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Abstract

Background: Ulcerative colitis (UC) was the most frequently diagnosed inflammatory bowel disease (IBD) and closely linked
to colorectal carcinogenesis. By far, the underlying mechanisms associated with the disease are still unclear. With the
increasing accumulation of microarray gene expression profiles, it is profitable to gain a systematic perspective based on
gene regulatory networks to better elucidate the roles of genes associated with disorders. However, a major challenge for
microarray data analysis is the integration of multiple-studies generated by different groups.

Methodology/Principal Findings: In this study, firstly, we modeled a signaling regulatory network associated with
colorectal cancer (CRC) initiation via integration of cross-study microarray expression data sets using Empirical Bayes (EB)
algorithm. Secondly, a manually curated human cancer signaling map was established via comprehensive retrieval of the
publicly available repositories. Finally, the co-differently-expressed genes were manually curated to portray the layered
signaling regulatory networks.

Results: Overall, the remodeled signaling regulatory networks were separated into four major layers including extracellular,
membrane, cytoplasm and nucleus, which led to the identification of five core biological processes and four signaling
pathways associated with colorectal carcinogenesis. As a result, our biological interpretation highlighted the importance of
EGF/EGFR signaling pathway, EPO signaling pathway, T cell signal transduction and members of the BCR signaling pathway,
which were responsible for the malignant transition of CRC from the benign UC to the aggressive one.

Conclusions: The present study illustrated a standardized normalization approach for cross-study microarray expression
data sets. Our model for signaling networks construction was based on the experimentally-supported interaction and
microarray co-expression modeling. Pathway-based signaling regulatory networks analysis sketched a directive insight into
colorectal carcinogenesis, which was of significant importance to monitor disease progression and improve therapeutic
interventions.
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Introduction

As the fourth commonest carcinoma, colorectal cancer (CRC)

associated with significant cause of mortality worldwide owing to

its prevailing distant metastasis [1,2]. Unfortunately, there are still

more than 783,000 new cases diagnosed and roughly 394,000

deaths yearly [3]. Further, it is conservatively estimated the

lethality will continue to rise for the increased life-expectancy and

aging population [4,5]. Epidemiological studies uncovered indi-

viduals consistently exposed to inadequate physical practices or

high-fat dietary closely interrelated with high risk of colorectal

neoplasia [6]. Besides, environmental and heritable factors also

made significant contributions to CRC susceptibility [7]. Tradi-

tional pathological examination have identified several causative

modifiers, including TP53, K-ras, APC, Wnt5, beta-catenin, DCC or

microRNAs [8,9]. Among them, APC and DCC were the most

frequently detectable prognostic signatures for CRC; however, the

results were perplexed and cardinal hurdles for clinical therapeutic

interventions were still insurmountable. Since most of variant
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genes have ineffectual profits for diagnosis and underlying

mechanisms associated with CRC are ill-defined.

Considerable documents certified countless malignancies oc-

curred in association with chronic inflammation. Infection with

hepatitis B or C viruses had been found to be the main cause of

hepatocellular carcinoma [10,11]. Besides, inflammation also

directly related to DNA methylation and epithelial cell malignant

transformation [12,13]. As an inflammatory response to infection,

inflammation-mediated CRC had been reviewed [14]. Numerable

evidences pointed out chronic ulcerative colitis (UC) was

intimately connected with colorectal carcinogenesis

[15,16,17,18]. However, our current knowledge regarding signal-

ing regulatory networks between UC and CRC has not been

unraveled yet.

Cells in multi-cellular organisms switch into diverse fates, such

as division, proliferation, apoptosis or differentiation into special-

ized phenotypes. Genome-wide association studies (GWAS) of

gene regulatory networks (GRNs) govern this process and the

inference of GRNs is crucial for understanding underlying

molecular mechanisms between genes and gene regulation

[19,20]. Typically, GRNs are modeled as a structure of genes,

cis-elements, and regulators. The regulators, also called transcrip-

tion factors, are often described as proteins which bound to

specific regions of target gene, and thereby regulated the

transcription of genetic information from DNA to mRNA [21].

They functioned as an activator or repressor alone or with other

proteins to regulate the recruitment of RNA polymerase to targets

[22,23]. Moreover, apart from proteins, microRNAs also partic-

ipate in the transcriptional and post-transcriptional regulatory

manner of gene expression in plants and animals [24]. In addition,

interactions among regulators are defined as cis-elements in GRNs

and thereby control the level of gene expression during

transcription.

As yet, a wide variety of approaches have been proposed for

modeling GRNs, such as discrete models of Boolean networks

[25,26], Bayesian networks [27,28], system of equations [29],

continuous models of neural networks [30], association network

[31], and co-expression models [20], etc. Among them, the most

successful approaches for GRNs inference were ascribed to the

reconstruction of the association network from target predictions

[32]. However, the so-called ‘guilt-by-association’ methods [33,34]

need long time consumption, making them unsuitable for GRNs

inference in term of large-scale genomes [35]. Meanwhile, owing

to its high risk of false-positive noise, cardinal drawback for the

association network modeling was its weak correlations, which was

insufficient to elaborate the real connections within the network.

Needless to say, with the rapid increase of experimental

approaches, the advent of microarray facilitated large-scale

monitoring of gene expression under different conditions at one

time and enlightened roles of genes associated with infirmities in a

systematic visualization [36,37]. Thus, inference of gene regula-

tions in GRNs based on microarray gene co-expression models

provided an opportunity for understanding the underlying

regulatory mechanism [38]. Meanwhile, knowledge associated

with subcellular localization in a network is indispensable for

grasping molecular function and intricate biological pathway at

subcellular level [39]. Thus, modeling of layered GRNs by

integrating large-scale microarray expression data sets contributed

to elucidate illnesses in a systems biology perspective.

However, mining these data to better comprehend gene

expression and regulation proposes a major challenge for

bioinformatics. Since practical considerations restrain the size of

samples and the overlap genes in multiple studies are limited with

poor predictability [40]. If small sizes of individual studies from

different experiments are combined to increase sample size, the

integrative manner is therefore a promising approach and a more

accurate reconstruction of GRNs can be expected [41]. Never-

theless, real biological variation from the data set still exists [42]

when different samples are added to an existing one or in a meta-

analysis of multiple studies that pools microarray data across

different laboratories or platforms [43]. To make up the scarcity,

we perform a simulation by randomly generated 8 virtual data

sets, also called random microarray data sets (RDSs), from the

integrative microarray cohort.

The purpose of functional genomics in the post-genome era is to

better elucidate molecular mechanisms involved in gene regulation

[44]. Genes assigned to certain gene sets by clustering analysis

belong to different regulatory modules or signaling pathways.

GRNs clarify the interaction among transcription factors and

inference of transcriptional regulatory networks assists in under-

standing underlying mechanism of complex cellular processes or

responses [45]. Given that gene-gene interactions contribute to

complex diseases, the combination of multiple variants based on

biological pathways tends to uncover the synergistic effects of

large-scale genes and highlight the specific signaling pathways

involved in diseases [46].

Traditionally, cell signaling is described as linear diagrams. As

more cross-talk between signaling has been reviewed, a systematic

network view of cell signaling is proposed [47]. Among them, one

of the pioneering attempts to model signaling network was

assigned to the map of human cancer signaling. In Cui et al.

network, a comprehensive analysis of human cancer signaling

architectural organization assembled from cancer-associated

genetically and epigenetically altered genes was established [48].

In addition, Fan and colleagues also performed a network-based

pathway analysis using gene co-expression models to specify the

off-target effects for torcetrapib. They highlighted that IL-2

Receptor Beta Chain in T cell Activation, Platelet-Derived

Growth Factor Receptor (PDGFR) beta signaling pathway, IL2-

mediated signaling events, ErbB signaling pathway and signaling

events mediated by Hepatocyte Growth Factor Receptor (HGFR,

c-Met) were answered for the adverse cardiovascular effects

associated with torcetrapib [49]. Thus, pathway-based signaling

regulatory networks had been widely applied to complex diseases,

which led to identifying diseases-susceptibility pathways for

therapeutic interventions [50,51,52].

In this study, we modeled a layered signaling regulatory network

associated with colorectal cancer from cross-study microarray gene

expression data using the experimentally-supported interaction

and microarray co-expression modeling. Cytoscape [53] in

association with four plugins including BisoGenet [54], Networ-

kAnalyzer, AllegroMCODE and Cerebral [55] was applied for

inferring the layered signaling regulatory network. To our

knowledge, by far, there were no published documents expounded

the pathological transition focusing on a layered signaling network

and our study provided infrequent insights into the potential

molecular mechanisms, which might be useful for colorectal

cancer therapeutic prevention or intervention.

Materials and Methods

Microarray Data Sets Selection
We search the public functional genomics data repositories

including ArrayExpress (http://www.ebi.ac.uk/arrayexpress/),

Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.

gov/geo/) and Stanford Microarray Database (SMD, http://

smd.stanford.edu/) for microarray data sets satisfying the following

criteria: (1) deriving from Homo sapiens; (2) depicting genome-
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wide co-expression information of ulcerative colitis and neoplastic

lesions; (3) supplying raw data files. After extensively retrieval, two

different microarray expression cohorts performed on Affymetrix

GeneChip platform were downloaded from GEO and selected for

further investigation (Table 1).

The first data set obtained from Gyorffy et al. (GEO ID:

GSE4183) was performed on Affymetrix Human Genome U133

Plus 2.0 Array platform [56]. This study derived from different

stages of pathophysiological background of colonic diseases with

15 samples for inflammatory bowel disease (IBD) and 15 samples

for colorectal carcinoma (CRC) with the purpose of developing a

comprehensive comparison of preprocessing algorithms on sam-

ples to afford a data warehouse which can be further mined for in-

depth pathway analyses.

The other one is a subset of 15 Affymetrix HT HG-U133

GeneChips originated from a gene expression experiment by

Pekow et al. [57]. The aim of this original investigation was to

perform a genome-wide expression profiling between chronic

ulcerative colitis (UC, 4 arrays) and neoplastic lesions (11 arrays) to

ultimately detect underlying prognostic gene signatures involved in

this pathophysiological transition (GEO accession number

GSE37283). All clinical specimens utilized in this study were

directly taken from patient-sufferers either surgically disconnected

or during surveillance colonoscopy.

Computational Pipeline
To standardize the microarray data sets obtained from

independent studies and reduce systematic distortions produced

by different laboratories, rank normalization was introduced to

effectuate robust multi-array average (RMA) analysis [58].

Subsequently, platform comparison from Affymetrix probe

identifier to NCBI AILUN [59] was performed and cross-study

normalization was achieved using ArrayMining (http://www.

arraymining.net/), which pooled multiple microarray data from

independent investigations or platforms into a combinational

cohort [60].

Simulated Gene Expression Data Analysis
We simulated 8 virtual cohorts, called the random microarray

data sets (RDSs), from the integrated data set mentioned above

[42]. For each RDSs, we created at least 12 samples. Afterwards,

all the RDSs were performed Significance Analysis of Microarray

(SAM, http://www-stat.stanford.edu/̃tibs/SAM/) to produce a

cluster of up- or down-regulated variant genes via comparison of

UC with CRC [61]. Gene expression was regarded as significantly

dissimilar if the threshold of false discovery rate (FDR) less than

0.05 and fold change above 1.2.

Cancer Signaling Regulatory Map Construction
To provide a high-quality human cancer signaling atlas with

great superiority, the manually curated molecules of human

cancer signaling were assembled as previously described [48].

Briefly, a map of human cancer signaling was firstly obtained from

Cui et al., which united manually curated signaling molecules

including BioCarta (http://www.biocarta.com/) [62], literature-

mined signaling network [63], Cancer Cell Map including cancer

mutated genes obtained from COSMIC database and other high-

throughput profiling, methylated genes in cancer stem cells, cancer

associated gene set acquired from plasmID (http://plasmid.hms.

harvard.edu/) and Online Mendelian Inheritance in Man

(OMIM, http://www.ncbi.nlm.nih.gov/omim). Subsequently,

Human Protein Reference Database (HPRD, http://www.hprd.

org/) [49] and REACTOME (http://www.reactome.org/) data-

bases were appended. After adding connections between signaling

molecules based on SysBiomics platform (http://biomine.cigb.

edu.cu/sysbiomics/) [54], the original human cancer signaling

map was visualized by Cytoscape (http://www.cytoscape.org/)

[53]. Dispersive nodes without interactions and small sub-networks

were discarded afterwards. Only the largest component was

considered as the map of human cancer signaling. Meanwhile,

duplicated edges and interaction direction were abandoned from

the network utilizing NetworkAnalyzer plugin before analysis.

Ultimately, the reconstructed human cancer signaling network was

clustered by AllegroMCODE using Molecular Complex Detection

(MCODE) clustering algorithm [64].

Layered Signaling Regulatory Network Analysis
Subcellular localization information involved in the signaling

regulatory networks driven by the co-differently-expressed genes

was diffusely retrieved from Human Protein Reference Database

(HPRD, http://www.hprd.org/), Human Proteinpedia (http://

www.humanproteinpedia.org/) and EntrezGene (http://www.

ncbi.nlm.nih.gov/gene). Cerebral generated a view of the layered

map afterwards and each of the signaling regulatory networks was

divided into four layers, including extracellular, membrane,

cytoplasm and nucleus [55]. Nodes without localization informa-

tion were positioned into the same layer of their adjacent

neighbors.

Gene Ontology (GO) and Pathway Analysis
Functional enrichment analysis was performed to evaluate

underlying biological functions involved in the layered signaling

regulatory networks. In this study, the DAVID functional

annotation clustering tool (http://david.abcc.ncifcrf.gov/) was

freely employed to enrich the potential biological functions based

on ‘‘GOTERM_BP_FAT’’ option [65,66]. For pathway enrich-

ment analysis, ToppCluster (http://toppcluster.cchmc.org/) was

selected as gene sets category [67].

Hierarchical Signaling Regulatory Networks Organization
To obtain an intuitionistic two-dimensional graphical represen-

tation of large-scale cluster members across an activity profile and

define the main clusters by visual inspection of the resulting tree, R

(http://www.r-project.org/) cooperated with stats package was

introduced to hierarchically trace heatmap for the over-represent-

Table 1. Microarray data sets utilized in this experiment.

Authors Documents (PMID) GEO number Array type Number of samples

Gyorffy et al. 20087348 GSE4183 Affymetrix Human Genome U133 Plus 2.0 Array 30(IBD:15; CRC:15)

Pekow et al. 23388545 GSE37283 Affymetrix HT HG-U133+ PM Array 15(UC:4;CRC:11)

Abbreviations: IBD: inflammatory bowel disease, CRC: colorectal carcinoma, UC: ulcerative colitis.
doi:10.1371/journal.pone.0067142.t001
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ed GO biological processes and signaling pathways in the layered

signaling regulatory network.

Results

Two independent microarray data sets depicting UC and CRC

from clinical specimens were utilized in this experiment. RMA

analysis was applied to implement rank normalization based on

WebArray [58]. Platform comparison from Affymetrix probe

identifier to NCBI was performed using AILUN [59] before cross-

study normalization and integration [60]. Totally, there were

20,083 common genes, 455 unique genes in GPL570, and 433

diverse genes in GPL13158. We then performed a simulation by

randomly generating 8 RDSs from the combinational cohort and

carried out SAM to produce a cluster of variances.

To acquire high-quality human cancer signaling, we manually

curated cancer signaling molecules thoroughly [48,49]. All the

over-represented genes obtained from the virtual RDSs were

mapped to portray the context-specific sub-communities and the

remodeled signaling regulatory networks were redistributed

according to their subcellular localization. To better expound

the underlying molecular mechanisms associated with CRC

initiation in the layered signaling networks, the DAVID functional

annotation tool and ToppCluster were freely employed to

implement Gene Ontology (GO) and pathway enrichment

analysis, respectively. In general, the remodeled signaling regula-

tory networks mainly responded to negative regulation of DNA

recombination, nucleotide-excision repair, modification-depen-

dent protein catabolic process, protein catabolic process and

modification-dependent macromolecule catabolic process. Path-

way enrichment analysis indicated that EGF/EGFR signaling

pathway, EPO signaling pathway, T cell signal transduction and

members of the BCR signaling pathway were primarily respon-

sible for the malignant transition of CRC.

Identification of Co-differently-represented Genes
Associated with Colorectal Cancer

To identify variant regulators between UC and CRC, two

separate microarray data sets with primary intensity data files of

Affymetrix CEL format were submitted to WebArray to carry out

RMA analysis (Appendix S1 and S2). The output graphic plots

including histogram, M-A plot and M-B plot for each study before

and after within-array normalization were presented in Figure 1.

We then effectuated cross-study normalization and integration

using ArrayMining, which averaged across individual probe

expression values and the integrative data set were attached in

Appendix S3 and S4. Figure 2 pictured the density plot and Q-Q

plot before and after integration based on Empirical Bayes (EB)

algorithm, which focused on pooling independent microarray data

sets utilizing parametric and non-parametric EB approach to filter

out batch effects [68]. Finally, 8 RDSs originated from the same

combinational cohort were performed SAM to produce a list of

differently expressed genes for false discovery rate (FDR),0.05

and the fold change.1.2 (Appendix S5).

Human Cancer Signaling Network Construction
To infer a map of human cancer signaling, varieties of

repositories were exhaustively retrieved. Functional relations

between nodes were added using BisoGenet in SysBiomics. In

total, the reconstructed human cancer signaling network consisted

of 11,728 nodes and 94,471 connections, and the raw data was

appended in Appendix S6.

Signaling Regulatory Networks Organization
We next sought to pursue the decisive signaling regulatory

cohort associated with the aggressive transition from UC to CRC

in the map of human cancer signaling using MCODE clustering

algorithm [64]. As presented in Figure 3, 8 network modules with

a cluster score above 2.0 were detected. Subsequently, all the

differently expressed regulators were mapped to portray the

context-specific signaling sub-communities. As shown in Table 2,

out of the 8 signaling regulatory modules, 3 gene sets originating

from cluster 3, 6 and 7 were principally driven by most of the

variance and answered for colorectal carcinoma initiation.

Layered Signaling Regulatory Networks Construction
Subcellular localization information involved in the context-

specific sub-communities encoded by the virtual RDSs was

retrieved from HPRD, Human Proteinpedia or EntrezGene,

and imported as node attributes. Afterwards, Cerebral automat-

ically generated a view of the layered signaling regulatory network

which integrated 3 signaling regulatory sub-networks according to

the subcellular localization, and the remodeled signaling regula-

tory networks were divided into four layers, including extracellu-

lar, membrane, cytoplasm and nucleus (Figure 4). Besides, nodes

in the layered network were proportionate to degree and

empowered polychrome schemes to distinguish these modules.

Red and blue represented nodes located in cluster 3 and 6,

respectively. Whereas, green stood for hubs scattered in cluster 7.

GO Analysis
The layered signaling network associated with CRC in the

context of GO was assessed by DAVID to identify significantly

over-represented biological functions (FDR,0.01). Meanwhile, a

heatmap with hierarchically clustering was produced to visualize

these processes based on stats package in R project. As shown in

Figure 5 A, most of the biological processes related to molecular

metabolic, modification, biosynthetic, transcription and catabolic

processes. Particularly, we underlined the importance of regulators

in nucleus layer, which indicated that negative regulation of DNA

recombination, nucleotide-excision repair, modification-depen-

dent protein catabolic process, protein catabolic process and

modification-dependent macromolecule catabolic process were

responsible for the pathological transition from UC to colorectal

carcinogenesis.

Pathway Analysis
To gain a detailed insight into the functions of the whole

regulators in the layered signaling regulatory network, we

additionally performed pathway enrichment analysis using

ToppCluster. As appended in Figure 5 B, genes distributed in

extracellular, membrane and nucleus regions of signaling network

7 were highly associated with CRC initiation especially for EGF/

EGFR signaling pathway, EPO signaling pathway, T cell signal

transduction and members of the BCR signaling pathway

(FDR,0.01).

Discussion

As microarray data on gene expression programs become

available, it is profitable to create a systematic view of biological

systems to improve our understanding of underlying mechanisms

associated with disorders [69,70]. Given that extensive investiga-

tions of signaling had been studied over the past few decades,

knowledge concerning signaling regulation had been assembled

and deposited in publicly available resources. Since the abnormal

expression of genes involved in diseases frequently resulted in

Layered Network Analysis of Colorectal Cancer
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genome instability, analysis of gene-gene interactions in the

context of gene regulatory networks could reveal the specific

GRNs that led to the dysfunction of biological systems [71]. Thus,

an integrative analysis of human cancer signaling network based

on cross-study microarray expression profiles was of great

availability in CRC initiation and progression [48].

Despite massive amounts of experimentally-supported micro-

array expression data bestowed in public repositories, it was still

strenuous to avail legitimately. Since experiments were run on

different laboratories, the combined usage of multiple platforms

was necessary to overcome technical variation of individual study

that resulted from sample preparation, labeling, hybridization,

Figure 1. Robust multi-array average (RMA) analysis results of microarray data based on WebArray. (A) Statistical analysis result plot for
GSE4183 included M-A plot, M-B plot, M histogram and B statistics histogram. (B) Statistical analysis result plot for GSE37283 included M-A plot, M-B
plot, M histogram and B statistics histogram. M: the log-differential expression ratio; A: the log-intensity of spot, a measure of overall brightness of
spot; B: B statistics, the log-odds of differential expression.
doi:10.1371/journal.pone.0067142.g001

Figure 2. Cross-study normalization and integration results of two separate microarrays based upon ArrayMining.
doi:10.1371/journal.pone.0067142.g002

Layered Network Analysis of Colorectal Cancer
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handling and other processing steps [72]. For the purpose of the

study, a cross-study multiple microarray data integration and

normalization method were applied to infer signaling pathways

involved in colorectal carcinogenesis. Recently, Li et al. indicated

the ‘one-step-clustering’ of gene expression profiles and network-

based gene signatures used in the past decade was far from

sufficient to produce robust gene signatures [42]. To overcome the

deficiency and offer robust and accurate modulated signatures, we

carried out a simulation by randomly generating a cohort of

virtual microarray data set gained from the combinational one.

Even though each of the RDSs was subsets of the identical cohort,

the variance varied diversely. Of note, we discovered 3 signaling

networks including cluster 3, 6 and 7 turned out to be robust,

suggesting the stimulated re-sampling from different combinations

of microarray cohort could effectively cut down the false-positive

signatures in the noise.

In this study, we modeled a layered signaling regulatory network

via integration cross-laboratories microarray expression data based

on the experimentally-supported interaction and microarray co-

expression modeling. Pathway-based signaling regulatory networks

analysis revealed EGF/EGFR signaling pathway, EPO signaling

pathway, T cell signal transduction and members of the BCR

signaling pathway were involved in colorectal carcinogenesis. Our

biological interpretations are as follows:

EGF/EGFR Signaling Pathway
Numerous experimental and epidemiological investigations

supplied strong evidences that EGF/EGFR signaling pathway

played a pivotal role in ulcer repair. As a single-chain polypeptide

of 53 amino acid residues, epidermal growth factor (EGF) could

stimulate cell growth, proliferation and differentiation through

autocrine, paracrine and endocrine mechanisms. It had been

indicated that EGF could accelerate ulcer repair in the experi-

mental colitis animal model [73], resulting in the alteration of

downstream signaling cascades and subsequently catalyzing

preferential substrates mediated by DAG, IP3 and phosphorylated

RAS [74]. Recent studies demonstrated EGF could promote

goblet cell mucus secretion and protect rat jejunal mucosa from

injury induced by mechanical trauma [75]. Meanwhile, Luck et al.

also discovered that EGF could significantly reduce colon ulcer

and inflammation in vivo after intracavitary application, suggesting

EGF was a protective cytokine in ulcerative colitis [76].

However, the over-expression of EGF was an aggressive

biological behavior, as increased levels of EGF/EGFR were

detected in innumerable types of carcinomas [77,78]. In other

words, high levels of EGF or the activation of EGF/EGFR

pathway had been found to significantly associate with tumor

initiation and proliferation. Numerous signaling cascades includ-

ing KRAS/BRAF and PI3K/AKT were certified to entangle in

colorectal cancer [79]. In the presence of EGFR, the accumulation

of EGF in solid tumor led to the activation of the PI3K/AKT

pathway which subsequently gave rise to solid tumor proliferation.

Therefore, tactics targeting EGF/EGFR cascade system would

have been an effective and timely approach for clinical prevention

and therapeutic intervention for the transition from chronic non-

resolving UC to pernicious colorectal carcinoma [80].

EPO Signaling Pathway
Pathway-based approach for analysis of GWAS also proposed

the assumption that the dysfunction of EPO signaling pathway was

assigned to be a highly aggressive biological process associated

with colorectal carcinogenesis. Erythropoietin (EPO) was a

primary growth factor regulating erythroid progenitor prolifera-

tion and maturation [81]. Despite insufficient evidences conclud-
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ed, several recent investigations still clung to provide infrequent

clues that EPO signaling pathway was closely linked to IBDs. Pro-

inflammatory cytokines, such as interleukin-1beta (IL-1beta),

tumor necrosis factor alpha (TNF-alpha), and interferon gamma

(INF-gamma), are produced in increased amounts by peripheral-

blood monocytes and mononuclear cells in intestinal lamina

propria in patients with IBD [82,83]. In vitro and in vivo models

indicating administration erythropoietin could drastically reverse

the suppression related to pro-inflammatory cytokines of cellular

maturation of the erythroid lineage [84,85]. What’s more, Lee

et al. discovered recombinant human erythropoietin (rhEPO)

treatment remarkably attenuated hyperoxia-induced lung injury

by down-regulating inflammatory responses in neonatal rat model

[86]. It has been indicated that hypoxia and necrosis were

common features of ulcerative colitis [87,88]. The elevated

hypoxia-inducible factors (HIFs) level induced by hypoxic

conditions in ulcerative colitis was a direct catalyst which

accelerated the synthesis and release of EPO [89]. According to

the documented literatures, erythropoietin deficiency contributed

to the development of chronic anemia in patients with IBD [90].

Figure 3. Signaling regulatory modules of human cancer signaling network generated by AllegroMCODE based on molecular
complex detection (MCODE) algorithm. A-H represented signaling regulatory networks 1–8. Circle dots in the networks corresponded to genes.
Red represented high degree connectivity, whereas green stood for low degree connectivity.
doi:10.1371/journal.pone.0067142.g003
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Further, in patients combined with refractory anemia and IBD,

treatment with oral iron and rhEPO could raise hemoglobin and

improve hematocrit [91]. Thus, high levels of EPO in ulcerative

colitis led to the activation of EPO signaling pathway and

therefore served as an anti-inflammatory factor against inflamma-

tion progression.

The roles of EPO had been well documented in erythrocyto-

poiesis, but its clinical relevance in carcinoma remained contro-

versial and deserved for further investigations. Activation of EPO

signal transduction pathway was significantly dysregulated during

disorders progression to a more aggressive phenotype. As early as

2003, EPO was suggested as a rewarding guideline for cancer

patients. However, owing to an observed higher mortality,

concerns were raised that EPO was unprofitable for survival in

cancer patients [92]. In 2003, Henke and his colleagues pointed

out EPO was prosperous to correct anemia in head-and-neck

cancer patients; however, it failed to improve, and even impair,

cancer patient-sufferers [93]. In addition, high levels of EPO and

EPO receptor (EPOR) were found in various cancer cell types and

the EPO/EPOR system was known to induce proliferation,

angiogenesis and even inhibit apoptosis [94]. Yasuda et al.

examined the expression of the EPO/EPOR in 24 kinds of

malignant cancerous cell lines and confirmed EPO signal

transduction system was engaged in tumorigenesis of almost all

malignancies [95]. Meanwhile, Mohyeldin and Lai also attested

EPO was a crucial clinical signatures for head and neck squamous

cell carcinoma diagnosis [96,97]. Analogous conclusions could also

be obtained in lung cancer [98], prostate cancer [99] and ovarian

cancer [100], which indicated EPO/EPOR signaling system was

tightly connected with tumor cell apoptosis, hypoxia resistance and

metastasis. Furthermore, it had been confirmed that cancerous cell

lines with EPO pretreatment rendered them less sensitive to the

cytotoxicity of cisplatin [95]. In general, EPO signaling pathway

appeared to be considerably altered in the malignant transition

from ulcerative colitis to colorectal carcinogenesis.

T Cell Signal Transduction
Imbalance of anti-inflammatory mediators (e.g., IL-10 and

TGF) and excessive pro-inflammatory responses appeared to be a

risk factor for chronic IBD [101]. Mice with IL-10-KO or

lymphocyte-deficient Rag-KO were reported to develop sponta-

neous IBD [102]. On the contrary, several of the pro-inflamma-

tory factors had been identified to associate with T cell production,

such as IL-12, IL-23, IL-6, as well as IL-17. Of note, elevated

production of memory CD4+ regulatory T cells (Treg) specifically

stimulated by IL-23 is especially relevant to tissue inflammation

[102,103]. In the case of IBD models mentioned above, memory

CD4+ Treg constituted 60–80% of the whole T cells in mice with

UC [104]. In addition, Fiona et al. also discovered that CD4/

CD45RBhigh Treg could be confirmed as an initiator of IBD,

suggesting T cell signal transduction was highly associated with

chronic IBD [105].

Figure 4. Layered signaling regulatory networks driven by co-differently-expressed microarray genes involved in malignant
transition of colorectal cancer from the benign chronic non-solving ulcerative colitis to the more aggressive one. In the layered
signaling regulatory networks, the size of each node was proportional to the degree. In addition, red, blue and green represented nodes stemmed
from signaling networks 3, 6 and 7, respectively.
doi:10.1371/journal.pone.0067142.g004
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Several studies had shown a huge accumulation of Treg

distributed in solid tumors and increased with the transition from

benign to a malignant state [106]. Large numbers of cells with the

phenotype of Treg in patients with early stage lung cancer have

implications in the pathogenesis [107]. A recent study in mice

revealed that the efficacy of therapeutic cancer vaccination in mice

could be enhanced by removing CD4+CD25+ Treg, suggesting T

cell signal transduction played a role in immunosuppressive effect.

Meanwhile, activated suppression by Treg had been confirmed to

play an important role in T cells down-regulation [106]. Thus,

interventions including selective depletion Treg, inhibition of the

proliferation and immune regulation of Treg or suppression Treg

from tumor microenvironment aggregation, might be an available

choice [108,109]. In brief, T cell signal transduction was found to

play an essential role during the transition from a benign UC to a

malignant CRC.

Members of the BCR Signaling Pathway
B cell receptor (BCR), a multi-protein complex with an

antigen binding subunit and a signaling subunit, was crucial for

inflammatory signaling initiation and propagation. With the

assistance of costimulatory signals such as natural killer (NK) or

M cytokines, B cell superantigen (BSAg) could interact with B

cells and Ig, and participate in immune system or inflammatory

disorders via cross-linking with BCR [110,111]. BSAg could

enlarge immune systems via activation of autoreactive B cells

which subsequently led to the amplification of local or systemic

inflammatory reaction through interacting with BCR [112].

Silverman et al. uncovered, owing to the damage involved in

intestinal digestive tract, polyclonal activators could mediate

local immune response through penetrating lymphoid tissues

[113].

Aberrant BCR signaling pathway plays significant roles in the

pathogenesis of tumor immunity. Recent studies demonstrated

that over-expression of regulatory B cell (Breg) could enhance

tumor immunity [114]. As a member of the FOX protein family

involved in immune system response, FOXP3 (forkhead box P3)

was a master regulator in the development of Treg [115]. Elevated

levels of Breg disturbed in tumor could transform CD4+ Treg into

FoxP3+Treg via direct interaction with transforming growth

factor-beta (TGF-beta) pathways, resulting in tumor proliferation.

However, in the absence of Breg, the transformation of

FoxP3+Treg was impeded and inhibited breast cancer metastasis

[116]. Thus, in view of the negative regulation of Breg, depletion

of B cells might be propitious to enhance the anti-tumor capacity

[117] and the application of rituximab could significantly reduce

the number of mature B cells in body, which resulted in an

inhibitory effect on colorectal carcinoma initiation and progression

[118].

Conclusions
A layered signaling regulatory network involved in the transition

from primary UC to aggressive CRC was successfully modeled via

linking cross-study microarray co-expression models with exper-

imentally-supported interactions from the map of human cancer

signaling, which led to identifying several chief cellular processes

and signaling pathways. These pathological processes had been

documented to be characteristics for colorectal carcinogenesis, and

could be summarized into four main pathways, including EGF/

EGFR signaling pathway, EPO signaling pathway, T cell signal

transduction and members of the BCR signaling pathway.

Therefore, our biological interpretation was focused on these

pathways and their potential contributions to the transition from

benign UC to aggressive or malignant CRC.

Figure 5. Heatmap of the over-represented biological processes and enrichment pathways using stats package in R environment.
For each figure, columns correspond to biological processes (A) or signaling pathways (B), and rows correspond to gene cluster category and
subcellular localization. Expression values are logarithm of ratio value utilizing log transform data. Red and blue in each grid represented positive,
while white represented null. (A) Significantly over-represented GO biological processes in differential cluster and layers. (B) Significantly enriched
signaling pathways in differential cluster and layers. E: Extracellular. M: Membrane. C: Cytoplasm. N: Nucleus.
doi:10.1371/journal.pone.0067142.g005
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Our model for inferring the layered signaling regulatory

network has two key points. For one thing, the connections

between nodes or hubs in the signaling regulatory networks were

integrated from cross-laboratories microarray expression profiling.

For another, the layered signaling regulatory network, as opposed

to the traditional ones, provided infrequent insights into molecular

function and the intricate signaling pathways at the subcellular

level. However, due to its positive connections and some noises

that could not be avoided, the layered signaling regulatory

network presented here is still not comprehensive. Nevertheless,

we still confirmed that our inference would provide incentive

illustration for the malignant transition of CRC, and supplied

directive significance for future therapeutic intervention.
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