

still needs furthers research due to factors such as individual

variability. Although clinical application is difficult at present,

these potential markers are milestones for subsequent research

(Table 1).

Urine EVs contain proteins such as membrane proteins

and transport proteins, which are related to kidney function.

Aquaporins, particularly aquaporin 2, are critical proteins for

kidneys to process water. The urine EVs containing

aquaporin-2 can maintain a certain permeability, and the

changes of these proteins can reflect the changes in kidney

function (Sonoda et al., 2009; Abdeen et al., 2014; Miyazawa

et al., 2018). In AKI caused by I/R, the secretion of aquaporin-

1 and aquaporin-2 in urine exosomes is reduced, and the

secretion of exosome-related markers such as Alix and

TSG101 is increased at the later stage, suggesting that

urinary exosome secretion increases during fibrosis

(Asvapromtada et al., 2018). In an AKI model caused by

cisplatin and in patients with polycystic kidney disease, the

secretion of aquaporin-2 in the urine EVs decreases; detecting

changes in these membrane proteins in the urinary EVs can

help the diagnosis and evaluation (Pocsfalvi et al., 2015;

Sonoda et al., 2019).

Acute T cell mediated rejection and acute antibody mediated

rejection are very common in renal transplantation rejection, and

lack of specific detection indicators (Cornell et al., 2008). Recent

studies have shown that there are differences in plasma exosome

RNA in acute antibody rejection, especially CCL4, which can be

used as a predictive and diagnostic indicator of acute antibody

mediated rejection (Zhang et al., 2017). Moreover, in acute T cell-

mediated rejection, a urine exosome CD3 detection kit has been

developed with high efficacy and clinical translation prospects

(Park et al., 2017).

In addition to encapsulating some distinct proteins or small

RNAs, urine EVs can also carry some specific molecules of the

original cells, which can help in assessing the status of the original

cells, and further reflect disease evaluation. Podocyte-specific

EVs have been detected in urine EVs (Prunotto et al., 2013).

These EVs contain podocyte-specific markers, such as nephrin,

podocin, and WT-1, the urinary levels of which can reflect

podocyte injury (Abe et al., 2018; Zhang et al., 2019). These

podocyte-specific EVs can be sorted in urinary EVs for further

study. Diabetic nephropathy is accompanied by damage to the

structure and function of podocytes. Levels of podocyte-specific

EVs in urine was increased in patient with diabetic, suggesting

their role as a potential marker of diabetic nephropathy (Wu

et al., 2018). Urinary podocyte-derived EVs are increase in

patients with renal vascular hypertension (Kwon et al., 2017).

These increased EVs may reflect subsequent podocyte damage

after renal injury. In patients with preeclampsia, the proportion

of podocin-positive and nephrin-positive EVs in urine has also

increased (Gilani et al., 2017).

Moreover, some studies also focus on the unique

modifications of urinary EVs and the differences in specialized

detection methods. For example, the glycosylation modification

of urinary EVs is different in various diseases and could be used

as potential disease markers (Gerlach et al., 2013). However, the

TABLE 1 MiRNAs associated with kidney diseases in urine EVs.

Diseases miRNAs in urine EVs Model Up or down References

Diabetic Nephropathy miR-145 Human Up Barutta et al. (2013)

miR-451–5P Rats Up Mohan et al. (2016)

Renal fibrosis miR-29c Human Down (Lv et al., 2013), (Solé et al., 2015)

Autoimmune glomerulonephritis miR-26a Human Down Ichii et al. (2014)

Urothelial carcinoma miR-21–5p Human Up Matsuzaki et al. (2017)

Bladder cancer miR-375, miR-146a Human Down Andreu et al. (2017)

Prostate cancer miR-141 Human Up Mizutani et al. (2019)

miR-196a-5p, miR-501–3p Human Down Rodríguez et al. (2017)

miR-21, miR-204, miR-375 Human Up Koppers-Lalic et al. (2016)

miR-145 Human Up Xu et al. (2017)
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current problem is that Tamm Horsfall protein is also a highly

glycosylated protein, which easily co-precipitates and is difficult

to distinguish in research (Rosenfeld et al., 2007). Moreover,

changes in the abundance of V-ATPase subunits in urine

exosomes can reflect the kidney’s response to acid-base load;

similarly, there are differences in Raman spectroscopy of urine

EVs in patients with diabetic (Pathare et al., 2018; Roman et al.,

2019).

The mechanism through which EVs meditate the exchange

of information between cells is still questionable. A recent guess

called genetic transfer was relatively new. The exosomes

produced by kidney stem cells can release into the urine. On

the one hand, it can predict the characteristics of the original

cells, and on the other hand, it can reveal the status of the kidney

(Bruno and Bussolati, 2013). CD133 is a renal stem cells marker

and is highly expressed in the urethral endothelium of healthy

people. CD133 level are decreased in urine EVs during acute and

chronic glomerular injury, and in patients with vascular injury

after transplantation. This decrease may be due to the fact that

these abnormalities are accompanied by certain dysfunction of

stem cells, and CD133 can also be used as a means of detecting

EVs in urine (Dimuccio et al., 2014; Dimuccio et al., 2020).

At present, most of the EVs in urine are concentrated on

biomarkers, and the functions of a few have been studied. Urine

had been considered as a waste material of human metabolism,

and it is routinely assumed that its EVs might not have practical

functions. However, current research has shown the biological

activity of urine exosomes. Part of the small RNA wrapped in

urine exosomes can even act as a paracrine regulator of renal

tubular transporters (Gracia et al., 2017). Klotho is mainly

produced in the kidney and is related to kidney transporters

and ion channels (Kim et al., 2017; Kuro-O, 2019). Research has

confirmed that Klotho in urine EVs can promote the recovery of

AKI (Grange et al., 2020).

5 Stem cell extracellular vesicles:
Therapeutic applications

Stem cell and progenitor cell therapy has made corresponding

progress in many fields, including kidney diseases (Cantaluppi et al.,

2013; Wong et al., 2015). Mesenchymal stem cells and adipose stem

cells promote the repair of AKI or CKD; however, the specific

mechanism is still controversial (Kuppe and Kramann, 2016;

Wankhade et al., 2016). There are two possible mechanisms for

stem cells to participate in kidney repair. One is that stem cells directly

differentiate to replace damaged kidney cells, and the other is that stem

cells produce some cytokines and other special components to

participate in kidney repair (Rossol-Allison and Ward, 2015). In

particular, the second mechanism has aroused great interest in recent

years. Stem cells produce EVs containing some cytokines produced by

stem cells in different conditions and play function as a paracrine

regulator to other tissues (Nargesi et al., 2017).

Current research confirms that the repair function of

renal progenitors cells is mainly achieved by the paracrine

functions of EVs. In AKI caused by I/R, EVs derived from

stem cells can protect the kidney injury by inhibiting

oxidative stress, reducing the numbers of NK cells,

promoting angiogenesis through HIF-1α, and enhancing

renal mitochondrial function (Zhang et al., 2014; Zou

et al., 2016a; Zou et al., 2016b; Cao et al., 2020). These

functions may be attribute to some special components of

EVs in stem cells. These components may be proteins,

nucleic acids, and some small RNAs. Mesenchymal stem

cells derived from human pluripotent stem cells can inhibit

necrosis by releasing specific proteins and activating the

transcription of sphingosine kinase 1, thereby protecting

kidney injury in I/R AKI (Yuan et al., 2017). Bone

marrow mesenchymal stem cells produce miR-199a-5p-

loaded exosomes to inhibit endoplasmic reticulum stress,

thereby protecting the kidney from I/R AKI (Wang et al.,

2019a). EVs derived from bone marrow stromal cells protect

against AKI by enhancing NRF2/ARE activated antioxidants

(Zhang et al., 2016b). Exosomes released from the human

umbilical cord mesenchymal stem cells play a protective role

in cisplatin-induced AKI by activating autophagy,

ameliorating renal oxidative stress and apoptosis, and

repairing cisplatin-induced renal tubules epithelial cell

damage in rats (Zhou et al., 2013; Wang et al., 2017).

To overcome fibrosis, the EVs of stem cells have also

demonstrated their protective functions. The EVs derived

from stem cells possess anti-apoptotic activity and protect

of renal tubular cells, which can inhibit the increase of

mesangial substrate in diabetic mice and reverse the

fibrosis process (Nagaishi et al., 2016; Collino et al., 2017;

Grange et al., 2019). There are also studies using engineered

stem cells, overexpressing of microRNA-let7c to reduce renal

fibrosis. To address the issue of short half-life of EVs, studies

have demonstrated that the loading of EVs with gel enhances

the function of stem cell EVs (Wang et al., 2016; Zhou et al.,

2019; Zhao et al., 2020). This “carrier” model is a promising

strategy for the clinical application of stem cell therapy. In

terms of renal tumors, EVs of human liver stem cells can

inhibit tumor angiogenesis and tumor growth (Lopatina et al.,

2019; Brossa et al., 2020). Renal clear cell carcinoma is the

most common kidney tumor, and some patients manifested

metastases at diagnosis (Barata and Rini, 2017). Exosomes

isolated from tumor stem cells of patients with clear cell

carcinoma transport miR-19b-3p, promote cancer cell

proliferation, and epithelial mesenchymal transformation.

In this process, tumor stem cell exosomes had been

enriched in the lungs with CD103. After knocking out

CD103 in vitro, the concentration of cancer cells in the

lungs is greatly reduced. Therefore, CD103 may serve as

one of the diagnostic indicators for early metastasis of

renal clear cell carcinoma (Wang et al., 2019b).
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6 extracellular vesicles as a
therapeutic vector in kidney diseases

Number of studies have proved that particles with a size of

about 100 nm, such as exosomes, can be metabolized by the

kidney after passing through the blood, which provides a

platform for exosome-mediated targeted therapy (Ma et al.,

2020; Paluszkiewicz et al., 2021). EVs have good

biocompatibility and are natural carriers. Nanocarriers formed

by cell-derived membranes can inherit functions such as immune

evasion, long circulation, and recognition ability of source cells

(Li et al., 2021). Therefore, among them, EVs have been widely

used as “natural treasures” in recent years (Vader et al., 2016).

Methods for drug loading in exosomes involve direct

combination, such as mixing the drug directly with the

extracted exosomes, and indirect combination mainly

including combining the drug with EVs through techniques

such as electroporation and microfluidics (Elsharkasy et al.,

2020). Cell membrane-coated carriers are nanocarriers

prepared by coating synthetic nanoparticles swith a layer of

natural cell membrane, which possess functions of, both,

synthetic nanoparticles, and those of the source cells (Dash

et al., 2020).

With regard to the kidneys, current studies have found that

microvesicles produced by macrophages and stimulated by

dexamethasone have improved effects on renal inflammation

and fibrosis (Tang et al., 2019). This is a method of directly

utilizing EVs drug loading, that is, to extract EVs after direct

interaction between drugs and secretory cells and then intervene

in other target cells. The EVs produced by the overexpression of

IL-10 in macrophages have a good therapeutic effect on I/R AKI

(Tang et al., 2020). More interestingly, the same team, who

constructed targeting kim-1 peptides and therapeutic siRNAs

into erythrocyte-derived EVs, found it useful in renal I/R injury

and unilateral ureteral obstruction (Tang et al., 2021). Moreover,

by “loading” the exosomes, the exosomes of IL-12-anchored

kidney cancer cells have tumor rejection antigens, which have

enhanced immunogenicity and anti-tumor effects (Zhang et al.,

2010). Thus, the therapeutic effect of exosomes in conditions

elated to the kidney has good application prospects.

7 Perspective and conclusion

EVs have been a research hotspot in recent years, with

increasing progress in kidney diseases; However, their

application is still relatively new research approach. EVs are

important mediators of cell-to-cell information transmission in

kidney diseases. For example, renal tubular cells promote the

activation of M1 macrophages and the occurrence of interstitial

inflammation in the condition of albumin stimulation, while

macrophages stimulated by lipopolysaccharides also promote

renal inflammation (Singhto et al., 2018; Lv et al., 2020). The

exosomes-driven communication between cells is mainly

achieved through the transmission of proteins and microRNA.

Current studies suggest that exosomes are important carriers of

microRNA transmission, but whether the function of exosomes

can be realized by a single exosome in terms of information

transmission is still unclear (Kalluri and LeBleu, 2020). Exosomes

are initially secreted from plasma membrane invagination

through early endosomes, late endosomes, and MVBs. Initial

studies have confirmed that, in addition to endosome

components and cytosolic special proteins, a few exosomes

may also contain some organelle components, such as Golgi

apparatus and nuclear components (Andreu and Yáñez-Mó,

2014). It has also been suggested that the exosome is not just

a collection of cell debris, but rather a subcellular organelle.

MicroRNA is an important functional component of EVs, which

can regulate RNA and protein levels in recipient cells. These

functional components wrapped in exosomes are efficiently

protected from degradation. This further demonstrates the

importance of EVs in intercellular communication and

transfer of active components. The sorting mechanism of

exosomes is very complex, which is mainly related to

endosomal sorting complex required for transportation at

present, but some studies have confirmed that exosomes can

also complete sorting to form MVB through the ceramide

pathway (Hanson and Cashikar, 2012). However, the

mechanism of selectively sorting mrcroRNAs and proteins

into exosomes is still unclear.

Exosomes have initially shown great potential in clinical

diagnosis and treatment. The composition of urine exosomes

varies among kidney diseases. These differential components,

such microRNAs or proteins, may serve as important diagnostic

tools in the future. For example, WT-1 in urine exosomes can

diagnose early-stage diabetes (Kamińska et al., 2016). In addition,

considerable research has recently focused on the purification of

exosomes, such as immunoadsorption, and microfluidic and

other methods to achieve trace extraction, which is an

important step for urine exosomes to be used as a means of

diagnosis and treatment (Gurunathan et al., 2019).

In addition, plasma EVs in different kidney diseases are

also demand further study. Recent studies have also

demonstrated that plasma EVs from patients with diabetic

are enriched in microRNA4449 and can induce inflammation

(Gao et al., 2021). Plasma EVs have a complex composition

and are more difficult to study than are urine EVs, and there

are many confounding factors. The study of plasma EVs in

kidney diseases is also of great significance in clinical diagnosis

and treatment.

Although considerable progress has been made in the

study of EVs in kidney diseases, challenges in clinical

translation still exist. Major issues focus on challenges in

the purification and quantification of exosomes. Different

extraction methods considerably influence on the purity.

These bottlenecks affect the progress of current research.
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However, these difficulties will be gradually overcome in

further research, and the role of EVs will be intelligible and

easily applied in clinical practice.
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