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Abstract

A longstanding goal of regulatory genetics is to understand how variants in genome

sequences lead to changes in gene expression. Here we present a method named Bayesian

Annotation Guided eQTL Analysis (BAGEA), a variational Bayes framework to model cis-

eQTLs using directed and undirected genomic annotations. We used BAGEA to integrate

directed genomic annotations with eQTL summary statistics from tissues of various origins.

This analysis revealed epigenetic marks that are relevant for gene expression in different tis-

sues and cell types. We estimated the predictive power of the models that were fitted based

on directed genomic annotations. This analysis showed that, depending on the underlying

eQTL data used, the directed genomic annotations could predict up to 1.5% of the variance

observed in the expression of genes with top nominal eQTL association p-values < 10−7. For

genes with estimated effect sizes in the top 25% quantile, up to 5% of the expression vari-

ance could be predicted. Based on our results, we recommend the use of BAGEA for the

analysis of cis-eQTL data to reveal annotations relevant to expression biology.

Author summary

Many geneticists wish to map changes in DNA sequences to changes in human traits and

to understand these processes mechanistically. Here we present BAGEA, a framework to

study this question for gene expression. Specifically, BAGEA models a genome variant’s

impact on gene expression based on established genome annotations. BAGEA predicts not

only whether a variant has an impact on gene expression, but also the sign of the effect.

We applied BAGEA to datasets from different tissues and cell types and found that annota-

tions most predictive of gene expression in a given tissue were typically derived from simi-

lar tissues. Based on our results, we recommend the use of BAGEA to reveal annotations

relevant to expression biology and to build predictive models of gene expression.
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Introduction

A longstanding goal in the field of genetics is to accurately predict the phenotypic conse-

quences of any given variant from the genome sequence alone, i.e. to ‘read the genome’ [1].

This would help to reveal the phenotypic effects of very rare variants even if their effect is

weak. The effects of such variants are typically studied via whole genome sequencing studies.

However these studies often have limited statistical power because, by definition, there are few

carriers in any sampled population [2].

Recently, progress has been made in predicting epigenetic marks and transcription factor

(TF) binding from genome sequence alone; these sequence-based models predict the effect of

any given sequence variant on epigenetic marks (and TF binding) [3–7]. The question now is

how to extend these models to predict effects on genetically complex phenotypes, such as com-

mon diseases. A mechanistic stepping stone between the regulation of epigenetic marks and

the regulation of complex phenotypes is the regulation of gene expression, as suggested by the

previous observation that disease-causing sequence variants are enriched in gene expression

quantitative trait loci (eQTLs) [8, 9]. Thus, there is a need for sequence-based models to pre-

dict gene expression.

One strategy to build sequence-based models of gene expression is to leverage sequence-

based models of epigenetic marks. Results of these sequence-based models can be interpreted

as directed genome annotations. A genome annotation is defined as a collection of genome

regions that have a shared property such as coverage by a particular epigenetic mark, or evolu-

tionary conservation across species. Each region can potentially carry an intensity value to

denote the annotation strength, such as the strength of conservation. We call such an annota-

tion undirecected if its value is independent of the alleles its covering in a given individual. For

directed annotations, the sign of its intensity value depends on characteristics of the sequence

in the region, such as the presence of a specific allele. A simple motivating example is that of a

SNP in a TF binding site. In this situation, the TF can have higher binding affinity for one allele

versus the other allele. This can cause consistent directional transcriptional effects: the allele

inhibiting binding of an activating TF for instance should lead to decreased expression of the

target gene. Conversely, an allele inhibiting binding of a repressive TF would lead to increase

in expression, allowing us to discern activators and repressors de novo. One strategy to express

this effect as a directional annotation would be to use TF position weight matrices that calcu-

late TF affinity for a given sequence, while computationally more sophisticated methods

express the same relationship using deep neural networks [3–7].

Methods to evaluate the effect of directed genome annotations on gene expression have

recently been proposed [7, 10]. Specifically, Zhou et al. predicted variant impact without

exploiting eQTL data using models that predict expression from chromatin patterns directly

[7]. Reshef et al. presented a fast method to determine which directed annotations are enriched

in variants causal for a given phenotype. However, the method from Reshef et al. is geared

towards screening and hypothesis testing rather than towards detailed predictive modeling.

For instance, the Reshef model does not account for interactions between the effect of an

annotation and the distance to the transcription start site (TSS).

Approaches using directed annotations to predict gene expression have been developed rel-

atively recently. Methods integrating undirected annotations with eQTL data have a longer

history. These methods allow the prior probability distribution of a SNP’s effect size to vary

based on the genome annotations with which it overlaps. This is achieved via bayesian hierar-

chical models [11–15]. This in turn allows to fine-map causal SNPs, find annotations that are

either enriched or depleted in causal SNPs, and increase power to call eQTLs. Methods differ

in the modeling assumption they make. For instance, assuming only one causal SNP in a locus
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makes the model independent of linkage disequilibrium (LD), thereby simplifying modeling

approaches and lower computational burden [11, 12, 15]. Allowing for multiple causal SNPs

per locus can improve fine mapping but necessitates the modeling of LD [13, 14]. These types

of models have also been employed for integrating functional annotations with GWAS signal

[14, 16].

Here we present a new predictive model of gene expression, named Bayesian Annotation

Guided eQTL Analysis (BAGEA). BAGEA is a variational Bayes modeling framework to ana-

lyze eQTLs using both directed and undirected annotations in a multivariate fashion. BAGEA
can model interactions between these annotations by weighting the impact of the directed

annotation based on the undirected annotations. Consequently, BAGEA can directly model

phenomena relevant to genetic architecture, such as the relatively larger impact of SNPs close

to the TSS on directed annotations compared to that of distal SNPs, making BAGEA mores

useful for predictive modeling. BAGEA’s results are interpretable and highlight genome anno-

tations that are particularly predictive for gene expression. Further, BAGEA can model multi-

ple causal SNPs per region. Our software implementation of BAGEA can be run on summary

statistics using external LD information as well as on individual level genotype data directly.

Optionally, using a low rank approximation of the LD information improves run-time and

decreases BAGEA’s memory requirements.

We used BAGEA to analyze results from a cis-eQTL meta-analysis in human monocytes

and from cis-eQTL summary statistics derived from tissues of various origins [9, 17]. As addi-

tional input, we gave the method regulatory impact predictions of common variants on epige-

netic marks from a recent deep neural network model [7]. We specified these predictions as

directed annotations in the method. We show that BAGEA highlighted biologically sensible

annotations as particularly predictive of eQTLs. Further we estimated the predictive power of

the directed annotations for various eQTL datasets. Overall, our results suggest that BAGEA is

a useful framework to build predictive models of gene expression based on directed annota-

tions, find biologically relevant annotations, and benchmark methods that produce such

directed annotations.

Model overview

BAGEA models gene expression as dependent on SNP genotypes in cis. In general, SNP effects

on gene expression depend on both directed and undirected annotations (Fig 1A). BAGEA
builds predictors of gene expression and ranks annotations by their impact on gene expres-

sion. For every gene j, BAGEA takes as input a genotype matrix Xj, an expression vector yj,
annotation matrices Vj, Fj and Cj. Xj has dimensions (n ×mj), where n is the number of indi-

viduals assayed, and mj is the number of SNPs in cis of gene j’s TSS. The matrices Vj Fj and Cj

are of dimensions (mj × s), (mj × q), and (mj × t) respectively, where s, q and t are the number

of annotations used. BAGEA models gene expression as a linear combination of SNP geno-

types:

yj ¼ Xjbj þ ϵj; ð1Þ

where ϵj is an i.i.d normal noise vector and bj is a vector of SNP effects. The effect of SNP i on

gene j bij is modeled as:

bij � NððωTvjiÞðνTf
j
iÞ; a

� 1

ji Þ; ð2Þ

Detailed descriptions of the terms are as follows:
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• vji encodes the directed annotaton for SNP i in the region of gene j. It is the ith row of Vj. In

our applications of BAGEA, Vj is previously computed from sequence-based models, where

column of Vj represents an epigenetic mark and each row Vj represents a SNP. Each entry

in Vj expresses the predicted effect of a genotype change on the epigenetic mark in question.

• f ji encodes the undirected annotations for SNP i in the region of gene j. It is the ith row of Fj.

Each element in Fj expresses the presence or absence of the annotation at a SNP’s location.

In our applications of BAGEA, Fj is derived from the relative positions of a SNP and gene j’s
TSS, where each column represents a particular region around the TSS. For example, if a col-

umn Fj encodes a region of 20 kilobases (KB) upstream from the TSS, all entries for rows

corresponding to SNPs within 20 KB upstream of that TSS will be set to 1 and entries for all

other rows will be set to 0. By default, the first column of Fj is an intercept column consisting

only of ones.

• ω and ν are vectors of lengths s and q respectively that are estimated by BAGEA. Specifically,

ω and ν are the effects of annotations in Fj and Vj on the SNP effects bj. By default, the effect

of the interecept weight ν1 is fixed at close to 1 via constraining priors.

Fig 1. Illustration of BAGEA model components. (A) The core components of the BAGEA model in the summary

statistics formulation. Observed variables are in squares while estimated variables are circled. Given are zj, the eQTL z-

scores for gene j, as well as the LD matrix Sj, defining the correlation between summary statistics. Further, z-scores are

influenced by the true eQTL effects bj. These effects in turn depend on directed and undirected annotations, Vj and Fj

respectively. While undirected annotations can cover regions of any size, directed annotation have the same size as the

genomic variants themselves. The impact of annotations on bj is estimated from the data via ω and ν. (B) An example of

the modeling of different priors of elements of ω using meta-annotations via υ variable vectors. We assume that directed

annotations are available for nine annotations, which were derived from tissues Liver, Blood and Brain via 3 assay types

DHS, H3K27ac and H3K4me3. It is reasonable to assume that for a given eQTL study, particular tissues or cell types are

more relevant than others. We model this by introducing a variable υ for each tissue (or cell type) that affects the prior

distribution of only those elements of ω that are derived from this tissue, e.g. υLiver only affects elements of ω tied to

experiments performed in liver. We model different priors for various for assay types analogously. Shown is the resulting

network of influences of the variable υtissue, υassay on ω. (We used the actual group names as indices, while in the main

text, elements of υ’s and ω are indexed by natural numbers).

https://doi.org/10.1371/journal.pcbi.1007770.g001
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• αij is a scalar estimated by BAGEA and models the variance of bij. Allowing different vari-

ances for the elements of bj typically produces sparse estimates for bj with many elements

close to zero as integrating out the Gamma distributed prior αij yields a t-distribution for the

different bj [18]. Further, αj, the vector of length mj with αij its ith element, is modeled as

dependent on the undirected annotation matrix Cj. Cj can potentially be identical to Fj but

can model different undirected annotations as well (see Method Details).

Typically, directed annotations are grouped by their cell type or assay type. BAGEA can use

this grouping structure in order to select groups of annotations that are useful for predicting

gene expression (Fig 1B). BAGEA selects annotation groups via a modeling strategy that yields

sparsity on the annotation group level similar to the group lasso [19]. In BAGEA, this grouping

strategy is implemented by partitioning annotations into multiple meta-annotations (such

as different cell types, assay types etc.). When using this partitioning mechanism, BAGEA
includes an extra random variable vector υ of the same length as the number of elements in the

partition structure (e.g. the number of cell types, or the number of assay types) (See Methods

as well as Fig 1B for an illustrative example). The kth element of υ, υk, controls the variance of

the effect sizes for annotations that fall into partitioning group k. Specifically, υk is proportional

to the inverse of the variance of the respective elements of ω. u� 1
k is therefore called the variance

modifier of annotation partition element k (see Methods).

Importantly, the model can be reformulated in terms of the summary statistics

zj ¼ XT
j yj=

ffiffiffi
n
p

and LD matrices Σj ¼ XT
j Xj=n. The reformulation enables the application of

BAGEA to studies for which only summary statistics are available, by estimating Sj from exter-

nal sources (see Methods).

Evaluation strategy for model fit

We developed an approach to evaluate the performance of BAGEA when fitting directed anno-

tations to genotype and gene expression data. An important feature of BAGEA is that its results

can be used to predict gene expression for a gene without using any expression data for that

gene, but rather using genotypes and genome annotations whose weights are fitted from other

genes. We can therefore validate BAGEA by training it on gene expression data for one set of

genes, and then calculating the extent to which the trained model predicts gene expression for

other genes.

We propose a so-called directed predictor μ̂ j, which predicts gene expression for gene j
based on knowledge of directed annotations and genotype for gene j. Set η̂j as the expected

mean shift of bj due to the annotations. Using the same notation as in Eqs (1) and (7), we have

Ẑ ij ¼ E½bijjν ¼ ν̂;ω ¼ ω̂� ¼ ðω̂TvjiÞðν̂Tf jiÞ; ð3Þ

i.e. Ẑ ij is the ith element of η̂j . the predictor μ̂ j is then computed by

μ̂ j ¼ E½yjjν ¼ ν̂;ω ¼ ω̂� ¼ Xjη̂j : ð4Þ

The squared magnitude Sj ¼ μ̂T
j μ̂ j measures how much gene expression variance the model

attempts to explain via the predictor μ̂ j. To evaluate the predictor’s accuracy and degree of

overfitting, we use the directed mean squared error MSEdir
j ¼ ðyj � μ̂ jÞ

T
ðyj � μ̂ jÞ=n. The evalu-

ation of the predictor is performed on a set of genes independent of the ones used to estimate

ω and ν.
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We can reformulate MSEdir
j in terms of summary statistics zj ¼ XT

j yj=
ffiffiffi
n
p

, LD matrices

Σj ¼ XT
j Xj=n, and η̂ j:

MSEdir
j ¼ 1 � 2η̂jzj=

ffiffiffi
n
p
þ η̂T

j Σjη̂ j; ð5Þ

if we assume that yT y = n. In principle, the reformulation allows us to calculate a predictor’s

directed mean squared error, even if only summary statistics are available, by approximating

Sj from external sources.

Directed annotations derived from blood can partially explain cis-eQTLs in

monocytes

We used BAGEA to determine the extent to which annotations can predict gene expression in

CD14 positive monocytes. To this end, we aggregated data from two eQTL studies on expres-

sion genetics in CD14 positive monocytes [20, 21]. For directed annotations, we used predic-

tions of genetic variant effects on epigenetic marks (12 different histone mark assays and

DNase1 Hypersensitivity Site (DHS) calls with 4 different peak calling strategies) in various

blood-derived cell types from the pre-trained ExPecto model. ExPecto is a deep learning frame-

work that predicts epigenetic marks based on sequence context and performs in silico muta-

genesis to evaluate the consequences of sequence variants [7]. ExPecto yielded 2002 directed

annotations of which 253 were from blood related cell types. These are referred to as the Blood
annotation subset in this paper. We partitioned these directed annotations by cell type and

assay type, respectively, and modeled separate prior variance terms for each partition (Fig 1A).

To train BAGEA, we used gene expression data from human chromosomes 1 through 15.

Only 2410 genes that had a SNP in cis showing a signficant association with a p-value lower

than 10−10 were included. To test model fit, we predicted expression for 917 genes on chromo-

somes 16 through 22 with a top nominal cis-eQTL p-value below 10−10. Specifically, we used

the model fit on the training set to derive the estimates ω̂ and ν̂ (see Eq 7). We then used these

estimates to calculate the directed predictors μ̂ j for genes on the test set (see Eq 4). To assess

the predictive power of μ̂ j, we calculated MSEdir
j for every gene in the test set.

We observed that directed genome annotations can partially explain gene expression vari-

ance (Fig 2). The average MSEdir across all genes was 99.5%, which was significantly smaller

than 100% (as evaluated by bootstrap sampling genes; p-value smaller than 10−4). MSEdir
j

showed a dependence on predictor size Sj (where Sj ¼ μ̂T
j μ̂ j), such that for the top quartile of

genes when ranked by Sj, the directed component was estimated to predict 1% to 3% of expres-

sion variance (Fig 2A). For each gene, the variance explained is bounded by the additive

genetic variance component in cis which is typically much lower than 100%. We estimated the

variance of expression explained for each gene in cis in an unbiased way via Haseman-Elston

(HE) regression [22]. This approach suggested that around 6.6% of the total genetic variance

in cis was explained by the externally fitted directed component μ̂ j for genes in the top quartile

w.r.t Sj (Fig 2B). Across all strong cis-eQTLs, we estimated that the directed component

explained 2.5% of total additive genetic variance in cis. We further tested the impact of the dis-

tance modifier by constraining all elements of ν̂ (except the intercept element) to zero, show-

ing that the modeling the distance modifier leads to higher predictive power (S1 Fig).

These results show that BAGEA can be used to model how sequence changes affect gene

expression. Note that this evaluation metric relies on global parameter (i.e. ω, ν) estimates

only. This allows to form predictors for a gene’s expression even if the gene was not included

in the training set, but has lower predictive power than approaches that use genewise

local parameter estimates (i.e. bj). These approaches can predict expression potentially in an
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out-of-sample fashion, but only for genes in the training set. To illustrate this, we fit BAGEA
on a subset of the monocyte samples (134 samples from the Fairfax et al. study) and extracted

the local parameter estimates b̂ j [20]. We then used these estimates to predict gene expression

in the other available monocyte samples [21] [20]. As expected, a substantial fraction of the

genetic variance in cis could be predicted using the local parameter estimates (S2 Fig). Further,

using BAEGA in an annotation uninformed manner lowered the variance explained.

Joint modeling of cis-eQTLs and directed annotations highlights

biologically relevant epigenetic marks

We next evaluated if BAGEA can effectively be used to discover which annotations, or groups

of annotations, are most predictive of gene expression. We grouped the directed annotations

by cell type and assay type, and for each set of annotation groups, we modeled separate prior

variance modifiers υ−1 (Fig 1B). For each annotation group k we measured its contribution to

gene expression as its estimated variance modifier u� 1
k (See Model Overview). For the

Fig 2. Gene expression variance can be partially explained by directed genome annotations. The BAGEA model was

fitted on genes in the training set (all genes on chromosomes 1 through 15) using monocyte eQTL data on genes with a

top nominal p-value below 10−10, and with ExPecto-derived directed annotations. ExPecto includes 2002 annotations in

total, of which one of two subsets were used: 253 annotations derived from histone and DHS assays in a blood related cell

types (Blood), or, alternatively, 690 annotations derived from TF ChIP-Seq (TF). For each gene j in the test set (all genes

on chromosomes 16 through 22 with a top nominal p-value below 10−10), we calculated the directed predictor of

expression μ̂ j. As a measure of a predictor’s size, we use its squared magnitude Sj ¼ μ̂T
j μ̂ j. To evaluate the predictor’s

performance, we calculated MSEdir
j , the mean squared error (MSE) when predicting gene expression yj from μ̂ j. To

estimate what the smallest attainable MSEdir
j would be, we estimated s2

gcis
, the additive genetic variance in cis via Haseman-

Elston regression per gene. (A) The relationship between the MSE of the predictor and its squared magnitude. We sorted

results by predictor Size Sj and averaged MSEdir
j within a sliding window containing 25% of genes and step size of 5% of

data. Averaged Directed Predictor Size �S: The mean value of Sj per window on the horizontal axis; Averaged Directed

MSE (MSEdir ): The averaged MSEdir
j of genes falling into the window on the vertical axis. The 95% confidence interval for

each window was derived by bootstrapping. Most variance is explained by genes in the top quartile when ranked by Sj.
(B) The relationship between MSEdir

j and s2
gcis

for genes in the top quartile when ranked by Sj. Genetic Variance (s2
gcis

):

The estimated additive genetic variance in cis on the horizontal axis. Directed MSE (MSEdir
j ) on the vertical axis. 95%

confidence intervals for the mean of both the MSEdir and s2
gcis

are represented as the corners of the red diamond (i.e. the

confidence interval for the average MSEdir is given by the upper and lower corner, whereas the confidence interval for the

average s2
gcis

is given by the right and left corner respectively). A linear regression is plotted as the blue line, with 95%

confidence interval shown in grey.

https://doi.org/10.1371/journal.pcbi.1007770.g002

PLOS COMPUTATIONAL BIOLOGY Integrating directed and undirected annotations to build explanatory models of cis-eQTLs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007770 June 9, 2020 7 / 27

https://doi.org/10.1371/journal.pcbi.1007770.g002
https://doi.org/10.1371/journal.pcbi.1007770


monocyte data, BAGEA estimated the largest variance modifiers for annotations from DHS as

well as H3K27ac and H3K4me3 assays (Fig 3A). This observation is consistent with results

from a previous method, using undirected annotations, suggesting that SNPs with an effect on

gene expression are enriched in open chromatin (DHS), activated enhancers and promoters

(H3K27Ac, H3K4me3) [11]. Across cell type annotations, BAGEA estimated the largest vari-

ance modifiers for annotations from two blood cell types that were both CD14 positive (Fig

3B). This observation matches our expectations because the cells in the underlying expression

data were derived from CD14 positive cells [20, 21]. Across all tested pairs of assays and cell

types, BAGEA estimated the largest positive effect sizes for annotations from DHS, H3K27ac,
H3K4me3 assays in CD14 positive cells (Fig 3C). Additionally, we saw a negative effect size for

DHS assayed in CD3 positive cells, albeit with lower absolute effect size than CD14 positive

cells. One explanation could be that DHS that occur in CD14 but not CD3 positive cells have

larger predictive value than DHS that occur in both cell types.

It is well known that eQTLs occur more likely and increase in effect size closer to the TSS.

This suggests that the effects of directed annotations might also be bigger for SNPs close to the

TSS than for SNPs that are distal. BAGEA models SNP distance dependence of directed anno-

tation effects by weighting the directed annotation effect term Vjω across SNPs, with a distance

modifier Fjν (see Model Overview). We next tested whether BAGEA estimated directed anno-

tation effect sizes to be dependent on a SNP’s distance to the TSS. We examined the value of a

SNP’s estimated distance modifier Fjν̂ against its position relative to the TSS. We observed a

characteristic peak around the TSS (Fig 3D), suggesting that BAGEA can indeed produce a

similar pattern of distance dependence for the effect sizes derived from directed annotations as

for the eQTL effect sizes themselves.

We repeated this analysis with a different set of directed annotations, namely 690 ExPecto
annotations derived from transcription factor (TF) ChIP-Seq in any cell type. We estimated

the TF annotation subset to be similarly predictive of gene expression as the Blood annotation

subset (Fig 2A). When looking at the estimates of ω, MYC assayed in the cell line NB4 had the

largest effect size among all tested 690 annotations (S3 Fig). Additionally, SPI1, MAX CTCF
had effects larger than 10% of the maximal effect size. For SPI1 and CTCF, effects from multi-

ple cell lines reached this threshold with consistent effect size directions.

NB4 is a promyelocytic leukemia cell line that can be differentiated into neutrophils or

monocytes [23]. NB4 is therefore expected to have similar expression genetics as CD14 positive

monocytes, and, given that no TF ChIP-Seq experiment was performed in monocyte cell lines

directly, the large ω values for NB4 data are consistent with our expectations. However, inter-

pretations of cell type selection for the TF subset are complicated by the fact that the underly-

ing TF ChIP-seq experiments did not sample each TF comprehensively across all cell lines

which might lead to biases. When checking expression of the highlighted TFs in monocytes via

Protein Atlas, we found all were TFs classified as expressed but not elevated in monocytes [24].

Effect size directions of CTCF and MAX were negative, which naively interpreted would sug-

gest that their binding have a suppressive effect on gene expression. CTCF can act as repressor,

activator and insulator [25]. Our data suggests that, globally and in the studied context, repres-

sive effects outweigh. MAX and MYC are part of a family of TFs that form heterodimers [26].

The MYC/MAX dimer is usually regarded as an activator, which might seem to be at odds with

our results as the MAX annotation had a negative effect size. However, another important fam-

ily member MXD1 (also known as MAD) was not assayed. The MAD/MAX heterodimer is

thought to act as a repressor. A positive effect size for MYC and a smaller negative effect size

for MAX could just imply that MAX binding in absence of concomitant MYC binding has a

negative effect on expression because it tracks with MAD/MAX heterodimer binding.
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Fig 3. BAGEA, fitted on monocyte eQTL data, selects relevant epigenetic marks and increases directional effect sizes

for SNPs close to a TSS. Parameter estimates when applying BAGEA to monocyte eQTL data using as directed

annotations histone and DHS ExPecto predictions derived from blood-related cell types (i.e. Blood from Fig 2). (A) For

each chromatin assay type, BAGEA models an assay variance modifier û � 1
assay that captures the extent to which that assay

type is predictive of gene expression. Shown are the square roots for the assay types with the ten highest variance

modifiers (from 17 assay types total). In the BAGEA model, DHS, H3K27Ac and H3K4me3 assays have the largest

modifiers. (B) For each cell type, BAGEA models a cell type variance modifier û � 1
cell , similar to the assay variance modifier

in panel A. Shown are the square roots for the cell types with the ten highest variance modifiers (out of 61 cell types). In

the BAGEA model, CD14 positive cells have the largest modifiers. (C) BAGEA reveals experiments underlying the

directed annotations that were most predictive of gene expression. Assay Type x Cell Type: Each experiment is a

particular assay type performed in a particular cell type. Effect Size (ô i, for experiment i): The BAGEA-estimated effect

on gene expression. Shown are the ten largest directed annotation effect sizes. In the BAGEA model, the experiments

using DHS, H3k27Ac and H3Kme4 with CD14 positive cells have the largest effect sizes. We also see that most of the 253

annotations are estimated to have a close to zero effect. (D) Shown is the estimated distance modifier of the directed

component, Fν̂ . We see a characteristic peak around the TSS, implying that the directed annotations are upweighted

close to the TSS.

https://doi.org/10.1371/journal.pcbi.1007770.g003
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Developmentally, during monocyte/macrophage maturation, a switch from high levels of

MYC/MAX to MAD/MAX is observed [27]. A further highlighted transcription factor is SPI1
which is regarded as one of the most important transcription factor in monocyte and macro-

phage development [28].

Modeling directional components is robust to the use of summary statistics

In many cases it is not feasible to compute LD for the population from which the summary sta-

tistics were derived (i.e., the study population), and LD has to be derived from other sources

(i.e., external genotypes) [29, 30]. The use of external genotypes allows publicly available sum-

mary statistics to be analyzed without access to restricted individual level genotype data [9].

However, LD computed on external genotypes can only approximate LD patterns of the study

population. We therefore need to test the accuracy of methods when using external genotypes.

We evaluated if directed annotation effects were robust to the genetic source of LD infor-

mation. We used 1000 Genomes data to compute LD [31]. We re-fit the BAGEA model to the

monocyte data with the Blood annotation subset, using LD matrices derived from European

1000 Genomes data. We then compared ω estimates when using LD from 1000 Genomes to ω
estimates when using LD from the monocyte data itself, for every annotation in the monocyte

Blood data. We observed that the two approaches produced similar effect sizes with a linear

regression R2 of 97.5% and regression slope of 0.96 (S4A Fig). This suggests that directed anno-

tation effect estimates are robust to the source of LD information. We then explored if the

source of LD information affected our estimates of directed mean squared error (MSEdir). To

this end, we estimated MSEdir on chromosomes 16 through 22 from summary statistics and

external LD matrices derived from 1000 Genomes alone, and then compared these MSEdir val-

ues to the original MSEdir values computed with LD derived from monocyte data. We ensured

that the same SNPs were included, by removing SNPs with low minor allele frequency (MAF)

in either of the sets. We observed that the two sources of LD produced MSEdir values that agree

with each other, with a linear regression R2 of 99.9% and regression slope of 1.002 (S4B Fig).

Exploring BAGEA’s ability to identify causal marks through simulation

To explore BAGEA’s ability to select the causal annotations among the set of annotations, we

used simulation (see S1 Appendix). Naturally, this depends on the correlation structure of the

directed annotations, as highly correlated annotations will make it difficult to isolate the causal

one. We therefore used empirically observed directed annotations in our simulation experi-

ment. We assumed a model were the truly causal annotations were sparse (with the non-zero

effects varying from 3 to 12). We tested cases where the non-zero effects clustered in terms of

meta-annotations (e.g. clustered in terms of cell types and assay type) (structured) and cases

where non-zero effects did not cluster (unstructured). While fitting BAGEA we also used two

parameter settings, either making use of the meta-annotations available for cell type and assay

type, (group-lasso) or ignoring the meta-annotation information and letting each ωi parameter

be controlled by a separate υi parameter (lasso). While we saw high recovery of the causal

annotations for lower number of causal variables, precision and recall tended to drop as more

but individually smaller non-zero effects were added (S5 Fig). Drop-off was fastest when pair-

ing unstructured data generation, with the group-lasso fitting procedure, presumably, because

this parameter setting tried to enforce a structure that was not actually present. Conversely,

structured data generation paired with group-lasso fitting procedure showed the highest perfor-

mance of all settings. When evaluating the gene expression prediction power of the model fits,

we saw that in all cases the results were close to optimal, suggesting that even in higher

PLOS COMPUTATIONAL BIOLOGY Integrating directed and undirected annotations to build explanatory models of cis-eQTLs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007770 June 9, 2020 10 / 27

https://doi.org/10.1371/journal.pcbi.1007770


complexity settings when incorrect variables get picked, the chosen variables are highly corre-

lated with the correct ones (S6 Fig).

Building predictive expression models from GTEx summary statistics

Having established that BAGEA performs well when using summary statistics, we next deter-

mined if BAGEA can identify relevant directed annotations for empirical data for which sum-

mary statistics are available but genotypes are not. Specifically, we fit BAGEA on summary

statistics for eQTL studies of 13 tissues produced by the GTEx consortium with a sample size

of at least 300 for each study [9]. We additionally supplemented this set with results for Lym-

phoblastoid cell lines (LCL) derived from a meta-analysis of GTEx and GEAUVADIS [17].

Because GTEx gathered eQTLs in complex tissues and sampled fewer individuals than were

sampled in the monocyte studies, we expected lower power to produce robust parameter esti-

mates. We therefore used different parameter values than in our monocyte analysis, including

genes with top nominal cis-eQTL p-value lower than 10−7. We fitted models either using

ExPecto derived annotation for all 1187 histone or DHS annotations derived from Roadmap

consortium data or the derived annotations for non-histone ChIP-seq data from ENCODE

[32, 33]. When using Roadmap annotations we used BAGEA in the group-lasso setting,

whereas for ENCODE annotations we used the lasso setting, the rationale being, that the Road-

map consortium performed most assays for a given cell type, whereas ENCODE ChIP-seq was

less complete, i.e. many TFs were assayed in only few cell lines, leading to potentially strong

biases.

We again split genes into training and test set, fitting BAGEA on the training set and build-

ing directed expression predictors μ̂ j for all genes in the test set. We observed that the average

MSEdir per dataset was variable across GTEx datasets ranging from 100% to below 98.5% (Fig

4A). When looking at only the highest quartile of genes in terms of squared magnitude Sj, we

saw the lowest average MSEdir go to approximately 0.95 (Fig 4B). Furthermore the gains in

average MSEdir were in line with squared magnitude Sj values, suggesting that BAGEA does

not substantially overfit. We saw that the ENCODE TF annotation set tended to outperform

the histone and DNase1 Roadmap set and that in the Roadmap group lasso setting, BAGEA
would not always select any annotations, potentially due to poor overlap between annotation

and GTEx cell types and stringent regularization.

We next compared the predictive power achieved by BAGEA on the GTEx data to results

derived via ExPecto directly. To predict expression from genomic variants, the authors of

ExPecto propose a strategy, where results from two statistical models are combined. The first

model is a deep neural network that predicts the impact of genomic sequence variants on chro-

matin marks (the results of which are also used by BAGEA in this analysis). The second model

is a l2-boosting model that predicts gene expression from (spatially transformed) chromatin

marks directly. as part of the ExPecto release, results of the second model were already publicly

available for 13 relevant GTEx datasets [4]. Combining these results with the directed annota-

tions and the z-scores from GTEx, allowed us to estimate the scalar product between the gene

epression vector yj and the corresponding directed predictor μ̂ j (see S1 Appendix). This

allowed us to compare model quality in terms of the fraction of genes with a scalar product

larger than zero. When comparing results from BAGEA (using TF annotation subset and lasso

setting) and ExPecto (using all annotations) in terms of this metric, we saw that, while perfor-

mance was comparable across all genes, BAEGA substantially outperformed ExPecto for genes

in the highest quantiles in terms of effect size (S7 Fig).

We further compared BAGEA to Torus, a tool which allows to model SNP effect priors in

terms of undirected annotations [14, 15]. We therefore made our annotations undirected by
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taking absolute values and adding the undirected annotations used in BAGEA to generate

annotations for Torus (see S1 Appendix). We fit data from 13 GTEx experiment on the TF

annotation subset filtering SNPs and genes as for BAGEA. Varying amounts of l2 regulariza-

tion were applied and an additional overfit strategy was added to have an upper bound on

results achieved with an optimal regularization strategy (see S1 Appendix). As an evaluation

strategy we recorded for each gene in the test set the SNP with the highest prior. As an evalua-

tion metric, we used the fraction of genes for which that SNP had an absolute z-score close to

the largest absolute z-score for that gene. We saw that, while BAGEA had a slightly higher

value than even the overfit strategy, the increases were modest (S8 Fig). As Torus was run in

ridge mode, few effects were very close to zero. BAGEA in its default parameter resembles

lasso, in that it only selects a limited number of effect sizes substantially different from zero.

To compare the variables selected, we split the distribution torus effect sizes estimates into 3

groups based on whether BAGEA estimated them as (close to) zero, negative or positive. We

saw that the distribution of torus estimated effect sizes was substantially shifted for the non-

zero BAGEA effect groups compared to the zero BAGEA effect group (S9 Fig).

Fig 4. Directed annotations partially explain gene expression variance in GTEx. The BAGEA model was fit using

various GTEx eQTL data (supplemented with GEAUVADIS eQTL data) and with ExPecto-derived directed annotations

on genes in the trainig set (chr1,‥,chr15) with a top nominal p-value<10−7. ExPecto includes 2002 total annotations, of

which either 1187 histone and DHS annotations from Roadmap (Roadmap) or 690 non-histone ChIP-Seq from

ENCODE (TF) were used. For the Roadmap annotation set we enforced structure on the priors of ω by using the meta-

annotations available for cell type and assay type, (group-lasso), while for the (TF annotation set, each ωi parameter be

controlled by its individual υi parameter (lasso). For each gene j in the test set (chr16,‥,chr22 and top nominal p-value<

10−7), we calculated an approximate version of Sj, the squared magnitude of the directed predictor μ̂ j, where the

approximation uses external LD information. Further, we calculated an approximate version of MSEdir
j , the mean squared

error (MSE) when predicting gene expression yj from μ̂ j. (A) Displayed is the average (approximated) MSEdir
j across all

genes for each GTEx experiment, and annotation subset. 95% Confidence intervals are computed by bootstrap sampling.

(B) For each GTEx experiment and annotation subset, we sorted results by predictor size Sj and and averaged MSEdir
j

within the top quartile. Displayed is the relationship between the MSE of the predictor and its mean squared magnitude

Sj. Averaged Sj, top quartile �Sj jSj > F� 1
Sj
ð0:75Þ: The mean value of the directed predictor size Sj in the top quartile on the

horizontal axis; Averaged Directed MSE (MSEdir ): The averaged MSEdir
j of genes falling into the top quartile in terms of Sj

on the vertical axis. The 95% confidence interval for each window was derived by bootstrap sampling. We see that the

average squared magnitude Sj is of similar size as the gains in directed MSE suggesting that the BAGEA does not

substantially overfit.

https://doi.org/10.1371/journal.pcbi.1007770.g004
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GTEx expression models make use of biologically relevant annotations

To mitigate the impact of limited power during variable selection, we additionally fit models

without splitting chromosomes into test and validation sets. Exploring the results from the

Roadmap annotation subset first, we saw that the distribution of effect sizes of the directional

annotations revealed a bias towards positive values (S10 Fig). Focusing on the largest positive

effect sizes(top ten or ôi > 0:06), we saw many biologically consistent pairings between the

tissue assayed by GTEx via eQTL and the tissue assayed by Roadmap for epigenetic marks (Fig

5A). While some of the pairings are obvious from the annotation names themselves (such as

correct pairings for lymphoblastoid cells, lung and adipose tissues) others were suprising yet

on closer inspection, turned out to be consistent with the biological literature. For instance

bone marrow derived mesenchymal stem cells (BMDMSC) are paired with fibroblast. A recent

study found no functional differences between the two cell types leading the authors to support

a longstanding opinion in the field that these two cell types should be classified as the same

[34, 35]. The pairing between Esophagus Mucosa and keratinocytes can be explained by the

fact that the Esophagus Mucosa is mainly composed of squamous cells, i.e. keratinocytes [36,

37]. The pairing between tibial artery and BMDMSC can be explained by the fact that fibro-

blasts are the main component of vascular adventitia [38]. Our model also paired tibial nerve

and muscle, which seems physiologically the least biologically consistent among the ten pair-

ings. When looking at the largest negative values, we saw some of the same tissue pairings

repeated, with only one pairing with effect size ôi smaller than -0.06 for the pairing between

Fig 5. Model fit for GTEx summary statistics selects directional annotations mainly from biologically consistent cell

types. Shown here are various parameter estimates from fitting 13 different GTEx eQTL summary statistics data

(supplemented with GEAUVADIS eQTL data) using histone and DHS ExPecto predictions derived from Roadmap (1187

annotations). (A) BAGEA reveals the experiments underlying the directed annotations that are most predictive of gene

expression. GTEx x Roadmap(Rm): Each GTEx eQTL dataset highlights particular Roadmap annotations. Shown here

are the 10 largest positive effect sizes across all eQTL and annotation pairings. Effect Size: The estimate of ô i for

experiment i. (B) For each chromatin assay type, BAGEA models an assay variance modifier û � 1
assay that expresses the extent

to which that assay type is predictive of gene expression. Shown here is the distribution of the square roots of the assay

variance modifier for any given assay type across all 13 GTEx eQTL datasets. Results are sorted by the maximal value

achieved for each assay type and only the 10 highest scoring assay types are shown. We see that DNase.all.peaks H3K27ac
annotations dominate. The DNase.fdr0.01.peaks was prioritized in Lung tissue, which had the lowest value for DNase.all.
peaks among all experiments. The highest value in DNase.all.peaks was achieved in Fibroblast, an experiment that also

showed low average MSEdir.

https://doi.org/10.1371/journal.pcbi.1007770.g005
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fibroblasts and BMDMSC) (S11 Fig). When looking at the variance modifier estimates for the

different assay types, we saw that DHS and H3K27ac epigenetic marks were ranked consis-

tently highly (Fig 5B). Interestingly, among various annotations derived from the same DHS
experiments, some performed consistently better than others: DNase1 peak call annotations

outperformed DNase1 hotspots calls. These two annotation types make use of the same under-

lying DNAse-seq data, but use different data processing pipelines [39]. Hotspots calls have var-

iable length and are typically wider than peak calls which have a fixed length of 150 bp.

BAGEA makes a clear choice which should be preferred to model sequence impacts on gene

expression. Turning our attention to the results for the non-histone ChIP-Seq ENCODE anno-

tation subset, we saw for most GTEx experiments, that the largest effect size was associated

with a Pol2 assay (S12 Fig). As all annotations are fit together, it is possible, that large Pol2
effects could obscure transcription factor action as Pol2 binding could be a result of the bind-

ing of other factors. We therefore removed all Pol2 assay annotations, and refit the model

again. We then counted the number GTEx experiment for which a given TF showed either a

substantial positive or negative effect (S13A Fig). When looking for TFs That showed negative

effect sizes in at least half of the assayed experiments, we found EZH2, SIN3A and ZEB1, which

all have substantial literature support for being transcriptional repressors [40–42]. TFs that

showed substantial positive effects in at least half of the experiments, we saw PHF8 and ELF1.

PHF8 is known to demethylate H3K9me2, a mark strongly associated with transcriptional

repression [43]. The fact that this assay shows significant positive effects in most analysed

GTEx experiments, might highlight an underappreciated importance of this mode of tran-

scriptional control. ELF1 has been cited in the literature as having both activator and repressor

properties [44, 45]. Our results suggest that activator properties outweigh. To systematically

evaluate whether our results are in line with the literature, we compared them to the most

recent human version of TRRUST, literature database of regulatory interactions between TFs

and their targets [46]. Interaction in TRRUST are annotated as repressive or activating in

nature. We derived a TFs repressor activity score based on the fraction of annotated interac-

tions defined as repressive. We derived a second TF repressor actvity score as the number of

positive effects minus the number of negative effects (S13B Fig). We saw a strong correlation

between these scores (p-value below 0.0001, R2 = 0.43). When removing the 3 bona-fide

repressors, results remained significant at the 0.05, level albeit less so (one-tail p-value below

0.015, R2 = 0.15). Additionally, we saw that while distance modifier did vary between fits, the

characteristic peak around the TSS was replicated in all cases (S14 Fig).

Discussion

Here we introduced a new method, named Bayesian Annotation Guided eQTL Analysis
(BAGEA). BAGEA integrates directed and undirected genome annotations in a multivariate

fashion with eQTL data in a variational Bayesian framework to build predictive models of

gene expression. We applied this method to eQTL results from CD14 positive monocytes as

follows: First, we derived directed annotations by predicting functional impacts on epigenetic

marks for all common SNPs using the pre-trained ExPecto deep neural net [7]. Second, from

these ExPecto results, we extracted two annotation subsets of particular interest: histone

ChIP-Seq and DHS in blood-derived cell types (the Blood annotation subset), and TF ChIP-

Seq in any cell type (the TF annotation subset). We then ran BAGEA on both annotation sub-

sets separately, while allowing the effect of the directed annotations to depend on the distance

to the TSS. We tested whether the model had explanatory power with a training and test proto-

col (i.e. explanatory power was estimated on genes that were excluded from training). We saw

that the directed component μ of the model explained part of the gene expression variance in a
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statistically significant manner (Fig 2A). For genes with a strong cis-eQTL (p-value<10−10)

and in the top quartile for μTμ, we estimated that the Blood derived directed component

explained 6.6% of total additive genetic variance in cis (Fig 2B). Importantly, BAGEA priori-

tized annotations that cohere with widely accepted biological knowledge and are supported by

existing literature (Fig 3).

Next, we investigated to which extent the model fit was affected when the LD information

was approximated via reference genomes. We observed agreement between the results in

terms of the directed component, suggesting that the use of eQTL summary statistics together

with external LD data is justified (S4 Fig). We next used simulation to investigate, whether

BAGEA is able to reliably detect causal annotations and found that to be the case if the generat-

ing model was sufficiently sparse S5 Fig. We then used BAGEA to analyze eQTL summary sta-

tistics results from GTEx. To accommodate the wide range of tissues explored in GTEx, we

expanded the number of directed annotations used in the fitting process to over a thousand.

While for some tissues, the analysis strategy was underpowered to derive a predictive model of

gene expression from directed annotations, others had a significant fraction of gene expression

explained by directed annotations (Fig 4). We compared results from BAGEA to both ExPecto

for the ability predicting gene expression from annotations alone and Torus for predicting

causal SNPs from annotations alone. In terms of predicting gene expression BAGEA showed

favourable performance for genes with large effect sizes in terms of Sj. While BAGEA did show

improvement over Torus w.r.t. prediction of causal SNPs, the improvement was marginal.

One plausible explanation is that distance to TSS is already a very strong predictor of causal

SNP location. Many of the directed annotations BAGEA selected were derived from tissues

that were biologically related to the original tissue of the eQTL studies (Fig 5A). Additionally,

we observed that DNAse1 and H3K27ac epigenetic marks were selected across many different

eQTL studies (Fig 5B). Furthermore, we used the results to classify TFs de novo into transcrip-

tional activators and repressors, showcasing an application that relies crucially on directed

annotations S3 Fig.

BAGEA belongs to a class of models that allow the prior probability distribution of a SNP’s

effect size to vary based on the genome annotations with which it overlaps [11–13]. These

prior models explored the impact of undirected annotations. While BAGEA can model undi-

rected annotations, the main novelty comes from the concomitant modeling of directed and

undirected annotations as well as interactions thereof. Using directed annotations to explain

natural variation in phenotypes was also recently proposed by both Zou et al. and Reshef et al.,
albeit with different modeling philosophies [7, 10]. Zou et al. use a model that predicts expres-

sion from chromatin patterns directly. This has the advantage that genotype data is not

needed. However, this method does not model the causal impact of epigenetic marks on

expression levels but rather correlations between them. This modeling approach therefore

assumes a priori that causality flows from epigenetic marks to gene expression. However,

recent integrative analysis modeling causality between expression and chromatin marks sug-

gest that this is not always the case as expression can itself reorganize proximal epigenetic pat-

terns [47].

Reshef et al.’s LD profile regression method has more similarities to BAGEA as it can also be

used to analyze directed annotations and eQTL summary statistics. However, the method is

geared towards multiple hypothesis testing rather than high predictive accuracy. Compared to

BAGEA, the fitted model is simpler allowing for fast analysis of large collections of data. The

increased speed comes at the cost of not being able to model certain features like interactions

of directed and undirected annotations (such as distance to TSS). BAGEA uses a modeling

approach that has both prediction and interpretability in mind. It allows for more complex

model features while still being useful for revealing relevant biology. Indeed, when using
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BAGEA on various eQTL datasets, BAGEA highlighted many relevant cell types. Further,

allowing the directed component to depend on the distance to the TSS improved the model fit

S1 Fig.

There are at least two drawbacks to BAGEA’s model complexity. First, there is a substantial

computational cost to fit the model. To mitigate this issue, we used various computational

strategies such as fast matrix inversion of approximated LD matrices and parallelization (see

S15 Fig for an overview of the duration of various analyses). Second, variational model fitting

approach does not provide confidence intervals. While it does provide credibility intervals, the

approximative nature of mean field variational inference makes these credibility intervals

often unreliable [48]. In our analysis, we opted for evaluating statistical significance of the

model results by using a training and test protocol.

Future research could investigate whether using a different variational approximation

rather than the mean field approximation provides better estimates of the true credibility inter-

vals. An avenue also not explored here, is to learn across datasets by adjusting the priors. The

bayesian nature of our framework offers a simple iterative strategy here: After fitting various

datasets once, adjust the priors according to the results seen across the different datasets and

refit. Whether this strategy can substantially improve predictive power remains to be seen.

Further, while the method can be extended to predict expression effects of rare variants, we

focused here on prediction of relatively common SNPs. With the cost of whole genome

sequencing (WGS) dropping, WGS eQTL studies suited for this purpose should become

widely available.

We estimated the extent to which epigenetic marks are able to predict the genetic compo-

nent of gene expression in cis. Our results show that while the current generation of directed

annotations can partially explain the genetic cis component of gene expression, most of the

genetic cis component remains unexplained, indicating that there is still room for improve-

ment. Future gains in this space will likely come from both improved directed annotations as

well as improved modeling.

Methods

Model details

We assume individual level genotype and expression data for n individuals. For gene j, we

model its n × 1 expression vector yj as

yj ¼ Xjbj þ ϵj; ð6Þ

where Xj is the n ×mj genotype matrix for the mj SNPs surrounding gene j’s TSS. bj is the mj ×
1 vector of SNP effect sizes and ϵj the expression noise unexplained by the genotype.

ϵj � Nnð0; ðljÞ
� 1InÞ:

The noise term precision λj is modeled in a hierarchical fashion:

lj � Gðl1; l2Þ;

l2 � Gðr1; r2Þ:

with hyperparameters λ1, ρ1 and ρ2 (while this notation is overloaded, we expect it is clear

from context which parameter is meant). We model the vector of effect sizes bj as a multivari-

ate normal, whose mean and covariance is affected by annotation matrices. For gene j we

assume annotation matrix Fj and a directed continuous annotation matrix Vj, with
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dimensions mj × q and mj × s respectively, with the current implementation of BAGEA expect-

ing Fj to be 0 − 1 coded due to performance reasons. Then the ith element of bj is modeled as

bij � NððωTvjiÞðνTf
j
iÞ; a

� 1

ji Þ; ð7Þ

with vji and f ji being the ith row of Vj and Fj respectively. αij being an element of a vector of

independently drawn gamma distributed random variables (the independence is conditional

on its parental hyperparameters, the modeling of which is described further down). ω and ν
are s and q dimensional multivariate normal distributed random variables respectively. ω
denotes the vector of activities of directed annotations, whereas ν allows the overall weight that

the directed annotations contribute to the effect size vary based on undirected annotations.

This allows, for instance, the impact of the directed annotations to vary dependent on the dis-

tance to the TSS. ω is modeled in a hierarchical fashion

ω � Nsð0; diagðδ
� 1
ÞÞ;

where δ is again modeled as a random variable. The choice of model for δ enables the imple-

mentation of a grouping structure on the directional annotations (in our application, these

groupings are the assay used to derive the annotation and the cell type in which the assay was

performed). We allow the model to fit differences in prior variances based on group member-

ship. Thereby, entire groups of directional annotation effects are shrunk to zero (akin to the

group lasso [19]). Let dl be a positive integer vector of length s taking hl different values, i.e dl

partitions the vector of directed annotations into hl groups (l = 1, ‥, w runs over the meta-

annotations, e.g. if the modeled meta-annotations are cell type and assay type, l can either take

the value one or two). Let υl be a random vector of length hl (i.e. these are the group specific

weights). Then,

di ¼
Yw

l¼1

uldli
;

ulk ¼ Gðw1l; w2lÞ;

with hyperparameter χ1l. χ2l is modeled as

w2j � Gðz1; z2Þ;

with hyperparameters z1 and z2.

ν is modeled as

ν � Nqðc; diagðpÞ
� 1
Þ;

where p and c are hyperparameter vectors of length q.

The vector of precisions of the effect size vector αj is modeled as

aij � Gðg1; kjgijÞ;

where γ1 is a hyperparameter. Note that letting the precision for each SNP vary leads to sparse

estimates for bj; this is akin to automatic relevance determination (ARD) regression [18]. κj is

a genewise parameter modeled in a hierarchical fashion

kj � Gðt1; t2Þ;

t2 � Gðx1; x2Þ;
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where τ1, ξ1 and ξ2 are hyperparameters. To model γij, we again make use of annotation matri-

ces. For gene j, assume undirected 0 − 1 coded annotation matrix Cj of dimension m × t
(BAGEA currently only 0 − 1 coded matrices for Cj coded due to performance reasons). Then

the SNP-wise precision modifier γij is modeled as

gij ¼
Y

k:Cj
ik¼1

ak

where Cj
ik ¼ 1 if annotation k is active at index i in gene region j. Further,

ak ¼ Gð�1; �2Þ;

where ϕ1 and ϕ2 are hyperparameters.

Summary statistics adaptation

Instead of using individual level genotype and expression data, we can reformulate the model

for the use of summary statistics. Multiplying Eq 6 with 1ffiffi
n
p XT gives

1
ffiffiffi
n
p XTyj ¼

1
ffiffiffi
n
p XTXjbj þ

1
ffiffiffi
n
p XTϵj:

A natural model to use with summary statistics is therefore,

zj ¼
ffiffiffi
n
p

Σjbj þ ϵ
0
j;

where zj is the vector of summary statistics, Sj is the LD matrix and ϵ0j � Nmð0; l
� 1

j ΣjÞ. Sj can

be approximated from external sources such as 1KG [31]. Alternatively, we can use an approxi-

mate and regularized version of the empirical LD matrix (see below).

Model fitting

The model was fit using a variational bayes approach [48]. As the model is in the conjugate

exponential family, we can use the variational message passing strategy [49]. For detailed

updating steps see S1 Appendix. Naive updates can be prohibitively expensive due to the

requirement to invert many large matrices of the form (cXT X + Dα), where c is a constant and

Dα is a diagonal matrix. To speed up computation, we can approximate the LD matrix cXT X
with a low rank approximation AT

t At , where At is a t ×m matrix with t<m. This allows us to

speed up a time critical matrix inversion step.

ðcXTX þ DαÞ
� 1
� D� 1

α � D� 1

α AtðIt þ AT
t D
� 1

α AtÞ
� 1AT

t D
� 1

α :

If X is already low rank, it is computationally advantageous to use an At s.t. cXTX ¼ AT
t At . If

AT
t At deviates from cXTX, we need to use the summary statistics formulation to avoid conver-

gence issues. For more detail, see S1 Appendix.

Deriving annotations

For common SNPs (minor allele frequency (MAF) above 2.5% in the 1000 Genomes European

population [31]), we ran the ExPecto model to predict the effect of the variant on epigenetic

marks [7]. For each SNP we predicted the epigenetic effects within the 200 bp region encom-

passing it. For most SNPs the effects are very close to zero, allowing us to sparsify the results.

Absolute effects smaller than 0.008 were set to zero and all other effects were shrunk towards

zero by 0.008 via xnew = x − 0.008 � sgn(x). Next, results for both strands were averaged and the
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shrinking procedure repeated with a threshold of 0.008. This yielded a matrix with 98.4% of

entries zero. The directed annotations were then scaled to have all the same 2-norm. The mag-

nitude of the 2-norm was set to the average of the unscaled 2-norms. These were the directed

annotations used in BAGEA.

For undirected annotations, we used upstream and downstream distances to the TSS. Dis-

tance to TSS annotations as well as SNP positional annotations were downloaded from the

UCSC genome annotation database with SNP and gene annotations taken from the refGene
and snp147Common tables respectively (see link below) [50].

cis-eQTL datasets

For monocyte eQTL data, we used two preprocessed monocyte datasets with a combined sam-

ple size of 1176 (418 from Fairfax et al. and 758 from Rotival et al. respectively) [20, 21].

Expression matrices were quantile normalized and 10 PEER factors as well as 5 genotype PCs

removed [51]. Genotype data was quality control filtered (4% SNP level missingness; 5% indi-

vidual level missingness; Hardy-Weinberg p-value above 10−13 relatedness below 0.1875) and

imputed using the human genome reference panel [52].

We further downloaded eQTL summary statistics for various tissues produced by the GTEx
project if the number of samples was above 300 individuals [9]. Additionally, for LCL, we

meta-analyzed eQTL summary statistics released for 117 samples by GTEx with summary sta-

tistics derived from 358 European PEER-controlled samples collected as part of the GEUVA-
DIS study [17].

Running BAGEA
For the monocyte eQTL analysis, BAGEA was run with default hyperparameter settings (see

S1 Appendix). Genotypes within a window of 150KB around a gene’s TSS were used to con-

struct a genewise LD matrix. Each genewise LD matrix was approximated via singular value

decompostion with a low rank symmetric matrix of equal top eigenvalues and eigenvectors,

such that the trace of the approximation matrix was at least 99% of the trace of the original LD

matrix. Then, a scaled identity matrix was added such that the trace of the resulting matrix was

equal to the trace of the original LD matrix. As undirected annotations, distance windows

around the TSS (50KB, 20KB, 10KB, 5KB, 2KB, 1KB, 0.5KB, 0.25KB) split into upstream and

downstream windows were used. To analyse summary statistics with BAGEA, LD was approxi-

mated via 1KG European samples. Variants where the reference allele in 1KG did not agree

with the reference allele in the UCSC SNP annotation table, were removed. Reference 1KG LD

matrices were calculated and replaced with low rank approximations with 95% of the matrix

trace kept, anlagously to the above procedure. For all GTEx summary statistics analysis, default

hyperparameter settings where used except for c which was set to 0.3 instead of 0 to yield con-

sistently positive signs for ν estimates. BAGEA was run for 300 iterations in each analysis.

URLs

• Code to run BAGEA can be found at https://github.com/dlampart/bagea

• Auxiliary preprocessed data automatically installed by BAGEA is downloaded from https://

s3-us-west-1.amazonaws.com/bagea-data/bagea_data_freeze/

Links to publicly available external data sources are as follows:

• UCSC: http://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/
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• ExPecto: https://github.com/FunctionLab/ExPecto/

• 1KG: ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20130502/

• GTEX: https://gtexportal.org/home/datasets

• GEUVADIS: ftp://ftp.ebi.ac.uk/pub/databases/microarray/data/experiment/GEUV/

E-GEUV-3/analysis_results/

• TRRUST-db: https://www.grnpedia.org/trrust/

• Protein atlas: https://www.proteinatlas.org

• First monocyte study: https://www.ebi.ac.uk/ega/studies/EGAS00001000411

• Second monocyte study: https://www.ebi.ac.uk/ega/studies/EGAS00000000109

Supporting information

S1 Appendix. Supporting methods.

(PDF)

S1 Fig. Removing distance modifier leads to lower predictive power. We used BAGEA to

predict gene expresion for CD14 positive monocytes using the Blood annotation set, analo-

gously to Fig 2 but removing the distance modifier by constraining all elements of ν̂ except the

intercept element to zero (Without Distance Modifier). For comparison, we additionally plot-

ted results achieved with the same data and settings except using the default prior for ν (With
Distance Modifier). We see substantial decrease in power when the distance dependence of the

effect sizes is not modeled.

(TIFF)

S2 Fig. BAGEA SNP effect size estimates predict gene expression out of sample. SNP effect

size estimates b̂ j were derived from a subsample (134 individuals) of one dataset [20]. These

estimates were used to predict gene expression in the other available monocyte samples [20]

[21]. Fits were performed for genes on chromosomes 1 to 22 that had at least a marginal eQTL

p-value of 10−10 or below in the combined data. Shown is the average estimated expression var-

iance explained in the test data using the Blood annotation subset and default distance annota-

tions. BAGEA was run either with the default parameter setting (BAGEAWith Annotations),
or with annotation uniformed setting where a was constrained close to 1 and ω was con-

strained close to 0 (BAGEAWithout Annotations). Additionally, we compared those estimates

to estimates of average genetic variance explained in cis as estimated by Haseman-Elston

regression on the test data. 95% confidence intervals were derived by bootstrap sampling

genes. We see that 60% of estimated genetic variance in cis is explained by BAGEA out-of-sam-

ple estimates of b̂j . Further, running BAGEA in annotation uninformed mode dropped this

fraction to 0.567%. Overall, we saw that 62.5% of assayed genes had a lower MSE in the anno-

tation informed model than in the annotation uninformed model.

(TIFF)

S3 Fig. Parameter estimates for the directed annotation TF subset when using BAGEA on

monocyte eQTL data. Shown are parameter estimates from fitting monocyte eQTL data using

TF ExPecto predictions in all cell types. (A) BAGEA reveals the experiments underlying the

directed annotations that are most predictive of gene expression. Assay Type x Cell Type:

Each experiment is a particular assay type performed in a particular cell type. Effect Size (ô i,
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for experiment i): The BAGEA-estimated effect on gene expression. Shown here the ten largest

directed annotation effect sizes. We see c-Myc annotation in NB4 dominates. (B) Shown is the

estimated distance modifier of the directed component, Fν̂. We see a characteristic peak

around the TSS, implying that the directed annotations are upweighted close to the TSS.

(TIFF)

S4 Fig. Directed annotation effect estimates and modeling error are robust to source of LD

information. (A) Shown is a comparison of estimates of the directed annotation effect vector

ω when using external reference LD information or individual level genotypes. We retrained

BAGEA with the blood monocyte summary statistics using reference LD matrices from the

1000 Genomes Project (1KG). ô i (1KG): Directed annotation effect, measured as ω estimates

from BAGEA using 1KG reference LD information. ô i (Monocyte LD): Directed annotation

effect, measured as ω estimates from BAGEA using individual-level genotypes from the mono-

cyte data itself (i.e. using the same genotypes as for the deriving the summary statistics). (B) To

investigate the extent to which MSEdir
j can be approximated using summary statistics and refer-

ence 1KG LD matrices, we calculated MSEdir
j on chromosomes 16 to 22 from summary statis-

tics of monocyte cis-eQTLs (see formula in main text). We then compared these to the original

MSEdir
j values that were computed using genotypes of the monocyte datasets. The same SNPs

were used in both calculations. R2: The coefficient of determination, measuring goodness-of-

fit, from a linear regression of the data shown.

(TIFF)

S5 Fig. Simulation results confirm BAGEA’s ability to recover relevant annotations. Shown

are precision and recall for various simulation settings (see S1 Appendix) and two parameter

settings. For each simulation setting we fitted BAGEA either making use of the meta-annota-

tions available for cell type and assay type, (group-lasso) or ignoring the meta-annotation infor-

mation and letting each ωi parameter be controlled individual υi parameter (lasso). Upper

panels: shown are example results when fitting BAGEA either in group-lasso setting (A) or

lasso setting (B), in the structured simulation setting with 9 variables (see S1 Appendix for sim-

ulation details). True effect sizes for ω are indicated via red dots. Scaled BAGEA estimates of ω
are given as black lines (We scaled ω to account for differences in estimates of ν̂ versus ν. We

multiplied each element of ν by the coverage of its associated annotations and summed the

resulting vector. We treated the estimate ν analogously and divided the two to get the scaling

factor for ω. These scaling factors where 0.83 and 0.90 for the group-lasso (A) and lasso (B) set-

ting respectively). When defining all scaled effect size estimates above 0.01 as positives and

below 0.01 as negatives, we see that both settings yield a precision of one, whereas group-lasso
also had a precision of 1.0 and recall of 0.88 and lasso had a precision of 0.83 and recall of 0.55

(five out of nine annotations recovered, one false positive). When looking at precision (C) and

recall (D) across all simulation settings, we see that precision and recall drop as more variable

are added. As expected, in an unstructured simulation setting, it is disadvantageous to enforce

a structure on the estimates via the group-lasso setting. On the other hand, group-lasso main-

tains good precision and recall in a structured setting with up to 12 variables.

(TIFF)

S6 Fig. Predictive power of BAGEA for various simulation settings show little deviations

form predictive power achieved for true parameter settings. Shown are average MSEdir
j val-

ues for all genes in the test set (chromosomes 3). The Upper panel shows average MSEdir
j across

all test genes, whereas the lower panel shows average MSEdir
j for genes in the top quartile in

terms of Sj. We see that the performance is very close to optimal even for settings where
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BAGEA did not select the correct variables, suggesting that the selected variables were highly

correlated to the correct variables.

(TIFF)

S7 Fig. Comparing BAGEA (TF) results with ExPecto result for GTEx data shows favour-

able performance for genes with large predicted effect sizes. Shown is the comparison

between BAGEA and ExPecto for 13 the GTEx experiments w.r.t. agreement between gene

expression and the estimated directed predictor. (Sj> quantile x (ðSj > F� 1Sj
ðxÞÞ): Per GTEx

experiments, genes were sorted by the squared magnitude Sj (Sj were computed for both

BAGEA and ExPecto separately, i.e. for ExPecto SExPj was used). For each GTEx experiment,

the top n-th percent of genes w.r.t Sj were then used to calculate the proportion of genes with

positive yTj μ̂ j. (Proportion with yTj μ̂ j): The proportion of genes for which the scalar product

between the gene expression vector yj and the directed predictor μ̂ j was larger than 0. We see

that for genes with large relative effect sizes, BAGEA leads to higher concordance between yj
and μ̂ j. 95% confidence band is derived by bootstrap sampling.

(TIFF)

S8 Fig. Comparing BAGEA (TF) results with Torus result for GTEx data shows comparable

performance. Shown is the comparison between BAGEA and Torus for 13 the GTEx experi-

ments. To evaluate a method, we determined for each gene in the test set the SNP with the

highest prior of being causal. For Torus, this amounted to ranking SNPs based on the scalar

product between the SNP’s annotations and their estimated effect sizes. For BAGEA, we ranked

SNPs based on E½b2
ijjG�, where G refers to all global BAGEA parameter estimates (see S1 Appen-

dix). (fitting method): The various methods used in the fitting and evaluation. For Torus we

used various l2 parameter settings as well as an overfitting strategy as upper bound (see S1

Appendix for details) [14, 15]. (Proportion with |ztop| − |zannot|< 0.2): To evaluate a given

method, we picked the SNP for each gene in the test set for which the method predicted the

largest absolute effect sizes based on the annotations alone and recorded its z-score (denoted

|zannot|). We then compared this value to the overall largest absolute z-score for this gene

(denoted |ztop|). We evaluated the power by the proportion of genes for which |ztop| − |zannot|
was below 0.2. 95% confidence interval is derived by bootstrap sampling.

(TIFF)

S9 Fig. Comparison of effect size estimates between BAGEA and Torus. Shown are the dis-

tribution of effect size estimates of Torus when fitted on 13 GTEx datasets for the TF annota-

tion subset (l2 = 100). As Torus was run in ridge mode, few effects were very close to zero.

BAGEA in its default parameter resembles lasso, in that it only selects a limited number of

effect sizes substantially different from zero. When fitting BAGEA using the same datasets in

lasso mode, we saw 257 annotations overall larger than 0.001 (of which 192 where also larger

than 0.01). When color-coding those 257 effect sizes based on direction and comparing them

against the rest, we saw that the Torus effect sizes were markedly shifted away from zero for

both the positive and the negative effect size BAGEA group.

(TIFF)

S10 Fig. Histogram of directed effect sizes ω̂ across all 14 GTEx datasets. Displayed are esti-

mated directed annotation effect sizes ô for all GTEx (and GEAUVADIS) datasets, with values

with absolute value below 10−3 removed. Shown are results when fitting on data from all auto-

somes.

(TIFF)
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S11 Fig. Largest negative directed annotation effect sizes for GTEx summary statistics

repeat some of the same tissue pairings as large positive effect sizes. Shown are the largest

negative directed annotation effect from fitting 14 different GTEx (and GEAUVADIS) eQTL

summary statistics datasets using Histone and DHS ExPecto predictions derived from Road-

map.

(TIFF)

S12 Fig. BAGEA fits for GTEx summary statistics with non-histone ChIP-seq annotations

show largest effect sizes for Pol2 assays. Shown is the largest directed annotation effect for

each of the fitted 14 different GTEx (and GEAUVADIS) eQTL summary statistics datasets

using ExPecto predictions derived from ENCODE non-histone ChIP-seq experiments [33].

(TIFF)

S13 Fig. BAGEA fits with TF annotations predict TF activators and repressors. After

removal of Pol2 from the TF annotations subset, we fit BAGEA to the GTEx summary statistics

using lasso mode. (A) Shown are the number of GTEx experiments for which a given

TF-ChIP-Seq assay shows a postively or negatively signed effect with absolute value above 0.01

(If multiple annotations mapped to the same TF we summed the effects, this step only affected

a few TFs because of the regularization strategy employed). (B) Shown is the comparison

between BAGEA’s prediction of repressor/activator activity of a TF’s with predictions derived

from the trrust-db v2 [46]. (sign bias of effect size direction (#)): For each TF we take the dif-

ference between the number of postive effect directions (blue bar in panel (A)) and the number

of negative effect directions (red bar in panel (A)) to get a prediction of whether a TF acts as

activator (>0) or repressor (<0). (Fraction of Repressor Annotation (TRRUST-db)): The

fraction of annotations in the human TTRUST db (human) for a given TF which claimed

repressor activity among all annotations with a clear assigned direction (i.e. after removal of all

annotations with unknown direction from TRRUST-db). We see a clear dependence between

results from TRRUST (unidirectional p-value lower than 0.0001, R2 = 0.43), suggesting that

results from BAGEA are in broad agreement with the literature in terms of determining activa-

tor and repressor TFs.

(TIFF)

S14 Fig. Comparison of distance modifier estimates for BAGEA fits on GTEx data. Shown

is the estimated distance modifier of the directed component, Fν̂ for all GTEx experiments

when fit with the TF annotation subset in lasso mode. Individual results are plotted in grey and

averages are plotted in black. While there is some fluctuation for individual results around the

mean, the general peak shape is respected in all cases.

(TIFF)

S15 Fig. Speed of variable update varies across annotation subset. Shown is the speed with

wich each updating iteration of the variational algorithm takes for the main analyses per-

formed. For Blood we used the setting of the monocyte analysis (see for instance Fig 2). For TF
and Histone/DHS we used the settings used in the respective GTEx analyses (see for instance

Fig 4). All analyses were performed on an AWS r4 × 4 instance using 15 cores. As we ran the

algorithm for 300 iterations, we see that in this setting, the algorithm took between 50 minutes

and 5 and a half hours to complete.

(TIFF)

S1 Table. BAGEA effect size estimates for GTEx experiments. Given are the ω effect size

estimates for various BAGEA fits to GTEx data. Only effect sizes with absolute value above
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0.001 are included.

(TXT)

S2 Table. BAGEA effect size estimates for monocyte experiment. Given are the ω effect size

estimates for various BAGEA fits to the monocyte data. Only effect sizes with absolute value

above 0.001 are included.

(TXT)

S3 Table. Directed Annotations to tissue/cell type mapping. Given are the mappings

between the ExPecto annotations and the Roadmap tissues, as well as ENCODE cell lines.

(TXT)

S4 Table. MSEdir estimates for GTEx experiments. Given are the MSEdir on the test set for

various BAGEA fits to the GTEx data.

(TXT)

S5 Table. MSEdir estimates for monocyte experiments. Given are the MSEdir on the test set

for various BAGEA fits to the monocyte data.

(TXT)
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