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Abstract

The goal of this study was to evaluate prostate cancer gene expression signatures associated with 

elevated body mass index (BMI). Global gene expression profiles of prostate tumor cells and 

matching normal epithelial cells were compared between patients with features of normal- and 

high BMI at the time of radical prostatectomy. Knowledge-based analyses revealed an association 

of high BMI with altered levels of lipid metabolism and cholesterol homeostasis genes, such as 

stearoyl-CoA desaturase 1 (SCD1) and insulin-induced gene 1 (INSIG1), respectively, in prostate 

tumor cells. These genes were connected to known pathways of tumorigenesis revealed by the v-

maf (musculoaponeurotic fibrosarcoma) oncogene homolog (MAF), notch receptor ligand, jagged 

1 (JAG1), and the alanyl aminopeptidase (ANPEP/CD13) genes. This study highlighted that 

SCD1, a known target of statins, may play a mechanistic role in the recently noted beneficial 

effects of statin treatment in reducing biochemical recurrence of prostate cancer. An additional 

finding of our study is that some of the obesity related genes were upregulated in tumor-matched 

normal cells within the high BMI group, when compared to normal cells within the normal BMI 

cohort.
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Introduction

Studies have linked prostate cancer to age, race, family history, genetic risk alleles, diet and 

altered metabolic conditions, such as obesity and diabetes.1–4 Although prostate cancer is 
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uncommon in younger men (age < 45), the risk of developing the disease increases with age.

5 Early reports have warned about the potentially negative consequences of unhealthy 

dietary habits in increasing the risk of prostate cancer.6,7 However, the rigorous 

examination of metabolic conditions in relation to prostate cancer incidence and disease 

progression has just begun to unfold. Obesity has reached epidemic levels in America and is 

currently one of the largest medical challenges.8 Whether or not obese men are at increased 

risk for prostate cancer or mortality is complex and debatable.9,10 However, recent 

epidemiological and clinical studies indicate the association of obesity with disease 

aggressiveness.11,12 Consistent with these findings, strong correlation between obesity and 

disease progression is shown in other studies.4,13 Increased odds of high-grade disease at 

diagnosis of prostate cancer indicate that obesity-associated altered metabolic conditions 

may be linked to prostate cancer progression.14 Recent reports described the benefits of 

statins in reducing prostate cancer progression, which support the adverse role of altered 

metabolic conditions in prostate cancer.15–20 It has also been shown that molecular models 

of cancer progression indicate the mechanistic connection between obesity-related gene 

expression signatures and cancer-promoting genetic alteration.21 Thus, there is a need for 

better understanding the role of obesity-associated gene expression signatures in prostate 

cancer. There are numerous challenges in this endeavor. First, BMI information in existing 

prostate cancer gene expression data sets is often insufficient. Second, gene expression data 

from matching benign prostatic epithelial cells that can be used as internal references are 

frequently missing. Third, the lack of history of BMI can severely confound the 

interpretation of obesity gene expression signature in relation to prostate cancer progression. 

For example, prostate cancer patients whose high BMI existed from youth would likely 

present cases where prostate cancer emerged within a cellular environment characteristic to 

the high BMI conditions. We reasoned that the onset of obesity shows a wide range of 

variations with age within the population.22 In contrast, within recipients of the military 

health care, strict physical requirements restrict the onset of weight gain to retirement age. 

Thus, in this prostate cancer patient group, early weight gain is less likely to confound the 

onset of prostate cancer.23–25 The goal of this proof-of-principle study was to carefully 

evaluate the comparative gene expression signatures of tumor and normal prostate epithelial 

cells from patients stratified for similar clinicopathological features presented with normal 

or high BMI at the time of radical prostatectomy (RP). These data will provide the 

foundation for targeted studies focusing on molecular mechanisms of tumor progression in 

prostate cancer patients with high BMI.

Materials and methods

Specimen selection

Patients with prostatic adenocarcinoma were treated at the Walter Reed Army Medical 

Center Urology Service. RP specimens were graded and staged.26 Frozen tissue samples 

were obtained at the time of RP, according to the approved protocol. Frozen tissues, were 

stored in OCT at −80°C. From 40 patients reported in a previous microarray study,27 12 

were selected for the current analysis. Well- and moderately-differentiated tumor cells were 

obtained from specimens with Gleason score 6–7 with no seminal vesicle invasion. Laser 

capture micro-dissection (LCM) compatible specimens from six patients with high BMI and 
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six patients with normal BMI were selected by matching the age and race (Caucasians), 

assuring that patients were not treated with cholesterol-lowering drugs prior to RP (Table 1).

Laser Capture Microdissection and quality control

For the LCM selection of benign prostate epithelial cells with normal morphological 

appearance (N) and prostate tumor epithelial cells (T) from H&E-stained frozen tissue 

sections the PixCell® II Laser Capture Microdissection System (Arcturus, California, USA) 

was used. We obtained approximately 5000 cells from each cell types. Cells with well- and 

moderately-differentiated morphology were captured from tumor foci. Nonadjacent prostate 

epithelial cells were collected from morphologically normal fields. Optimal composition of 

the samples was defined as less than 10% contamination with stroma tissue. Captured cells 

were processed for RNA extraction. Quantitative RT-PCR analysis of the prostate cancer 

marker genes, ERG, AMACR and PCA3 were performed from LCM-derived RNA samples.

28 Tumor-over-normal (T/N) gene expression rations were log10 transformed and were 

represented on a heat map.

RNA extraction labeling and gene expression analysis

Typically, 20 ng of total RNA was isolated from the LCM samples by using the Paradise 

MicroRNA kit (Arcturus, Mountain View, CA). The isolated RNA was quantified by using 

RiboGreen dye (Molecular Probes, Eugene, OR) and VersaFluor fluorimeter (BioRad, 

Hercules, CA). Linear RNA amplification was carried out by using the Paradise RNA 

amplification kit (Arcturus, Mountain View, CA). The first round of amplification was 

performed with two nanograms of total RNA. The second round of amplification reaction 

included the cDNA synthesis and biotinylation steps. Linearly amplified RNA samples were 

hybridized to a high-density oligonucleotide human genome array HG-U133A Affymetrix 

GeneChip Arrays.26

Gene expression data analysis

Bioinformatics analysis of the raw gene expression data output (CEL files) was performed 

by using the Robust Multi-array Analysis (RMA, http://rmaexpress.bmbolstad.com) and by 

the ChipInspector a single-probe analysis approach (Genomatix GmbH, Munich, Germany). 

ChipInspector software (http://www.genomatix.de) analyzes raw gene expression data at the 

single probe levels by matching single probes to transcripts, normalizing the total intensities 

and by the Significance Analysis of Microarrays (SAM) analysis and enrichment of 

significantly altered signal intensities. This approach improves the signal-to-noise ratio, 

increases the statistical stringency and eliminates probe mismatches or multiple matches.29 

Probe signal intensities that met both RMA and ChipInspector normalization criteria yielded 

3770 significantly up-regulated and 1885 significant down-regulated probes with a false 

discovery rate (FDR) of < 0.05%. Signal intensities below 30 in both the tumor and 

corresponding normal probe were excluded from further analyses. T/N ratios were 

calculated by applying 2X, 2.5X (data not shown) and 3X cut-off, and probes were matched 

to genes. The analysis revealed 53 unique genes within the high BMI prostate T/N data set, 

and 134 unique genes within the normal BMI prostate T/N data set. Venn diagram analysis 

showed that 34 genes were shared between the high and normal BMI data sets, indicating 
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AMACR and ERG as top scoring common genes. Gene set unique to high BMI prostate 

cancer T/N was further analyzed (Figure 2).

Gene ontology and pathway analysis

The unique high BMI-associated genes (n=53; 20 up-regulated and 33 down-regulated) were 

queried by the Genomatix Pathway System (GePS) that utilizes expert-curated gene 

ontology information from public and proprietary databases (Genomatix GmbH, Munich, 

Germany). In an independent approach high BMI associated genes were queried by The 

Database for Annotation, Visualization and Integrated Discovery (DAVID) software (http://

david.abcc.ncifcrf.gov).30 The Functional Classification Tool was used to assess the 

functional similarity between input genes. The clustering algorithm used by DAVID 

classifies highly related genes into functionally related groups. The “high clustering criteria” 

was used that revealed tight association of genes belonging to cholesterol and lipid 

metabolism. These genes ranked 2nd in the clustering with an enrichment score of 1.47. To 

evaluate functional connections between genes in the high BMI set we entered the gene ID 

of the 53 genes into the BiblioSphere knowledge-based pathway analysis software 

(Genomatix GmbH, Munich, Germany).31 The pathway analysis connects genes by co-

citation within one sentence at abstract levels. Genes forming the central node, such as 

SCD1, INSIG1, ANPEP, MAF, and JAG1 were further analyzed to evaluate significant 

probe-signal intensities individually in tumor and benign samples. Signal intensities passing 

the greater than 30 cutoff in either or both of tumor and benign data sets were log2 

transformed and presented in box-plot diagrams.

Results

Selection of patients with elevated and normal BMI

Prostate cancer patients treated with RP were selected in the high and low BMI groups by 

matching their age, race, differentiation status, absence of pretreatment with cholesterol-

lowering drugs and family history of prostate cancer (Table 1). LCM-selected tumor cells 

from RP specimens were matched by the cellular differentiation status. From each specimen, 

tumor and matching morphologically normal prostate epithelial cells were isolated, total 

RNA were extracted, and gene expression levels were measured by microarray analysis.

26,28

Expression of ERG, PCA3 and AMACR prostate cancer marker genes validate the 
precision of tumor and matching normal cell isolation

To assure that the tumor and matching normal gene expression data set represents the 

precise isolation of tumor cells and normal prostate epithelial cells by LCM, prostate cancer-

associated expression of ERG, PCA3, and AMACR genes were examined by quantitative 

polymerase chain reaction (Q-PCR). Robust overexpression of these prostate cancer markers 

indicated the precise isolation of tumor and normal cells from the RP specimens (Figure 1).
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Defining the prostate cancer signature unique to high BMI by stringent bioinformatic 
criteria

Gene expression features were normalized by using RMAExpress and by ChipInspector 

softwares (false discovery rate of 0.05%) (Figure 2). Gene expression features with signal 

intensities less than 30 in both tumor and normal expressions were excluded from further 

evaluation. Gene expression features meeting this criterion were normalized within both 

high and low BMI groups by dividing the gene expression intensities of tumor cell-

associated signals by the intensities of their matching normal pair (T/N expression ratio). 

Median values were calculated for both high and low BMI T/N ratios. A stringent 3X cut off 

was applied to enrich gene expression signatures of significant expression alterations. High 

BMI-unique gene expression features were further analyzed by excluding gene expression 

features that were either shared between the high and normal BMI groups or unique to the 

normal BMI group. Gene expression features unique to the high BMI group were matched to 

53 genes, 20 up-regulated and 33 down-regulated genes, respectively (Table 2), and were 

evaluated by gene ontology (GO), pathway, and meta-analyses approaches.

Gene expression signature of prostate tumors in high BMI patients is enriched in lipid 
metabolic process and oxidative stress response genes

The high BMI-associated gene set was queried for GO by the GePS software (Genomatix 

GmbH, Munich, Germany) (Table 3). GePS analysis indicated enrichment of genes 

belonging to lipid and steroid metabolic process by querying the biological process category. 

The highest enrichment score in GePS highlighted oxidation-reduction and lipid metabolic 

process as the top scoring GO categories. To confirm these findings by an independent 

approach the high BMI gene signature was also queried by DAVID by using the Functional 

Classification Tool (data not shown).30 The clustering algorithm used in DAVID classifies 

highly related genes into functionally related groups. The high clustering stringency used in 

this analysis confirmed the enrichment of lipid metabolism-associated genes.

Knowledge-based pathway analysis of the high BMI signature suggest a gene network 
linking fatty acid synthesis regulatory genes to genes associated with oncogenesis

We have evaluated the high BMI unique signature gene set (53 genes) in a knowledge-based 

pathway analysis method by using the Genomatix BiblioSphere software (Figure 3).31 The 

resulted network consisted of 11 genes connected at the co-citation level within one sentence 

at abstract levels. The pathway revealed that genes involved in the regulation of lipid 

metabolism, such as INSIG1 and SCD1, are connected through the ANPEP (CD13) gene 

involved in the metabolism of regulatory peptides, to MAF protooncogene and JAG1, a 

ligand for notch receptors, forming the central regulatory node.

The high BMI prostate cancer signature is a result of elevated gene expression in normal 
epithelial cells within the prostate tumor microenvironment

For this study, both tumor and matching normal gene expression values were available. 

Thus, we addressed the patient-to-patient variations in the informatic analyses by using T/N 

normalized expression ratios. Within the group of genes forming the central regulatory node, 

we noted frequently decreased T/N ratios. We reasoned that reduced T/N may be the result 
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of elevated gene expression in the matching normal cells within the high BMI signature. To 

address this possibility, we examined patient-by-patient the signal intensities of genes 

contributing to the central regulatory node (Figure 4a–e). Signal intensities from RMA and 

ChipInspector normalized data were log2 transformed and the data were summarized in box-

plot graphs showing the median value, distribution, and spread of gene expression signal 

intensities in tumor and matching normal cells. The results suggested that elevated gene 

expression in normal prostate epithelial cells from high BMI patients may significantly 

contribute to the high BMI signature. The observed upregulation of INSIG1 and SCD1 genes 

in normal prostate epithelial cells is consistent with the elevated BMI status of patients. 

These results highlight the marked elevation of genes in fatty acid and steroid metabolic 

pathways within the benign prostate epithelial environment of prostate tumors.

The high BMI prostate gene expression signature is consistent with signatures of obesity-
related gene expression data sets

We have examined the consistency between genes observed in the high BMI-associated 

prostate expression signature and adipocyte gene expression datasets obtained from Pima 

Indians study32 and from an adipocyte differentiation model (Table 4).21 The meta-analysis 

revealed that out of the 53 genes identified in our study, 26 overlapped with either or both of 

the examined datasets. Remarkably, all genes of the central node (SCD1, ANPEP, MAF, and 

JAG1) were identified by the meta-analysis.

Discussion

Comparative evaluation of gene expression signatures of prostate tumor and matching 

normal cells from patients with high and normal BMI, indicated the enrichment of 

cholesterol and lipid metabolism associated genes within fatty acid synthesis and oxidation-

reduction GO categories. Knowledge-based pathway analysis of high BMI-associated genes 

suggested a connection to genes involved in lipid metabolism, cholesterol homeostasis, and 

tumorigenesis. Our results highlight the SCD1 gene, a stearoyl-CoA desaturase associated 

with obesity.33 SCD1 enzyme regulates the synthesis of unsaturated fatty acids thereby 

altering membrane fluidity. Importantly, atorvastatin can reduce levels of SCD1, suggesting 

for a potential mechanistic link between the benefits of statins in prostate cancer 

progression.34 SCD1-enzyme inhibitors have been proposed for the therapy of obesity with 

cautions for the potential pro-inflammatory response to complete blockade of SCD1.35 

Comparative evaluation of SCD1 gene expression levels in tumor and matching normal 

prostate epithelial cells from patients with high and normal BMI revealed the elevated gene 

expression of SCD1 in normal prostate epithelial cells. This finding is consistent with 

reported obesity-associated gene expression alterations. In prostate tumor cells, we found 

that SCD1 expression levels were decreased, which may aggravate pro-inflammatory 

processes in prostate cancer.35

In an earlier report over expression of SCD1 was shown in human prostate cancer by 

analyzing macro-dissected tumors with Gleason ≥7.36 In our study prostate cancer cells 

were micro-dissected from tumors with Gleason ≤7. Thus, the two studies may not be 

directly comparable.
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The insulin-induced gene, INSIG1, plays central roles in the feedback control of cellular 

cholesterol levels. Frequent up-regulation of INSIG1 is associated with metabolic disease 

conditions including elevated BMI. JAG1 is a receptor of notch signals37 and down-

regulation of JAG1 results in inhibited prostate cancer growth.38 The association of JAG1 

with prostate cancer recurrence and metastasis has been previously shown.39 In prostate 

cancer, MAF expression was associated with the receptor tyrosine kinase, PDGFR-beta 

status. Expression of ANPEP (also known as CD13), a broad specificity aminopeptidase, is 

frequently lost or reduced in prostate tumor cells.40 We individually analyzed the gene 

expression levels of these genes in prostate tumor cells and in matching normal epithelial 

cells. The analysis revealed elevated expression of INSIG1, SCD1, MAF, and ANPEP genes 

in tumor-matched normal epithelial cells. These findings indicate that the prostatic cellular 

environment harbors a gene expression signature that is a hallmark of elevated BMI. 

Whether this signature contributes to a permissive cellular environment similarly to the 

recently described role of FASN41 in prostate cancer progression will require further 

investigation.

A limitation of the present study is the smaller sample size, which may have resulted in 

model overfitting. However, high-quality GeneChip data set from RNA specimens of micro-

dissected benign and malignant prostate epithelium; careful patient selection for matching 

age, race, and pathological stage; and meta-analysis in independent gene expression data 

sets underscores the strength of major findings of this study. Another limitation is that gene 

expression alterations below the stringent three-fold cut-off were potentially missed. 

However, the goal of using stringent criterion was to pinpoint robust gene expression 

alterations with potential translational utility.

Although the relationship of obesity and prostate cancer incidence is complex, and in many 

aspects unclear,8 previous reports have shown increased prostate cancer-related mortality 

with higher BMI.42,43 The association of elevated BMI with increased incidences of 

aggressive prostate cancer suggests that high BMI may contribute to hormone production 

and activation of cholesterol synthesis and inflammatory pathways, affecting prostate cancer 

growth.44–46 An intriguing, new observation in our study is the identification of SCD1 gene 

in high BMI prostate cancer signature, which is also a target for atorvastatin. The clinical 

use of statins has been reported to reduce prostate cancer recurrence and mortality, 

suggesting that lipids are important in prostate cancer progression.20,47,48 Whether SCD1 

is indeed a therapeutic target for statins in reducing prostate cancer progression warrants 

further investigations.
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Figure 1. 
Quantitative RT-PCR analysis of ERG, AMACR and PCA3 prostate cancer marker genes. 

For the quality control of LCM selected tumor and matching benign epithelial cells, RNA 

was isolated and ERG, AMACR and PCA3 gene expression levels were defined by QRT-

PCR. T/N ratios were calculated and were log10 transformed and are represented on the heat 

map. Extreme green (−3) and extreme red (+3) colors denote 1000X down or 1000X 

upregulation, respectively.
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Figure 2. 
Schematic diagram of bioinformatic analysis.
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Figure 3. 
Knowledge-based pathway analysis (Genomatix BiblioSphere Software) indicating the 

network of high BMI-associated genes. The displayed network is constructed from 53 input 

genes. Connection lines are drawn as a result of co-citation of two genes within one 

sentence. Green or partially green connection lines indicate a transcription factor matrix 

match in the promoter of the gene connected by the green line. Orange or yellow indicates 

up-regulated, shades of blue mark down-regulated genes in the T/N data sets. Major 

biochemical pathways are highlighted with pink color.
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Figure 4. 
a–e: Expression of the individual genes forming the central node of high BMI prostate 

cancer signature. Genes forming the central node were individually analyzed to assess the 

differential expression in tumor and matching benign cells. Log2 transformed gene 

expression signal intensities of (a) INSIG1 (p=0.0038), (b) SCD1 (p=0.0113), (c) ANPEP 

(p=0.0150), (d) MAF (p=0.0131) and (e) JAG1 (p=0.0081) genes are shown in box-plot 

diagrams representing expression signal intensity values in tumor and normal prostate 

epithelial cells in high and normal BMI patients.
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Table 2

Tumor over normal gene expression ratios of the high BMI prostate cancer signature.

UP REGULATED

Gene
Symbol

High BMI
Median T/N

Fold Expression

C8orf4 5.14

TMC5 4.83

PDLIM5 4.51

JAG1 4.36

HOXA9 4.25

C4A 3.98

STEAP4 3.92

HLA-DMB 3.85

COL12A1 3.81

DHRS8 3.81

C10orf137 3.62

SLC7A1 3.44

PDZRN3 3.30

F3 3.26

ACER3 3.17

POLB 3.16

PXDN 3.12

PROM2 3.11

GUCY1A3 3.10

SOX4 3.02

DOWN REGULATED

Gene
Symbol

High BMI
Median T/N

Fold Expression

Gene
Symbol

High BMI
Median T/N

Fold Expression

ACADL 0.33 ZNF532 0.26

PHLDA2 0.33 SCD1 0.25

GPD1L 0.33 PTN 0.24

NTAN1 0.33 SC4MOL 0.24

LOC389048 0.32 MAF 0.22

SFN 0.32 NPAL3 0.22

HSRG1 0.32 CYP3A5 0.21

PAK1IP1 0.32 NOV 0.20

EBP 0.31 ALOX15B 0.17

ANPEP 0.31 LOC399959 0.17

ANTXR2 0.29 VGL-3 0.16
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DOWN REGULATED

Gene
Symbol

High BMI
Median T/N

Fold Expression

Gene
Symbol

High BMI
Median T/N

Fold Expression

COL4A6 0.29 INSIG1 0.16

LOC400880 0.29 Rean3 0.15

RHOU 0.29 Poteg 0.14

GREB1 0.28 P704P 0.13

FLJ30428 0.27 EFS 0.13

C3orf14 0.27
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Table 4

Meta-analyses of high BMI associated prostate cancer gene signature comparing gene expression datasets of 

the Pima Indian abdominal subcutaneous adipocyte (Meta 1 Genes) and adipocyte transformation (Meta 2 

Genes) studies. Out of 53 gene expression alterations in the high BMI prostate cancer signature (Table 2), 26 

genes matched either to Meta 1 or to Meta 2.

Meta 1
Genes

High BMI
Signature

Meta 2
Genes

Genes in Pathway

ANPEP ANPEP

SCD1 SCD1 SCD1

JAG1 JAG1 JAG1

ANTXR2 ANTXR2

INSIG1 INSIG1

SOX4 SOX4

MAF MAF

Other High BMI Signature Gene Matches

C8orF4 C8orF4

STEAP4 STEAP4

COL12A1 COL12A1

DHRS8 DHRS8

C10orF137 C10orF137 C10orF137

SLC7A1 SLC7A1 SLC7A1

F3 F3

POLB POLB

GUCY1A3 GUCY1A3

ACADL ACADL

PHLDA2 PHLDA2 PHLDA2

GPDIL GPDIL

SFN SFN

PAK11P1 PAK11P1

EBP EBP

COL4A6 COL4A6

C3orF14 C3orF14

PTN PTN

SC4MOL SC4MOL

C3orF14
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