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Abstract: In this study a cationic surfactant, cetyltrimethylammonium bromide (CTAB), was used as
a soft template for in situ chemical polymerization of aniline on the surface of microcrystalline
cellulose (MCC). The morphology of the wire-like and porous nanostructure of the resulting
composite was highly dependent on the MCC and CTAB concentrations. The effect of the MCC
and CTAB concentrations on the electrochemical and morphological properties of the polyaniline
(PAni) nanocomposite was studied. Cyclic voltammograms of modified PAni/MCC/CTAB electrode
displayed a high current response and the effect of scan rate on the current response confirmed
a diffusion controlled process on the surface of the electrode that makes it suitable for sensor
applications. The overlapping characteristic peaks of pure PAni and MCC caused peak broadening
at 3263 cm−1 in the IR spectra of PAni/MCC/CTAB nanocomposite that revealed the interaction
between NH of PAni and OH group of MCC via electrostatic interactions. The addition of MCC to
PAni through chemical polymerization decreased the thermal stability of composite compared to
pure PAni. Lower crystallinity was observed in the XRD diffractogram, with 2 theta values of 22.8,
16.5, and 34.6 for PAni/MCC, confirming the formation of PAni on the MCC surface.

Keywords: conducting polymers; microcrystalline cellulose; chemical polymerization;
modified electrode

1. Introduction

Natural cellulose fibers contain crystalline and amorphous domains. Microcrystalline ellulose
(MCC) can be synthesized by different processes such as reactive extrusion, enzyme mediated,
and acid hydrolysis in that way the amorphous regions are removed and the crystalline domains
remain. The hydroxyl groups covering the cellulose surface and orderly arrangement of molecules
in MCC allows the cellulose to react well with a variety of materials, including conducting
polymers [1]. There are numerous composites of cellulose and its derivatives with synthetic
polymers and biopolymers that have been used frequently in different applications such as biomedical
applications [2], sensors and actuators, [3] and nanocomposites with good tensile strength [4].

Conducting polymers are some of the most studied materials that have been used to modify
the crystals and fibers of cellulose. The poor solubility and dispersibility of conducting polymers in
common organic solvents are limiting factors for them to be used in different applications [5,6]. On the
other hand the electron transfer in a bulky polymer is relatively slow which limits its application in
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sensors. A composite of conducting polymers and hydrophilic cellulosic materials with high surface
area, tensile strength and good water-dispersibility can overcome these problems [7].

The nanocomposites of cellulose and conducting polymers synergistically combine the electronic
characteristics of the conducting polymers with the structural advantages of biobased cellulose, making
them useful for different applications [8]. The good interaction between binding sites on the cellulose
and cationic species make cellulose a good candidate for sensor devices. Permselective membranes for
different species can be modified by a treatment process through changing the surface functionality
of cellulose and its permselective properties [9]. A composite of microfibrillated cellulose (MFC)
and PPy was prepared by chemical polymerization of pyrrole on the MFC in a hydrogel form [10].
The MFC/PPy nanocomposite with an open, porous structure of intertwined fibers exhibited an
acceptable ion-exchange capacity for chloride ions. In recent year, the combinations of PAni and
cellulose-based materials have been prepared by various methods to enhance phe hysical and structural
properties of the resulting composites. Intrinsic conducting polymers and conductive nanocrystalline
cellulose composite have been used as mediators to facilitate electron transfer between the electrode and
analyte in biosensors [4,11]. In a study by Lee [4], crystalline nanocellulose-polpyrrole (CNC-PPy) was
cast on a microfabricated interdigitated electrode and used as a glucose micro-biosensor. They showed
that the compatibility of cellulose with the enzyme combined with the change in the resistance of the
doped-PPy could enhance the sensitivity factor by as much as 20.

In many studies composites of PAni/cellulose with enhanced physical and electrochemical
properties were used in high capacity biodegradable batteries [1,12,13], chemical sensors [14],
and electroactive paper [15]. In biosensor applications, crystalline nano-cellulose (CNC) was introduced
into the polymer structure to provide a larger active surface area and higher specific strength [16].

A cholesterol biosensor based on polyaniline and gold nanocomposite was successfully fabricated
using a seed-mediated method [12]. Liu et al. [17] engineered a flexible and electrically conductive
nanocellulose-based polyaniline composite film. They reported that the composite film with a thickness
of 50 µm could be bent up to 180 degrees without breaking.

In the current research we used the cationic surfactant cetyltrimethylammonium bromide
(CTAB) as a soft template for aniline/MCC polymerization. There are some reports on the synthesis
of conducting polymer nanostructures using surfactants as hard or soft templates to produce a
porous material for sensing applications [18]. Using surfactants as template for making nano- and
mesostructures can increase the penetration rate of the target molecules into the sensing area and
decrease the response time in biosensors [19]. The effect of the CTAB and MCC concentration on the
physical and electerochemical properties of the polymer was investigated to develop a nanocomposite
with enhanced electrochemical properties for biosensor applications.

2. Results and Discussion

2.1. Electrochemical Properties

Cyclic voltammetry was done to optimize conditions for nanocomposite preparation and find
a composition with the highest anodic current. The effect of MCC and CTAB concentration on the
electrochemical properties of nanocomposite was determined using CV performed from −1.5 to +1.5 V
at a scan rate of 100 mV s−1. Figure 1A depicts the cyclic voltammograms for pure polyaniline and the
PAni-MCC composite prepared from solutions containing different Ani/MCC mass ratios. The cyclic
voltammogram of the PAni-modied electrode showed anodic peaks at the potentials of 0.13 and
0.81 V. A small oxidation peak observed at 0.13 V is associated with the conversion of the fully reduced
leucoemeraldine base to the partially-oxidized emeraldine. As the potential increased the conversion of
the emeraldine form to the fully oxidized pernigraniline form occurred at 0.81 V, which is in agreement
with the results reported by others [20]. The reduction of the electrically conductive emeraldine (EM)
to the non-conducting leucoemeraldine (LEM) was observed at −1.01 V.
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The PAni-MCC nanocomposite-modified electrodes presented voltammograms with higher
cathodic and anodic peaks (Figure 1A).
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exhibited the highest current response of 14.4 and 49.7 µA, respectively. This was possibly due to the 
protonation of PAni in the presence of a higher amount of MCC. Another possible reason is due to 
the capability of MCC to produce nanostructures with a higher surface area and porosity that 
facilitate the electron transfer. The fibrous and porous structure of PAni/MCC (compared with bulky 
PAni) which was observed in FESEM images justified a higher electron transfer of the composite. 
After the addition of MCC content accounting for more than 26% of the composite, the cyclic 

Figure 1. (A) Cyclic voltammograms of (a) pure PAni, PAni/MCC nanocomposite with mass ratio
of Ani/MCC (b) 0.37/0.63, (c) 0.56/0.44, (d) 0.74/0.26, (e) 0.93/0.07, (B) Cyclic voltammograms of
PAni/MCC/CTAB nanocomposite prepared from solutions containing different concentrations of
CTAB ranging from: (a) 0 cmc (PAni/MCC), (b) 4 cmc, (c) 6 cmc, (d) 8 cmc, (e) 10 cmc (f) 12 cmc. Inset:
enlarged anodic peak.

It is known that PAni is conductive only in acidic media; however, PAni composites must be able
to be used in neutral media as biosensors. On the other hand it has been shown that the ionization
of the carboxyl groups of cellulose in a neutral medium will produce an excess net negative charge
on the PAni/cellulose composite. In order to compensate the extra negative charges the composite
undergoes protonation which increases the proton concentration inside the composite compared to
the external solution; consequently PAni/cellulose composite shows conductivity even under neutral
conditions [21]. As it can be seen from Figure 1A, by increasing the MCC content (mass ratio of
Ani/MCC from 0.93/0.07 to 0.74/0.26) in the nanocomposite, the oxidation peaks at the potentials of
0.13 and 0.81 V increased and the composition of 0.74/0.26 mass ratio (0.16 M aniline) exhibited the
highest current response of 14.4 and 49.7 µA, respectively. This was possibly due to the protonation of
PAni in the presence of a higher amount of MCC. Another possible reason is due to the capability of
MCC to produce nanostructures with a higher surface area and porosity that facilitate the electron
transfer. The fibrous and porous structure of PAni/MCC (compared with bulky PAni) which was
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observed in FESEM images justified a higher electron transfer of the composite. After the addition of
MCC content accounting for more than 26% of the composite, the cyclic voltammogram of PAni/MCC
presented a lower anodic peak and the nanocomposite with a mass ratio of 0.37/0.63 (0.08 M aniline)
exhibited the lowest redox current. This was probably due to the insulating nature of cellulose that
restricted the electron transfer in the polymer chain. All voltammograms were taken in 0.1 M PBS of
pH 7.0 with a potential scan rate of 100 mV s−1 at room temperature.

CTAB content optimization was further conducted to study the effect of CTAB on the
electrochemical properties of the nanocomposites. Figure 1B shows the voltammograms of
PAni/MCC/CTAB nanocomposite prepared from solutions containing different concentrations of
CTAB ranging from 4–12 cmc. The concentration of Ani was 0.16 M and the mass ratio of Ani/MCC
was kept fixed at 0.74/0.26.

The enlarged anodic peak is displayed in the inset graph for more clarification. The nanocomposites
presented an increment in the anodic peaks after addition of CTAB and the nanocomposite prepared
from 10 cmc of CTAB showed the highest redox current of 58.7 µA. It was found that CTAB
has a significant effect on the formation of the nanostructure of the PAni composite which is
related to its function as a soft template for the polymerization of aniline by the self-assembly
of the cationic surfactant and monomer. It has been shown that the type of surfactant and its
concentration play important role in controlling the diameter of nanoparticles by partially solubilizing
the template [22]. Figure 2 shows CVs of PAni/MCC/CTAB-modified electrode with different scan
rate. The nanocomposite was prepared from a solution containing Ani/MCC with mass ratio of
0.74/0.26 and 10 cmc CTAB. As it can be seen that both the oxidation and reduction peaks increased
with the increasing scan rate. Most cycles showed both the oxidation and reduction peaks, in which
the anodic potential shifted towards the lower potential and the cathodic potential slightly shifted to
the more negative value as the scan rate increased. The concentration profile around the electrode is
influenced by the rate of potential scanning. This phenomenon can change the rate of charge transport
indicating the diffusion controlled nature of a system. The anodic and cathodic peaks were found
to be proportional to the square root of the scan rate, which clearly indicated the occurrence of a
diffusion-controlled process (inset plot) [23].
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2.2. Chemical, Morphological and Structural Characterizations

2.2.1. Fourier Transform Infrared (FTIR) Spectroscopy

Figure 3 compares the FT-IR spectra of pure PAni, MCC, and PAni/MCC/CTAB nanocomposite.
Pure doped-PAni showed characteristic peaks at 3209 cm−1, 2938 cm−1 associated with the N-H
stretches and C-H stretch, respectively. The characteristic peaks assigned to the C=C stretches and
C=N bond in the polyaniline units appeared at 1660 cm−1 and 1542 cm−1, respectively. The aromatic
stretching and C-C bending vibrations appeared at 1408 cm−1 and 1258 cm−1 [24,25]. In the MCC
structure, a strong O-H stretching absorption band occurred at 3343 cm−1 and the peak appearing
at 2906 cm−1 represented the aliphatic C-H stretching. The sharp peak of C-O stretching of the
primary alcohol group (-CH2OH) appeared at 1040 cm−1, whereas the peak at 1331 cm−1 showed
the C-O bending. The spectra of PAni/MCC/CTAB nanocomposite (prepared from Ani/MCC mass
ratio = 0.74/0.26 and 10 cmc surfactant) is also presented in Figure 3. The spectrum revealed both
characteristic peaks of pure PAni and MCC, thus demonstrating the polymerization of aniline on the
surface of MCC. The overlapping characteristic peaks of pure PAni at 3200 cm−1 and MCC at 3331 cm−1

caused peak broadening at 3288 cm−1 in the IR spectra of PAni/MCC/CTAB nanocomposite revealing
the interaction between NH of PAni and OH group of MCC via electrostatic interactions [26,27].
The nanocomposite of PAni/MCC/CTAB showed lower O-H band intensity compared to the pure
MCC, which might due to the crystalline cellulose being covered by PAni, which is in agreement with
other studies [28,29]. In the CTAB molecule the CH3 asymmetric stretching (νas) and CH3 symmetric
stretching (νsym) frequencies were observed at 2915 and 2849 cm−1, respectively. The N–CH3 stretching
appeared as a weak shoulder at 2949 cm−1. The presence of a peak at 2936 cm−1 in the nanocomposite
confirmed the existence of CTAB in the composite structure. The C–N stretching vibration observed at
909 cm−1 in CTAB shifted to 1010 cm−1 in PAni/TA/CTAB nanocomposite [19,30].
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The stretching vibration of the benzoid form of PAni appearing at 1505 cm−1 in the
PAni/MCC/CTAB nanocomposite showed a uniform formation of PAni on the nanofibrous
structure. Based on the combined FTIR results, the following structure (Scheme 1) is proposed
for PAni/MCC/CTAB nanocomposite.
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Scheme 1. (A) View of chemical polymerization of aniline in the presence of MCC and CTAB and
(B) possible intraction between cellulose and PAni.

2.2.2. Morphology

FESEM micrographs of pure PAni and PAni/MCC with different MCC content are presented in
Figure 4. Pure PAni showed a bulky, granular, and dense structure (Figure 4a) but a remarkable changes
from bulky and shapeless structure to spherical particles was observed upon addition of MCC to the
polymer (Figure 4b), proving the polymerization of aniline on the cellulose surface [31]. The features
of the PAni/MCC composite changed slightly to a rod-like structure on further addition of MCC
whereupon the fibers become longer with less agglomeration of particles (Figure 4c). The composite
prepared from 0.16 M aniline (Figure 4d) showed a fibrous feature with a high porosity nanostructure,
which could be beneficial for biomolecule immobilization. The proper mixing of MCC and PAni
combines the nanostructure advantage of biopolymer and the electrical properties of PAni explaining
the higher anodic current obtained for the composite. The addition of extra amounts of cellulose
(Figure 4e) formed intertwined fibers; with nodular agglomerates of particles in some parts of the
nanocomposite. It seems that the composite with higher amount of MCC presented a smooth and
uniform surface fiber displaying crystalline and insulating cellulose with lower electroactive property
that justifies the lower redox current in the CV graph.
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Figure 5 presents the morphology of PAni/MCC/CTAB prepared from solutions containing
0.16 M aniline (Ani/MCC mass ratio of 0.74/0.26) and different concentrations of CTAB. After adding
4 and 6 cmc surfactant, a few particles with wire-like structure were observed (Figure 5a,b). It has been
proved the cationic surfactant of CTAB works as a soft template to tailor the shape of the polymer into
desired nanostructures in such a way that above a critical concentration of surfactants, they assemble
into micelles, spherical or cylindrical structures [32]. In our study, by increasing CTAB to t8 and
10 cmc, intertwined wire and ribbon-like structures were observed (Figure 5c,d) providing more
porous structures with less agglomerated particles which could facilitate the electron transfer between
electrode and mediator.

Molecules 2018, 23, x  7 of 13 

 

 
Figure 4. FESEM micrographs of (a) pure PAni, and PAni/MCC nanocomposite prepared from 
solutions containing different mass ratio of Ani/MCC of (b) 0.37/0.63; (c) 0.56/0.44; (d) 0.74/0.26; (e) 
0.93/0.07. 

Figure 5 presents the morphology of PAni/MCC/CTAB prepared from solutions containing 0.16 
M aniline (Ani/MCC mass ratio of 0.74/0.26) and different concentrations of CTAB. After adding 4 
and 6 cmc surfactant, a few particles with wire-like structure were observed (Figure 5a,b). It has been 
proved the cationic surfactant of CTAB works as a soft template to tailor the shape of the polymer 
into desired nanostructures in such a way that above a critical concentration of surfactants, they 
assemble into micelles, spherical or cylindrical structures [32]. In our study, by increasing CTAB to 
t8 and 10 cmc, intertwined wire and ribbon-like structures were observed (Figure 5c,d) providing 
more porous structures with less agglomerated particles which could facilitate the electron transfer 
between electrode and mediator. 

 
Figure 5. FESEM micrographs of PAni/MCC/CTAB nanocomposite prepared from different 
concentration of CTAB (a) 4 cmc; (b) 6 cmc; (c) 8 cmc; (d) 10 cmc; (e) 12 cmc. 

Figure 5. FESEM micrographs of PAni/MCC/CTAB nanocomposite prepared from different
concentration of CTAB (a) 4 cmc; (b) 6 cmc; (c) 8 cmc; (d) 10 cmc; (e) 12 cmc.



Molecules 2018, 23, 2470 8 of 13

At high concentrations of CTAB the ribbon-like particles formed were significantly shorter in
length and twisted to produce half tube structures (Figure 5e,f).

2.2.3. X-ray Diffraction Analysis

Figure 6A shows the XRD pattern of PAni, and MCC. Pure PAni presented peaks at 2θ = 20.5◦ and
25.4◦, ascribed to the repetition of the benzoid and quinoid rings in the PAni chains [33] confirming
polyaniline was in the form of emeraldine salt [34].
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The XRD diffractogram of MCC (Figure 6A(b)) showed the highest intensity at 2θ = 22.5◦,
and two small peaks at 2θ = 16.4◦ and 14.6◦ correspond to the Miller indices of (200), (110) and
(1–10), respectively [35]. Pure MCC also displayed a small peak at 2θ = 34.6◦, all confirming the typical
pattern for cellulose I.

The effect of MCC content on the crystallinity aspects was studied and Figure 4B compares
the XRD diffractograms of PAni/MCC nanocomposites with different mass ratios of Ani/MCC.
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The nanocomposite with the highest amount of MCC (Figure 6B(d)) exhibited the highest intensity
peak at 22.8o and a small peak at 2θ = 34.6◦. The nanocomposite with high PAni content (Figure 6B(a))
exhibited the highest peak at 2 theta of 25.3◦ indicating the superior effect of PAni on the crystallinity
of the nanocomposite. The results are in agreement with those obtained by others [17].

2.2.4. Thermogravimetry Analysis (TGA)

The TGA plots of pure PAni, PAni/MCC (Ani/MCC mass ratio of 0.74/0.26),
and PAni/MCC/CTAB (Ani/MCC mass ratio of 0.74/0.260 and 10 cmc of CTAB) are presented in
Figure 7. Doped polyaniline typically exhibits three major weight loss steps. The first weight loss
attributed to the removal of moisture starts at 56 ◦C and continues rapidly up to 150 ◦C. The second
step, due to the dopant decomposition, gradually occurred from 158 ◦C to 353 ◦C. The last weight
loss happened around 457 ◦C to 600 ◦C and is attributed to decomposition of the polymer backbone
in agreement with the results of others [36]. The incorporation of crystalline cellulose into the PAni
increased the crystallinity of the composite, where more energy was required to evaporate water/acid
from the polymer chain [37] resulting a higher degradation temperature for PAni/MCC in the first
step. In other words, PAni chains doped with acid in a more crystalline structure would need more
energy for removing acid from well arranged polymer chains. Therefore, the second weight loss
of PAni/MCC with higher crystallinity shifted to a higher temperature. The pyrolysis of cellulose
content in PAni/MCC composite was observed over the range from 230 ◦C to 350 ◦C [38] that is higher
compared to that of pure cellulose, suggesting the protection of PAni over the surface of cellulose [39].
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Pyrolysis of cellulose in microcrystalline cellulose occurred at a higher temperature compared
to that of nanocrystalline cellulose [17]. This could be due to the bigger size, higher crystallinity,
and higher polymerization degree of MCC.

A lower maximum decomposition temperature was observed for the PAni/MCC nanocomposite
compared to that for pure PAni, confirming the interactions between the two constituents of the
composite [38]. The thermal stability of PAni was noticeably decreased by incorporating MCC.
However, adding CTAB to the composite resulted in lower thermal stability of the nancomposite and
PAni/MCC/CTAB nanocomposite decomposed at a lower temperature due to the calcination of CTAB
up to 250 ◦C [40]. CTAB transformations during calcination of CTAB up to ~250 ◦C is well known and
it completely decomposed where there is no trace of CTAB at temperatures from 200 ◦C–500 ◦C [40].
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3. Materials and Methods

3.1. Materials

Microcrystalline cellulose (MCC) was provided by R&M Chemicals (Essex, United Kingdom) and
was partially soluble in dilute mineral acids. Aniline used as monomer, purchased from Sigma Aldrich
Chemie GmbH (Dramstadt, Germany), was distilled under reduced pressure at 131 ◦C and stored at
3 ◦C in the refrigerator until used. Ammonium persulphate (APS) as oxidant, hydrochloric acid (HCl)
and phosphate buffer solution (PBS) were provided by R&M Chemicals. Cetyltrimethylammonium
bromide (CTAB) was purchased from Fluka BioChemika (Munich, Germany) and a screen printed
carbon electrode (SPcE) was obtained from DropSens (Asturias, Spain). All chemicals were of analytical
reagent grade and used without further purification.

3.2. Preparation of the Nanocomposite and Modified Electrode

Various amounts of aniline were dissolved in hydrochloric acid (HCl) 1M in an ice bath. In a
separate conical flask MCC was dispersed in deionized water (DIW) and stirred moderately until the
mixture reached homogeneity. Different concentration of CTAB ranging from 4–12 cmc (1 cmc of CTAB
= 0.87 mM) was prepared in the DIW and then added into the Ani solution. Then, the Ani/CTAB
solution was added into the MCC solution and the mixture was stirred at 0–5 ◦C for 5 min in the ice
bath and left standing for 10 min. The concentration of aniline was adjusted in the range of 0.08 to
0.2 M and the mass ratio of Ani/MCC was selected as 0.37/0.63, 0.56/0.44, 0.74/0.26, and 0.93/0.07 in
final mixture. The concentration of CTAB was in the range of 4–12 cmc. Critical micelle concentration,
known as cmc, is the concentration of surfactants above which micelles form and all additional
surfactants added to the system go to micelles. The solution of APS was added drop wise to the
mixture in which the molar ratio of APS and aniline was always kept at 1:1. The mixture was kept
stirring for 30 min and let it rest at room temperature for 18 h. The green emeraldine polyaniline
nanocomposite (PAni/MCC/CTAB) precipitate was filtered off and washed with distilled water at
least 3 times through centrifugation till supernatant become clear. The precipitate was dried in the oven
at 60 ◦C for 6 h. Pure PAni was prepared at the same condition for comparison purpose. Composite of
PAni/MCC was prepared in the same manner just without surfactant.

In order to prepare a modified electrode, 1 mg of the dried sample was dispersed in 2 mL DIW
and ultra-sonicated for 15 min to get a stable suspension. To obtain a homogeneous and uniform
sample surface on the electrode, 10 µL of suspension was dropped onto the screen-printed electrode
(SPE), by drop casting followed by drying at room temperature.

3.3. Methods

The electrochemical measurements were conducted using an Autolab 204 potentiostat connected
to a PC and controlled by Nova software version 2.11 (Metrohm, Utrecht, The Netherlands).
Field Emission Scanning Electron Microscopy (FESEM) characterization was done by using JEOL
JSM-7600F FESEM Microscope purchased from JEOL Ltd. (Tokyo, Japan) using the secondary detector,
7.0 probe size and 5.0 kv acceleration voltages. Powder XRD data were carried out on a PANanalytical
EMPYREAN system (Royston, UK) at 4.0 kW power supply, 100 mA current flow and 60 kV operation
voltage, and with Cu Kα radiation (λ = 1.54 Å). The thermal gravimetric analysis of samples was done
using a TGA/SDTA 851 system (Mettler Toledo, Ohio, USA) under constant heating rate (10 ◦C/min)
and N2 atmosphere with the temperature range of 50–800 ◦C. FTIR analysis was done on the samples by
using a Spectrum 100FT-IR spectrometer (Perkin Elmer, Waltham, MA, USA) equipped with Universal
Attenuated Total Reflectance (UATR). The nanocomposite (100 mg) was mixed with potassium bromide
(KBr) and compressed to form a crystalline, clear pellet and examined in the transmittance mode
within a 4000–400 cm−1 range.
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4. Conclusions

In this work it has been shown that the physical and electrochemical properties of polyaniline were
enhanced in the presence of MCC and the cationic surfactant CTAB. The SPE electrodes modified by
PAni/MCC/CTAB using certain amounts of MCC and CTAB presented the uppermost redox currents
that could be appropriate for sensor applications. The PAni/MCC/CTAB nanocomposite prepared
from 10 cmc of CTAB showed the highest redox current of 58.7 µA, while PAni/MCC prepared from
same composition exhibited an anodic current of 49.7 µA. The lamellar structure between the cationic
surfactant and anion of the oxidizing agent, APS, serve them as a template to synthesize nanomaterials
with high surface area and porosity. The electrochemical properties of doped PAni combined with the
compatibility of cellulose make PAni/MCC composite a good candidate to be used in biodegradable
batteries and biosensors. PAni/MCC/CTAB nanocomposite could represent a stable nanostructure
platform for enzyme and biomolecule immobilization. The XRD and FESEM results confirmed the
formation of s homogeneous PAni composite in the presence of CTAB and MCC
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