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In recent years, the rapid swift increase in world biodiesel production has caused an

oversupply of its by-product, glycerol. Therefore, extensive research is done worldwide

to convert glycerol into numerous high added-value chemicals i.e., glyceric acid,

1,2-propanediol, acrolein, glycerol carbonate, dihydroxyacetone, etc. Hydroxyl acids,

glycolic acid and lactic acid, which comprise of carboxyl and alcohol functional groups,

are the focus of this study. They are chemicals that are commonly found in the cosmetic

industry as an antioxidant or exfoliator and a chemical source of emulsifier in the food

industry, respectively. The aim of this study is to selectively convert glycerol into these

acids in a single compartment electrochemical cell. For the first time, electrochemical

conversion was performed on the mixed carbon-black activated carbon composite

(CBAC) with Amberlyst-15 as acid catalyst. To the best of our knowledge, conversion

of glycerol to glycolic and lactic acids via electrochemical studies using this electrode

has not been reported yet. Two operating parameters i.e., catalyst dosage (6.4–12.8%

w/v) and reaction temperature [room temperature (300K) to 353K] were tested. At 353K,

the selectivity of glycolic acid can reach up to 72% (with a yield of 66%), using 9.6% w/v

catalyst. Under the same temperature, lactic acid achieved its highest selectivity (20.7%)

and yield (18.6%) at low catalyst dosage, 6.4% w/v.

Keywords: glycerol, electro-oxidation, electro-reduction, lactic acid, glycolic acid

INTRODUCTION

Glycolic and lactic acids are hydroxyl acids consisting of carboxyl and alcohol groups. Glycolic
acid is extensively used as a chemical exfoliator or antioxidant in the cosmetic industry. Similarly,
lactic acid also shows broad applications in cosmetic and pharmaceutical industries. Considering
the increasing demand of both acids in the cosmetic industry, the international market of lactic and
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glycolic acids has grown rapidly and is expected to reach USD
$382million (Research andMarkets, 2015) andUSD $2.78 billion
(Grand_View_Research, 2016) by 2020, respectively.

Previous studies demonstrated that glycolic and lactic acids
can be synthesized from a glycerol oxidation process (Kumar
et al., 2008; Zhou et al., 2008; Lakshmanan et al., 2013;
Purushothaman et al., 2014). The product variation is extremely
reliant on the catalyst structure, especially the porosity of
the catalyst support, and the type of metal catalyst and its
particle size. Additionally, reaction conditions such as reaction
temperature, the acidity or basicity of the medium andmole ratio
of metal to substrate are also key factors that could influence the
product selectivity (Katryniok et al., 2011; Bagheri et al., 2015;
Wang et al., 2015). Table 1 shows the product selectivity and
yield of glycolic and lactic acids which were obtained through
the catalytic reaction from glycerol. From the study carried out
by Lux et al., lactic acid was produced through a hybrid process
of combining the electrochemical and catalytic process. In this
approach, glycerol was initially converted to dihydroxyacetone
and glyceraldehyde via electrochemical oxidation and then be
catalytically converted to lactic acid.While the product selectivity
of lactic acid is high, this process required complicated reaction
set-up (Lux et al., 2010). In view of the work carried out by Lux
et al., a single compartment electrochemical process is presented
in this study in order to convert lactic acid from glycerol in a
single step reaction.

Furthermore, as compared to the catalytic process that is
usually conducted under high temperature and high pressure
conditions, this study has focused on the electrochemical
approach, which is performed over a new electrode: the
mixed carbon-black activated carbon electrode (CBAC). The
electrochemical process is a simple and robust process which can
operate under low reaction temperature and ambient pressure.
In agreement to the study by Zhou et al. (2018), electrochemical
valorization of glycerol offers an absolutely green route to
produce high added-value compounds. They studied a series
of electrocatalyst from graphene nano-sheet supported Pt to
oxidize glycerol to glycolic acid. A maximum selectivity of 65.4 %
glycolic acid was obtained at applied potential 0.2 V (Zhou et al.,
2018). Dai et al. (2017) studied the electrochemical conversion
of glycerol to lactic acid on AuPt nanoparticle. At potential
0.45V, the selectivity for lactic acid was up to 73%. In another
study, Lam et al. (2017) produced lactic acid from glycerol over
cobalt-based oxidative catalyst under galvanostatic mode with
43% of selectivity.

Although electrochemical conversion of glycerol to glycolic
and lactic acids has been previously explored (Fashedemi et al.,
2015; Hunsom and Saila, 2015; Saila and Hunsom, 2015; Dai
et al., 2017; Lam et al., 2017; Zhou et al., 2018), all the
studies deployed expensivematerials for working electrodes, such
as gold, platinum, palladium etc. In this study, the electrode
material (activated carbon) consumed is greener and more cost
effective compared to the noble metal electrode. The cost of
the noble metal and activated carbon (per gram) are presented
in Table 2 (Sigma_Aldrich1). The new carbon-based cathode

1Available online at: http://www.sigmaaldrich.com/ (Accessed July 1, 2016).

electrodes (CBAC) were investigated by the author in an earlier
study to produce 1,2-propanediol (1,2-PDO) from electro-
reduction of glycerol. The selectivity of 1,2-PDO was reported
as high as 86 % on CBAC electrode (Lee et al., 2017). Due
to the high selectivity and reduction in material costs in the
first attempt (Lee et al., 2017), this new electrode is proposed
in the present study. The effect of catalyst dosage and reaction
temperature will be explored and the reaction mechanism
is proposed.

METHODOLOGY

Electrode Preparation
In this work, similar carbon electrode was prepared as reported
by Lee et al. (2017) in her first study on the electro-reduction
of glycerol (Lee et al., 2017). This carbon electrode was used
as the cathode electrode in this current effort. The CBAC
electrode (with geometrical surface area of 3.5 cm2) was
prepared by blending 20 wt.%. carbon black (99% purity,
specific surface area of 550 m2/g and average particle size
of 13 nm; Alfa-chemicals, Malaysia) and 80 wt.% activated
carbon (99.5% purity, specific surface area of 950 m2/g and
average particle size of 100µm,; Sigma Aldrich1) to a total
weight of 1.0 g.

Later, 80% v/v 1,3-propanediol and 20% v/v
polytetrafluoroethylene were added into the pre-mixed carbon
powder to form a liquid-to-powder proportion of 2:1. The
slurry was hard-pressed carefully to a round shape mold and
dried in the oven based on the subsequent heating program:
373K (2 h), 453K (1 h), 523K (1 h), and lastly 623K for
30min to allow the powder to dry completely and improve the
electrode rigidity (Ajeel et al., 2015). The appearance of the
electrode was characterized by scanning electron microscopy
(SEM) equipped with an energy-dispersive E-ray (EDX)
analyse (Hitachi SU-8000, Japan). The active surface areas
of the electrode was acquired from the Cottrell equation
as follows,

I =
nFAD1/2C0

π1/2t1/2
(1)

where I is the current (A), D is the diffusion coefficient (6.20
× 10−6 cm2/s), F is the Faraday constant 96487 (C/mol), A is
the active surface area of the electrode (cm2), t is the time (s), n
is the number of electrons and C0 is the bulk concentration of
K4Fe(CN)6 (mol/cm3).

Electrochemical Conversion
Electrochemical experiment was carried out in a single
compartment electrochemical cell as shown in Figure 1. The cell
was filled with 0.1 L of 0.30M of 99% purity glycerol solution and
the reaction was performed over Pt anode electrode (geometrical
surface area: 33 cm2) and CBAC cathode electrode (geometrical
surface area: 3.5 cm2) for 8 h. A constant current at 2.0 A was
supplied to the system by a DC power supply. In this study,
Amberlyst-15 was used as an acid catalyst. The acid catalyst was
investigated by the author in an earlier study. It showed that
the strong sulfonic acid group in the Amberlyst-15 can enhance
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TABLE 1 | The product yield and selectivity of glycolic and lactic acids; and glycerol conversion attained from the previous catalytic approaches.

Type of catalyst Conditions Glycerol

conversion (%)

Lactic acid Glycolic acid References

Y (%) S (%) Y (%) S (%)

Au/C (1% CB) T: 333K

P O2: 1 Mpa

100 – 40 Demirel-Gülen et al., 2005

Au/C (5% CB) Time: 3 h

NaOH medium

100 – 36

Au/C T: 323K

P O2: 0.3 Mpa

90 – 17.0 Dimitratos et al., 2006

Pd/C NaOH medium 90 – 5.6

Pt T: 333 K 40 – 22 Rodrigues et al., 2013

Pt/C P O2: 0.3 Mpa 81 – 19

Au/C Time: 3 h 61 – 18

Pt/C-Au/C NaOH medium 98 – 20

Ptt/S-CNFs T: 333K

P O2: 0.4 MPa

Time: 6 h

89.9 – 8.9 Zhang et al., 2015

Au/PUF (295 nm) T: 333 K 30 – 76 Gil et al., 2014

Au/PUF (236 nm) P O2: 0.5 MPa 30 – 74

Au/PUF (111 nm) Time: 1 h 30 – 50

Au/PUF (138 nm) NaOH medium 30 – 55

Pt/MCN

N amount: 3.3 g

T: 333K

P O2: 0.3 MPa

88.5 – 12.1 Wang et al., 2015

N amount: 2.7 g Time: 4 h 63.1 – 6.3

AuPd/C + Mg(OH)2 Au: Pd = 1: 1.85

Catalyst = 1% wt

T: 60◦C

Time: 4 h

P O2: 3 bar

40 – 10 Fu et al., 2018

AuPd/C + NaHCO3 T: 60◦C 30 – 10

Bi-AuPt/Ac O2 flow: 15 ml/min 31.5 14.3 Motta et al., 2018

Pt/C (NaOH) T: 473K

P H2: 4 MPa

Time: 5 h

20 92 (5 h) – 0.62

0.48

Maris and Davis, 2007

Ru/C (NaOH) 20 100 (5 h) – 0.47

0.34

Pt/C (CaO) 30

100 (5 h)

– 0.58

0.58

Ru/C (CaO) 20

85 (5 h)

– 0.54

0.48

Alkaline metal-hydroxide

KOH

NaOH

LiOH

T: 573K

Time: 1.5 h >90

>90

>90

90.0

87.1

81.2

–

–

–

Shen et al., 2009

Au-Pt/TiO2 T: 363K

P: 0.1 MPa

NaOH medium

30 – 85.6 Shen et al., 2010

Ir-based catalyst T: 433K

P N2: 0.1 MPa

Time: 15 h

KOH medium

34.8 – >95 Sharninghausen et al., 2014

Au-Pt/nCeO2 T: 373K

P O2: 0.5 MPa

Time: 30min

NaOH medium

99 – 80 Purushothaman et al., 2014

Au/CeO2 T: 363K

P O2: 0.1 MPa

NaOH medium

98 – 83 Lakshmanan et al., 2013

(Continued)
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TABLE 1 | Continued

Type of catalyst Conditions Glycerol

conversion (%)

Lactic acid Glycolic acid References

Y (%) S (%) Y (%) S (%)

Ru/La2O3 T: 453K

P H2: 5 MPa

Time: 10 h

31.5 – 8.5 Feng et al., 2014

Ru/MgO 60.4 – 21.3

Ru/CeO2 85.2 – 3.1

Pt/C T: 363K

P O2: 0.1 MPa

Time: 6 h

LiOH medium

100 – 69.3 Zhang et al., 2016

Pd/C T: 503K

P O2: 0.1 MPa

Time: 3 h

NaOH medium

99 – 68 Arcanjo et al., 2016

Pt/C 99 – 74

Ir(NHC-PhSO3)(CO)2 T: 115◦C

Time: 3 h

(microwave)

– 91 Finn et al., 2018

Time: 24 h

(conventional)

– 8

Pt/ZnO T: 260◦C

P: 46 atm

Time: 30 h

60 60 Bruno et al., 2018

T, Temperature; P, Pressure; atm, atmospheric; Y, Yield; S, Selectivity.

TABLE 2 | The price of noble metal and activated carbon (adapted form Lee

et al., 2017).

Type of material Price (USD $/g) % Purity CAS number

Platinum** 2015.00 99 7440-06-4

Palladium** 1260.00 99 7440-05-3

Rhodium** 506.00 99 7440-16-6

Gold** 347.00 99 7440-57-5

Activated carbon* 0.11 99 7782-40-3

** In the form of nanopowder.
* In the form of powder.

the glycerol conversion, product selectivity and yield (Lee et al.,
2017). The effect of catalyst dosage (6.4, 9.6, and 12.8% w/v) and
reaction temperature [room temperature (300K), 323 and 353K]
were studied.

Characterization and Quantification of the
Electrochemical Conversion
The products obtained were characterized by gas
chromatography-mass spectroscopy (GC-MS) (Agilent Model
7890, United States) and quantified by gas chromatography
(Agilent Model 6890, United States) equipped with a flame
ionization detector (FID). Compounds were separated by a
ZB-Wax column (30m × 0.25mm × 0.25mm) (Phenomenex,
United States). The obtained chromatograms were compared
with the MS library and chemical standards. Glycerol, glycolic

FIGURE 1 | Electrochemical set-up (single compartment reactor).

acid and lactic acid were analyzed using the following procedure:
the front inlet temperature was controlled at 240◦C. Initially,
the oven temperature was fixed at 45◦C and maintained for
5min. Later, it was ramped at 10◦C/min to reach 240◦C at
the final temperature and maintained for another 5min. The

Frontiers in Chemistry | www.frontiersin.org 4 March 2019 | Volume 7 | Article 110

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Lee et al. Glycerol to Glycolic and Lactic Acids

FIGURE 2 | GC chromatogram of the products obtained from the electrochemical conversion of glycerol.

sample injection was 1 µL. Glycerol conversion, product
selectivity as well as yield were calculated based on the Equations
(2–4), respectively.

Glycerol conversion (%) =
Gycerol converted (C mole)

Total glycerol in reactant (C mole)
×100 % (2)

Product selectivity (%) =
Product (C mole)

Total of all products in liquid phase (C mole)
× 100 % (3)

Product yield (%) =
Product (C mole)

Total glycerol in reactant (C mole)
× 100 % (4)

RESULTS AND DISCUSSION

Electrochemical Conversion
Based on the GC chromatogram as shown in Figure 2, the
main compounds obtained from this study are glycolic acid
and lactic acid. Other compounds i.e., ethylene glycol, acetic
acid, formic acid, acetaldehyde, 1,3-propanediol (1,3-PDO),
glyceraldehyde, acetol and 1,2-propanediol (1,2-PDO) were
produced in small amount.

Reaction Mechanism
In the electrochemical study, glycerol can possibly be oxidized
via one of two pathways namely glyceraldehyde pathway or
dihydroxyacetone (DHA) pathway. Based on a review published
in 2012, the pathway’s option can be determined by a few
parameters, i.e., electrode material, applied potential, and pH
of the reaction medium. In this case study, DHA pathway was
involved (Simões et al., 2012). However, DHA was undetectable
in the GC analysis. Whereby, it might have gone through the
enolization process in the acidic condition (Van De Vyver et al.,
2015), and further oxidized into pyruvic acid (PA).

Since the electrochemical process was studied in a single
compartment; lactic acid can be formed straightway via
electroreduction of PA (Martin et al., 2005, 2006), and so PA
was not detected in the analysis too. In addition, the activated
carbon-based cathode electrode that was specially prepared for
this study is highly porous (SEM image in Figure 3), Intermediate
compounds that were produced from oxidation and dehydration
processes (e.g., hydroxypropanal, pyruvic acid, and acetol) could
be trapped or held in the porous surface thus enhancing the
electrochemical reduction process (Qi et al., 2014) (Scheme 1).

FIGURE 3 | SEM image of CBAC electrode (pore sizes: 90−170 nm).

1,3-PDO and 1,2-PDO were most likely formed from the
electroreduction of hydroxylpropanal and acetol, respectively
(Hunsom and Saila, 2015). At the anodic region, glycolic acid
was likely produced via oxidation of glycerol through C-C bond
cleavage. When glycolic acid continued to oxidize, acetic acid
could be formed (Gomes et al., 2013). The proposed mechanism
is shown in Scheme 2.

Effect of Catalyst Dosage
To study the catalyst dosage for Amberlyst-15, the catalyst dosage
was varied ranging from 6.4 to 12.8% w/v. Other parameters
such as temperature (353 k), and applied electric current (2.0 A)
were maintained constant for 8 h. The glycerol conversion rate
is described in Figure 4. When the catalyst dosage increases,
the conversion rate increased from 0.635 to 0.724 h−1. As seen
in Figure 5, the product distributions varied when the catalyst
dosage increased. The highest glycolic acid yield was achieved
after 6 h with selectivity of 72.0%, using 9.6% w/v of catalyst.
However, lactic acid preferred at low catalyst dosage (6.4%
w/v), 18.6% of yield was obtained after 6 h of reaction. After
a critical dosage of catalyst, the conversion slightly reduced.
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SCHEME 1 | Formation of lactic acid on the porous surface of CBAC cathode electrode.

It can be attributed to the poisoning effect of catalyst. The
products may compete with the reactant for the active sites thus
causing a self-inhibitive effect, decreasing the conversion rate
and yields (Bühler et al., 2002; Farma et al., 2013). In this case
study, glycolic acid competed with glycerol and further oxidized
into other compounds, for example CO2. Figure 6 illustrates
the glycerol conversion. In all cases, overall the conversions
were above 99%.

Effect of Temperature
To study the optimal temperature for electrochemical
conversion, the temperature was varied ranging from room
temperature (300K) to 353K, while keeping other variables
constant at 2.0 A and 9.6% w/v of catalyst. Results depicted in
Figure 7 show that the glycerol conversion rates increased with
an increase in temperature. At 300K and 323K, the conversion
rates were around 0.400 h−1. It increased to 0.724 h−1, when the
temperature reached 353 K.

During the electrochemical process, a temperature increase
accelerates the breakage of C-C bond, thus converting the
glycerol into glycolic acid. Highest glycolic acid yield was
achieved at 66.1% with selectivity of 72.0% after 6 h of reaction.
In addition, an increase in temperature could also enhance OH
adsorption on the Pt anode electrode thus reducing the barrier
for O-H and C-H dissociations, and subsequently improving
the oxidation performance (Beden et al., 1987; Yang et al.,
2012; Zhang et al., 2012). Higher temperatures yielded higher
production of lactic acid yield (14.8%). This could be due to

the thickness of the diffusion layer which is effectively reduced
(Gupta et al., 1984), thus improving the diffusion rate of
intermediate compounds such as pyruvic acid to the CBAC
cathode electrode which accelerates the formation of lactic acid.
Figure 8 illustrates the products distribution for the three trials.
Acetic acid and formic acid were found in all trials. Other
compounds e.g., acetaldehyde, ethylene glycol, ethyl acetate and
diethylene glycol were observed inconsistently. Overall, 90%
glycerol conversion was achieved at the three temperatures,
ranging from 300 to 353K. The results are displayed in Figure 9.

Energy Consumption
Energy consumptions in electrochemical conversion of glycerol
were examined depending on the operating parameters such
as catalyst dosage and temperature. The values were calculated
using Equation (5):

EGly Conv. =
iU1t

(Co − Ct)V
(5)

Where, EGly Conv . is energy consumption in glycerol conversion
(kWh/kg), i is current (A), U is voltage (V), 1t is time (h),
C0is initial glycerol concentration (g/L), Ct is final glycerol
concentration (g/L), and V is volume (L).

The energy consumption values for glycerol conversion after
8 h of reaction at 2.0 A are tabulated in Table 3. Both parameters
show similar energy consumed, in the range of 9–12 kWh/kg, due
to the conversion of all trials are above 90%.
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SCHEME 2 | Proposed reaction mechanism of the overall electrochemical conversion for glycerol.

FIGURE 4 | First-order kinetic model of the electrochemical conversion of

glycerol at catalyst dosage ranging from 6.4 to 12.8% w/v. Other parameters

such as temperature (353 k), and applied electric current (2.0 A) was

maintained constant for 8 h.

Research Outlook
The proposed electrochemical method resulted in a comparable
or higher selectivity of glycolic acid with that previously
reported in the studies tabulated in Table 1, which is about
72.0%. Nevertheless, the method proposed in this work is
simpler, requiring at lower temperature and ambient pressure,
which save energy and cost. The catalyst used can accelerate
the reaction by enhancing the electron transfer between the
electrolyte and electrode (Francke and Little, 2014), thus
avoiding over-oxidation to other inauspicious by-products, i.e.,
acetic acid.

Based on the experimental results, lactic acid’s yield and
selectivity are lower as compared to the past published
works (Table 1). Although the results are unpromising,
the newly prepared in-house carbon-based electrode
(CBAC electrode) appeared to be more cost-effective than
the metal-based catalyst used in the reported chemical
conversion studies (Arcanjo et al., 2016; Zhang et al.,
2016). In accordance with (Qi et al., 2014) and Zhang et al.
(2014), pore sizes is the key factor to stimulate the product
selectivity, by controlling the activated carbon ratio in the
upcoming trials the lactic acid selectivity could be boosted
(Qi et al., 2014; Zhang et al., 2014).

Nevertheless, the main challenge for this work lies on
separation and purification studies. This is always an
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FIGURE 5 | Product distribution of the electrochemical conversion of glycerol

at catalyst dosage ranging from (A) 6.4, (B) 9.6 to (C) 12.8% w/v. Other

parameters such as temperature (353 k), and applied electric current (2.0 A)

was maintained constant for 8 h.

important step in downstream operation to recover those
valuable compounds produced from the reaction. The
traditional separation methods include solvent extraction,
crystallization, ion exchange, precipitation and acidification
as well as adsorption. Nowadays, these methods become

FIGURE 6 | Glycerol conversion from the electrochemical conversion of

glycerol at catalyst dosage ranging from 6.4 to 12.8% w/v. Other parameters

such as temperature (353 k), and applied electric current (2.0 A) was

maintained constant for 8 h.

FIGURE 7 | First-order kinetic model of the electrochemical conversion of

glycerol at operating temperature ranging from room temperature (300K) to

353K. Other parameters such as applied electric current (2.0 A) and catalyst

dosage (9.6% w/v) were maintained for 8 h.

less popular because they hardly meet the modern green
chemistry requirement (Anastas and Breen, 1997). Membrane
technologies have attracted significant interests in recent
years. Nano-filtration, electro-deionization, and electro-
dialysis are the common separation methods that have been
widely studied (Huang et al., 2007; González et al., 2008;
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FIGURE 8 | Product distribution from the electrochemical conversion of

glycerol at operating temperature ranging from (A) room temperature (300K);

(B) 323K to (C) 353K. Other parameters such as applied electric current

(2.0 A) and catalyst dosage (9.6% w/v) were maintained for 8 h.

Boontawan et al., 2011). Electro-dialysis which consists of
a cation-selective membrane, an anion-selective membrane
in a two-compartment cell is suggested for future product

FIGURE 9 | Glycerol conversion from the electrochemical study at operating

temperature ranging from room temperature (300K) to 353K. Other

parameters such as applied electric current (2.0 A) and catalyst dosage (9.6%

w/v) were maintained for 8 h.

TABLE 3 | Energy consumption in electrochemical conversion of glycerol

depending on operating parameters.

Operating

parameters

Reaction conditions Energy consumption

of glycerol

conversion (kWh/kg)

Catalyst Dosage Glycerol Concentration: 0.3M

Volume: 0.1 L

Current: 2.0 A

Catalyst: 6.4–12.8 % w/v

Potential: 15.4–20.4 V

9.0–12.8

Reaction temperature Glycerol concentration: 0.3M

Volume: 0.1 L

Current: 2.0 A

Catalyst: 300–353K

Potential: 15.4–16.8 V

9.0–12.7

purification as it has been extensively reported in the previous
literatures for recovery of pyruvate (Zeli and Vasić-Rački,
2005), glycine (Elisseeva et al., 2002), formic acid (Luo
et al., 2002), lactate (Boniardi et al., 1996; Danner et al.,
2000; Madzingaidzo et al., 2002; Hábová et al., 2004), and
propionate (Fidaleo and Moresi, 2006).

CONCLUSIONS

In this study, the single compartment electrochemical conversion
for glycerol was examined. Glycerol was successfully converted
to glycolic acid and lactic acid on the Pt anode electrode
and the new activated carbon-based cathode electrode: CBAC
electrode. Based on the optimization study, the experimental
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conditions favorable to glycolic acid production were a 353K
temperature with 9.6% w/v Amberlyst-15, leading to the highest
yield of 66.1% and selectivity of 72.0%. Lactic acid was preferably
generated at 353K with the presence of 6.4% w/v Amberlyst-
15. In this conditions, the highest yield obtained was 18.6%
with selectivity of 20.7%. The highest glycerol conversions
achieved were around 99%. These findings successfully provide
a new route to convert glycerol to lactic acid via one step
electrochemical process.
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