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Abstract

Protein–RNA interactions are of vital importance to a variety of cellular activities. Both experimental and computational techniques
have been developed to study the interactions. Because of the limitation of the previous database, especially the lack of protein
structure data, most of the existing computational methods rely heavily on the sequence data, with only a small portion of the
methods utilizing the structural information. Recently, AlphaFold has revolutionized the entire protein and biology field. Foreseeably,
the protein–RNA interaction prediction will also be promoted significantly in the upcoming years. In this work, we give a thorough
review of this field, surveying both the binding site and binding preference prediction problems and covering the commonly used
datasets, features and models. We also point out the potential challenges and opportunities in this field. This survey summarizes
the development of the RNA-binding protein–RNA interaction field in the past and foresees its future development in the post-
AlphaFold era.
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Introduction
Protein–RNA interactions are involved in a variety of
cellular activities, such as gene expression regulations
[1], post-transcriptional regulations [2] and protein
synthesis [3]. The perturbation of such interactions
can lead to fatal cellular dysfunction and diseases
[4]. Owing to their importance, researchers have made
significant efforts to understand the interactions [5]
and the related molecular mechanism behind the
processes [6, 7]. Because of the difficulty to perform
high-throughput structural biological experiments in
the last century, the progress of this field was slow
[8]. However, with the development and advancement
of high-throughput assays, such as the in vivo RNA
Immunoprecipitation (RIP)-seq [9] and crosslinking and
immunoprecipitation (CLIP)-seq [10], and the in vitro
RNACompete [11] and High-throughput systematic
evolution of ligands by exponential enrichment (HT-
SELEX) [12], we have witnessed the significant progress

of this field as well as the large amount of accumulated
data [2]. Computational methods emerge to analyze the
data and accelerate the discovery [13–18].

Similar to the experimental techniques, which can be
divided into the structure-based methods and the assay-
based methods, the computational methods can also
be classified into two categories, either predicting the
RNA-binding sites on the protein surface [3, 19] or mod-
eling the preferred RNA sequences of an RNA-binding
protein (RBP) [20]. In the first category, people essentially
resolve a binary classification problem. Given the pro-
tein, researchers want to predict whether it is an RBP, and
if it is an RBP, at which amino acids (AAs) it can interact
with an RNA. In the latter one, given a protein with the
high-throughput assay experimental data, people extract
the frequency of each nucleotide at each position on
the preferred RNA sequences, using k-mer models [21],
position weight matrix (PWM) models [1] or deep learn-
ing models [2]. If the computational method targets on
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genome-wide prediction, sometimes, it is also referred as
the binding sites prediction on RNAs [22, 23], which may
cause confusion to the readers. In the rest of the paper,
binding sites prediction refers to predicting the RNA-
binding sites on the protein surface, whereas the binding
preference prediction refers to predicting the protein
binding preference against RNA sequences. On the other
hand, as both of the two main research directions are
protein-centric [4], which means that there is intrinsic
relation between the two research topics, researchers are
also trying to predict both information simultaneously
with a unified deep learning method [17].

Since the first computational method was proposed to
tackle the interaction between RNA and protein specif-
ically [24], a number of algorithms have been devel-
oped to handle the problems [3, 19, 25–27]. They can be
divided into the following categories. Firstly, based on
the assumption that similar structures may have similar
function, people have used the template-based method
to predict the binding sites [28–31] and the binding pref-
erence [32]. Although such methods can perform well on
queries with homologs, they have difficulty in handling
new sequences without homologs [33]. Secondly, people
combine hand-crafted features, which will be discussed
in the next paragraph, with shallow-learning methods,
such as support vector machine (SVM) [34–37], logistic
regression [38–41] and random forest [42, 43], to inves-
tigate the topic. The commonly used k-mer models [39]
and PWM models [38] are classified into this category,
because they are usually combined with logistic regres-
sion. Notice that this category of methods is still under
active development [36, 37], even after the surge of deep
learning, because it is difficult to represent and encode
the raw structural information, which will be discussed
in detail in this paper. The last category is the deep
learning-based methods [2, 14, 17], which have been very
popular in recent years. With such models, people only
need to input the raw representation of the proteins or
RNAs, and let the models learn and extract useful infor-
mation by themselves. However, the transparency and
interpretability of the models are usually questioned [44].

Within the above algorithms, people have been using
various features, including the ones from both proteins
and RNAs. Regarding the protein features, researchers
have developed representations from sequences, such
as sequence one-hot encodings [3], Position-Specific
Scoring Matrix (PSSM) [37, 45] and conservation entropy
derived from PSSM. The physicochemical properties [46],
including hydrophobicity, electrostatics and atom types,
are also helpful. Although the individual local protein
structural information, such as residue propensity and
solvent accessibility (SA), has been adopted for a while
[19], recently, researchers have shown that directly
using the comprehensive local structural encoding can
significantly improve the model’s performance [17, 47].
For example, people have used voxels [47] and graphs [48]
to encode the protein 3D structures. In terms of the RNA
features, the logic is similar to the protein ones. Regard-
ing the sequence features, people have been using the

sequence one-hot encodings [2, 14, 49], k-mer models [39]
and PWM [38, 39]. However, unlike the protein secondary
structures (SSs), RNA secondary structural information
has been significantly emphasized, including both the
predicted RNA SSs and the in vivo structure profiles [14,
35, 38, 40]. Meanwhile, the tertiary structures are also
shown to be very important [50]. Despite the large variety
of existing features, unfortunately, people have not taken
full advantage of them for the following two reasons.
Firstly, in the binding site prediction, people usually only
consider the protein information, whereas in the binding
preference prediction, people usually only consider the
RNA information. Similar to drug-target interaction
(DTI), the interactions between RNAs and proteins
include at least two molecules, and using information
from only one side could lead to inferior performance
[51–53]. Secondly, the RNA and protein structural infor-
mation has not been fully utilized as well, mainly due to
the limitation of previous structure prediction methods
and the unsatisfactory structure encoding methods.

In recent years, we have witnessed the significant
improvement of both the structure determination meth-
ods [54] and prediction methods [33, 55–60]. Consider-
ing the success of the previous computational methods
targeting protein–RNA interaction prediction based on
structural information, it is foreseeable that researchers
will make significant progress in this field (Figure 1).
Given that, we review this field thoroughly in this paper,
emphasizing the structural information. In this work, we
also consider the protein–RNA interaction binding site
and binding preference prediction simultaneously for the
first time, considering their intrinsic relationship. We
notice that there are some existing related reviews focus-
ing on different aspects of this problem. More specifically,
Pan et al. [61], Yan and Zhu [25] and Sagar and Xue
[26] list the recently developed deep learning tools for
predicting binding preference. Trabelsi et al. [20] evaluate
the performance of different deep learning models on
predicting the binding preference. Yan et al. [3], Si et al.
[62] and Miao and Westhof [19] list and evaluate the
tools for predicting binding sites on protein, whereas all
the involved methods were developed before 2014, which
means that the deep learning methods are not included.
Hafner et al. [13], Ramanathan et al. [4], Licatalosi et al.
[63], and Corley et al. [5] summarize the related biological
experimental techniques to study the interactions as
well as the biological insights and mechanism behind the
interactions. More recently, Jamasb et al. [64] concluded
the computational methods for protein–protein inter-
action site prediction with deep learning approaches.
Also, the work of Day et al. [65], namely message pass-
ing neural processes (MPNPs), successfully improved the
performance of the node classification task in the pro-
tein–protein interaction site prediction problem. It uses
the protein structural data as the interacting residue
graph, which thrives at lower sampling rates. Our work,
which unifies two intrinsically related computational
problems and highlights the importance of structural
information, can provide new insights into the topic.
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Table 1. Summary and comparison of the existing reviews on the studies of protein–RNA interaction. Sorted by the published year, the
reviews are divided into different categories based on their main focuses: CLIP, RNA-binding sites, 3D structural information,
DNA-binding specificity, RNA–protein interaction data and RNA-binding preferences

Paper Year Journal Main Focus

[66] 2012 Nature Review Genetics State-of-the-art Ultraviolet CLIP
[67] 2018 Molecular Cell Rationale for each step in CLIP protocol and discuss the impact of variations technologies
[6] 2019 Nucleic Acids Research Assessment of RNA SS and CLIP in detail
[13] 2021 Nature Reviews Methods Primers Prospect of integrating data obtained by CLIP
[19] 2015 PLOS Computational Biology Comprehensive assessment on RNA-binding sites prediction from multiple web servers,

datasets, and protein-nucleic acid complexes
[62] 2015 International Journal of

Molecular Sciences
Computational approaches for RBPs and RNA-binding sites prediction

[68] 2016 Biophysical Reviews 3D structure of protein–RNA complexes at the atomic resolution
[69] 2017 Nature Reviews Molecular

Biology
The coupling of RNA modifications and structures describe RNA–protein interactions at
different steps of the gene expression process

[70] 2018 Genes Computational methods for macromolecular docking and for scoring 3D structural models
of ribonucleoprotein complexes

[1] 2013 Nature Biotechnology Systematical comparison of protein’s DNA-binding specificity
[3] 2016 Briefing in Bioinformatics RNA- or DNA-binding residues from protein sequences
[20] 2019 Bioinformatics Deep learning architectures for predicting DNA- and RNA-binding specificity
[42] 2015 Briefings in Functional Genomics Integrating RNA–protein interaction data with observations of post-transcriptional

regulation
[71] 2019 Journal of Biological Chemistry Statistical inference and machine-learning approaches for RBPs prediction, analysis of

large-scale RNA–protein interaction datasets
[26] 2019 Protein and Peptide Letters Computational predictors for RNA–protein interaction in the aspects of data, prediction, and

input features
[63] 2020 Wiley Interdisciplinary

Reviews:RNA
RNA interactions with proteins and techniques measuring the kinetic dynamics of
RNA–protein interactions in vitro

[4] 2019 Nature Methods Comparison between RNA-centric and protein-centric experimental methods
[5] 2020 Molecular Cell Protein–RNA molecular interactions & Software availability
[25] 2020 IEEE Access Machine learning and deep learning approaches focusing on RNA-binding preference
[61] 2020 Wiley Interdisciplinary Reviews:

RNA
Prediction of RNA–protein interaction pairs and RBP binding preference

Figure 1. An overview of important works related to binding site and binding preference prediction. Protein structure prediction methods are also
included because of their rising importance in interaction prediction. The three categories are represented by different colored lines in chronological
order. Highly cited papers are highlighted by corresponding colored boxes. Following the significant progress in the past years, this field will embrace
great advancement in the upcoming years.

Table 1 summarizes the main focuses of different review
papers.

This paper is organized as follows. In the second sec-
tion, we give a clear description of the computational
problems related to the interaction between proteins and
RNAs. From the third section to sixth section, we review

each component of the computational methods targeting
against the above problems, including datasets (third sec-
tion), features (fourth section), models (fifth section) and
model evaluation (sixth section). In the seventh section,
we provide a thorough review on the challenges and
opportunities in this field. Although we emphasize on the
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Figure 2. The different paradigms of studying the interactions between proteins and RNAs. A. Binding site prediction. Given the protein information,
people predict which locations on the protein surface are the binding sites for RNAs. B. Binding preference prediction. For a given protein, the researchers
have already determined the RNA sequences that can bind to the protein by experiments. Here, the models learn the statistical information from the
input RNA sequences as the binding preference of that specific protein against RNAs. C. For studying the interaction more comprehensively, it is more
desirable to consider the protein and RNA information, including both the sequence and structural information, simultaneously and predict both binding
sites and binding preference.

importance of structural information to the interaction,
for the completeness of this review, we also mention the
methods only utilizing sequence encoding.

Computational problems for protein–RNA
interaction
In this section, we are going to introduce the two kinds
of computational problems related to the interaction
between proteins and RNAs in detail. As discussed in the
Introduction, we refer to the first one as the binding sites
prediction and the second one as the binding preference
prediction. We summarize the paradigms in Figure 2.

Binding sites prediction
This problem is related to the first problem that peo-
ple want to know when investigating the protein and
RNA interaction. Given a protein, we first want to know
whether this protein is an RBP or not. If it is not an RBP,
we could stop here and save the computational resources
for other proteins. If the protein is an RBP, people further
want to know which AAs on the protein sequence can

potentially interact with RNAs, which is related to the
function of the protein. In other words, researchers want
to predict the binding sites and binding positions on the
protein surface for RNAs.

Usually, for this problem, people only consider the
information from the protein side. The input is a protein,
with either the sequence information or the structure
information, or both. Then, researchers extract some fea-
tures or define certain scoring functions with the above
information. A machine learning model or an alignment-
based method will thus be developed accordingly with an
annotated database. The outputs are binary predictions,
either at the protein level or the AA level. Usually, the
methods based on structure have better performance on
this problem than the sequence-based methods [19], as
the local structure can determine whether the protein is
accessible for interaction with other molecules.

Binding preference prediction
In this computational problem, we want to know more
information about the interaction from the RNA side.
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Table 2. Accessible datasets for studying the interaction between proteins and RNAs

Type Dataset name Samples Availability Benchmark Methods

Sequence dataset doRiNA [72] 67 RBPs https://dorina.mdc-berlin.de/ iONMF [73] DeepBind [2] iDeep [91]
iDeepS [92] iDeepE [22] GraphProt [35]
deepnet-rbp [74] deepRAM [20]

iCount 17 RBPs 5996 binding
sites

https://icount.readthedo-cs.io/en/
latest/index.html

iONMF [73] iDeepS [92] iDeepE [22]
deepRAM [20]

AURA 2 [75] 256 RBPs 224,501 binding
sites

http://aura.science.unitn.it/ RNAcommender [93] iDeepE [22]

CLIPdb [76] 395 CLIP-seq 111 RBPs http://clipdb.ncrnalab.org/ deepnet-rbp [74]
Protein structure
dataset

PDB 179,206 protein
structures

https://www.rcsb.org NucleicNet [17] aPRBind [45]
GraphBind [48]

NPIDB 8140 protein structures https://npidb.belozers-ky.msu.ru/ NucleicNet [17]
AlphaFold DB 23,391 predicted

structures(Homo sapiens),
all the UniRef90 proteins
(over 100 million)

https://alphafold.ebi.ac.uk/ –

RNA secondary
structure dataset

bpRNA 102,318 SSs http://bprna.cgrb.oregonstate.edu/ –

RASP – http://rasp.zhanglab.net –

The interaction involves two molecules, a protein, and
an RNA. In the Section Binding sites prediction, we have
investigated it from the protein side, determining which
AAs can potentially interact with RNAs. In this problem,
we study which RNAs can interact with a certain pro-
tein. If we describe the problem from the protein aspect,
we want to know the binding preference of the protein
against RNAs.

Although we want to predict the binding preference of
an RNA-binding protein (RBP), seldom would researchers
include the protein information in the prediction model.
Usually, the training data are a set of RNA sequences
or RNA SSs, which are proved to interact with a pro-
tein. Then, a machine learning model or a statistical
motif model will be constructed based on the data. The
inputs of these models are RNA features, and the models
will predict whether they can interact with the pro-
tein. Notice that, in these models, people do not use the
protein information explicitly. Instead, people believe a
large amount of training RNA sequences can describe the
target protein implicitly. However, recent studies [17, 31]
show that the protein information can be used directly
to predict the interaction preference, even without the
high-throughput assay data.

Datasets for building the models
After defining the computational problems, we need
to prepare the related data, which are the foundation
for building computational models to resolve the above
problems. The data can be divided into two categories,
either the protein/RNA sequence data or the structure
data. In this section, we give an overview of the data and
the related databases. We also summarize the datasets
in Table 2.

Sequence datasets
The protein sequences are usually used for predicting
the binding sites, whereas the RNA sequences are used
for predicting the binding preference. The techniques to

sequence proteins are very mature, and the resulted data
are stored in UniProt (https://www.uniprot.org), which is
one of the most famous databases in bioinformatics.

The techniques to investigate the proteins’ binding
preference against RNAs include the in vivo RIP-seq [9]
and CLIP-seq [10], and the in vitro RNACompete [11] and
HT-SELEX [12]. Although their experimental techniques
and protocols are very different, the basic principles
are the same, that is, to identify and isolate RNAs that
a protein can interact with and then sequence those
RNAs. Consequently, the outputs and the data from those
experiments are RNA sequences. As this review does
not focus on the experimental techniques, we refer the
readers to the related reviews in case the readers are
interested in them [6].

In Table 2, we list the related datasets. The doRiNA
[72] contains 24 experiments of 21 RBPs, which are
determined by experimental protocols including PAR-
CLIP (Ago/EIF2C1-4, IGF2BP1-3, PUM2, Ago2-MNase,
ELAVL1, ELAVL1-MNase, ELAVL1A, ESWR1, FUS, TAF15,
MOV10) and CLIP-seq (TIAL1, Ago2, ELAVL1, eIF4AIII,
SRSF1). On the other hand, iCount created the iCLIP
dataset for 17 RBPs with 5996 binding sites. iONMF [73]
analyzed the data from iCount and doRiNA, building a
unified dataset, which has been widely used in different
models, including iDeepE [22], deepnet-rbp [74] and
deepRAM [20].

AURA 2 [75] collects the untranslated regions (UTRs)
in mRNA sequences of 67 RBPs with 502,178 binding
sites. Within the dataset, the number of binding sites for
different RBPs is variant. To eliminate bias from imbal-
ance positive sample distribution, iDeepE constructed
RBP-47, removing 20 RBPs with less than 2000 positive
sequences. However, the RBP-47 only provides the posi-
tive UTRs sequence. For generating the negative sample,
the RBP-47 selects the UTRs from other RBPs, excluding
the binding sites in the target RBPs. It is different from
the strategy of doRiNA, which generates the negative
samples by selecting random sites excluding positive

https://dorina.mdc-berlin.de/
https://icount.readthedo-cs.io/en/latest/index.html
https://icount.readthedo-cs.io/en/latest/index.html
http://aura.science.unitn.it/
http://clipdb.ncrnalab.org/
https://www.rcsb.org
https://npidb.belozers-ky.msu.ru/
https://alphafold.ebi.ac.uk/
http://bprna.cgrb.oregonstate.edu/
http://rasp.zhanglab.net
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binding sites in the same gene. Intuitively, the doRiNA’s
tactic would be more rational and have a lower possi-
bility of including false-negative samples. Theoretically,
the CLIP-seq experiments detect regions as the binding
sites of a gene and the other regions as unbinding sites,
which means that experiments have verified the negative
samples.

CLIPdb [76] is a database of various high-resolution
binding sites for RBPs, collecting from published CLIP-
seq data. It contains manually curated annotations from
CLIP-seq studies acrossdifferent organisms with 395
CLIP-seq samples for 111 RBPs. In addition, CLIPdb also
provides genome-wide binding sites for each dataset by
a unified analysis. The resulted high-resolution binding
site data from a large number of RBPs will benefit
investigations on the coordination and competition of
RBP binding mechanism. Because the binding sites of
RBPs are identified by CLIP-seq and well-annotated in
CLIPdb, its negative sampling setting is similar to that
of doRiNA.

Structure datasets
Protein structure: For the protein structure, the most
comprehensive database is Protein Data Bank (PDB;
https://www.rcsb.org). Although the database does not
contain the structure of all the RBPs and some parts of
the RNAs may not be very clear, most of the existing
structure datasets are extracted from structures of
protein–RNA complexes from PDB [77]. Generally, the
criterion of the AA in the protein being considered as
RNA-binding in a co-crystal complex, is that at least one
of its backbone atoms or side chains are within a certain
distance from atoms of the RNA. Specifically, both 3.5Å
and 5.0Å are the usual threshold [3].

Nucleic Acid-Protein Interaction Database (NPIDB)
[78] collects structural information of all the DNA–
protein and RNA–protein complexes available from PDB.
The dataset followed the classification by the binding
nucleic acids such as RNA (668), DNA (1671), RNA and
DNA (504). On the other hand, ccPDB [79] provides
a dataset of DNA/RNA-interacting proteins, including
417 DNA binding proteins and 282 RBPs, and identifies
their DNA/RNA-interacting residues. In addition, ccPDB
collects nucleotide–protein interactions such as ATP–,
GTP–, NAD–, FAD–protein interactions, which may
have the parallel physicochemical mechanism with
RNA–protein interaction. RNA_T dataset [3] is also a
benchmark dataset collected from PDB, which consists
of 981 RBP chains with the distance cutoff of 3.5Å}
(985 for 5Å). To alleviate the effect of chain replicates
induced by strand truncation, the authors establish
a dataset by removing chains with high sequence
and structural similarities. The resulted dataset con-
tains 175 representative and non-redundant (nr) RBP
chains.

Meanwhile, homologous protein structures may
cause bias in modeling. NucleicNet [17] has defined
two homologous redundancy, internal redundancy and
external redundancy. The internal redundancy is that

multiple copies of the same RBP chain can exist within
the same PDB entry due to the formation of homo- or
hetero-multimeric complexes. The external redundancy
is that homologous chains are shared across different
PDB entries and dedicated to different binding RNA
sequences. These redundant RNA-binding samples,
sharing the homologous chains common in RNA-binding
configurations and physicochemical environments,
would introduce bias to the evaluation and cause
the overstated generalizability power of the model. To
remove the internal redundancy, the authors retain
the best locally resolved component and discard the
other homologous protein and RNA. For the external
redundancy, PDB entries are clustered into groups where
each entry is linked with others that share at least
one RNA-binding chain with cutoff = 90% BLASTClust
sequence homology [80]. For each cluster, the PDB entry
with the best resolution is selected, turning the 483 valid
PDB entries into 158 clusters. The authors select one
representative entry for each cluster.

With the appearance of AlphaFold, Jumper et al.
[58] provide AlphaFold Protein Structure Database,
which contains 23,391 protein structures (Homo sapiens)
and covers 98.5% of human proteome. Although it
is a method of ab initio protein structure prediction,
AlphaFold can already achieve a similar prediction
accuracy and resolution as Cryo-EM on some proteins.
This means structures of RBPs that have not been
successfully resolved by experimental approaches may
have already been predicted accurately by AlphaFold.

RNA SS: Although most of the developed binding
preference prediction methods only utilize the pre-
dicted SS, such as RNAstructure [81] or SPOT-RNA
[82], to improve the prediction performance, there are
datasets containing the experimentally determined
RNA structures and in vivo profiles. Sun et al. [14]
introduce in vivo click Selective 2′-hydroxyl acylation and
profiling experiment (icSHAPE) [83] to characterize the
single- and double-stranded regions of RNAs, which is
crucial information to protein–RNA interaction. Recently,
RNA Atlas of structure probing (RASP) [84] collects
transcriptome-wide RASP data through 18 experimental
methods such as DMS-seq, SHAPE-Seq, SHAPE-MaP,
icSHAPE, etc.

Intuitively, the experimental and well-annotated RNA
SS provide precise and informative input to modeling.
For instance, bpRNA [85] collects 102,318 known SSs
from 7 different databases, including Comparative RNA
Web Site [86], tmRNA Database [87], Signal Recognition
Particle Database [88], Sprinzl tRNA Database, RNase
P Database [89], RNA Family Database [90] and PDB.
Besides, bpRNA introduces a novel annotation tool to
parse complex pseudoknot-containing RNAs with seven
annotations, such as stems, internal loops, bulges, multi-
branched loops, external loops, hairpin loops and pseu-
doknots. Furthermore, bpRNA offers a high-quality sub-
set of the database with sequence similarity lower than
90% identity, which helps the model solve the issue of
training data replicates.

https://www.rcsb.org
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Table 3. Summary and comparison of the representative works for studying the protein–RNA interaction. A more comprehensive list is
in the Appendix

Paper Year Prediction Model Feature

Feature encoding format Feature Information

[134] 2004 Binding site Fully-connected NN Feature vector Sequence composition, sequence neighbourhood,
SA

[40] 2006 Binding preference PWM Single-stranded motif finding RNA sequence and SS
[38] 2010 Binding preference PWM Learning a motif model to build

structure annotations
RNA sequence and SS

[28] 2013 Binding site Clustering, maximum
voting

Structure alignment Binding-specific substructure, sequence profile

[35] 2014 Binding preference SVM Graph-kernel RNA sequence and SS
[135] 2014 Binding site artificial neural network

(ANN)
Feature vector Sequence, evolutionary conservation, surface

deformations, SA, side chains
[2] 2015 Binding preference CNN One-hot encoding RNA sequence
[39] 2016 Binding preference PWM k-mer embedding RNA SS
[50] 2016 Binding preference Multimodal deep belief

networks (DBNs)
Restricted Boltzmann machines,
replicated softmax

RNA sequence, SS, tertiary structure

[41] 2017 Binding site HMM and logistic
regression

PSSM and feature vector AA sequence, SS, SA, putative intrinsic disorder
and evolutionary information

[136] 2017 Binding site 3D CNN 3D Voxel Protein 3D structure with atom properties
[92] 2018 Binding preference CNN+LSTM One-hot encoding RNA sequence and SS
[30] 2018 Binding site Docking Structure modeling Sequence and structure
[22] 2018 Binding preference Global and local CNN One-hot encoding RNA sequence
[137] 2018 Binding preference CNN+RNN One-hot encoding RNA sequence and SS
[47] 2019 Binding site 3D CNN 3D Voxel Atom types, Van der Waals radii
[17] 2019 Binding site and

preference
CNN Feature vector Physicochemical characteristics of protein

structure surface
[34] 2020 Binding preference SVM k-mer embedding RNA sequence and structure
[48] 2021 Binding site GNN Graph, feature vector Pseudo-positions, atomic features, SS,

evolutionary conversation

Model inputs and structure encodings
The feature and representation of the protein and RNA
molecules are crucial for the downstream prediction per-
formance. In this section, we summarize the commonly
used encodings of protein and RNA features, including
both sequence encoding and structure encoding. We also
use Figure 3 and Table 3 as a summary.

RNA sequence encodings
One-hot encoding: The RNA sequence can be encoded
into a 4 × L matrix, of which columns correspond to
the presence of A, C, G, U and N (padding, if necessary)
[94]. Given an RNA sequence s = (s1, s2, s3...sn) with n
nucleic acids, and the one-hot encoding matrix M for the
sequence is:

Mi,j =
⎧⎨
⎩

0.25 if si = N,
1 if si = Dj,
0 otherwise,

(1)

where i is the index of nucleic acids; Dj is an ordered
list of [A, C, G, U]. For the padding sequences, the four
nucleic acids are assumed to be equally distributed and
[0.25, 0.25, 0.25, 0.25] is for the padding nucleotide N in
the one-hot matrix.

k-mer embedding: The RNA sequence is split into
overlapping k-mers [38] of length k using a sliding
window with stride s. The frequency of each k-mer
will be directly used as the feature, leading to the loss
of contextual information. Subsequently, the word2vec
[95] algorithm was applied to extract the additional
contextual feature of k-mer. The word2vec method is
an unsupervised learning algorithm that maps k-mers
from the vocabulary to vectors of real numbers in a
low-dimensional space. The embedding representation
of k-mers is computed in such a way that their context
is preserved, i.e. word2vec produces similar embedding
vectors for k-mers that tend to co-occur or be similar.
Generally, the k-mer representation is more informative
than one-hot encoding [74, 96], whereas the word2vec
algorithm provides contextual information by learning
the statistical information of k-mer co-occurrence
relationships in the input sequences.

RNA structure encoding
RNA SS: RNA SS offers the local and geometric pat-
terns in two approaches, depending on whether there
is an available protein–RNA complexes structure in the
PDB. If the structure is available, the explicit SS can be
calculated by using an assignment approach, such as
RNAstructure [81]. If the structure is unavailable, the
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Figure 3. Summary of features from proteins and RNAs, as well as prior knowledge, that can be used to study the interaction between the two molecules.

predicted SS can be obtained by using a SS prediction
algorithm, such as SPOT-RNA [82], RNAshapes [97] and
E2Efold [98]. For the RNA SS stored in bpRNA [85], bpseq
file reveals the base pair connection of the RNA.

In vivo structure profile: RNA in vivo structure profile
is produced by icSHAPE [14], which is used to charac-
terize the single- and double-stranded regions of RNAs
[99]. The raw data of icSHAPE can be processed by the
bioinformatic tool, icSHAPE-pipe [100]. In brief, raw reads
are first collapsed to delete Polymerase chain reaction
(PCR) duplicates, and the adapters are trimmed. Next,
the clean reads are mapped to the human genome using
STAR with the default parameters. Then, icSHAPE scores
can be calculated using icSHAPE-pipe, resulting in a 1×L
matrix with the value ranging from 0 to 1.

Tertiary structure: Once given the RNA sequence and
the corresponding secondary structural information,
JAR3D [101] can align possible tertiary structural motifs
to R3DMA [102], which contains 253 representative
hairpin loop motifs and 276 representative internal loop
motifs. For encoding RNA tertiary structure, the target
RNA sequence is first predicted into the probable SS
using RNAshapes [97]. Then, all the hairpin and internal
loops that overlap the viewpoint region would be fed to
JAR3D to calculate the probabilities of folding into the
predefined tertiary structural motifs. Subsequently, RNA
tertiary structure can be encoded into a binary vector of
529 dimensions, corresponding to 253 hairpin loop motifs
and 276 internal loop motifs in the R3MDA.

Protein sequence encoding
One-hot encoding: The protein sequence can be encoded
into a 20xL matrix, of which columns correspond to
the presence of 20 standard AAs, such as A, R, N, D. The
encoding process is similar to that of RNA.
Pseudo AA composition: To consider the order informa-
tion of protein sequence, researchers introduced pseudo-
AA composition[103] to represent AAs composition infor-
mation and AAs order information. It is a combination of
a set of discrete sequence correlation factors and the 20
components of the conventional AA composition.

Position-specific scoring matrix: PSSM [104] intro-
duces evolutionary information into the RNA-binding
site prediction. PSSM quantifies the conservation of
residues, as the binding residues are shown to be con-
served in the sequence. The encoding can be conducted
by PSI-BLAST [105], where the query sequence is aligned
to the NCBI nr sequence database, resulting in a matrix of
20×L. Each value in the matrix represents the frequency
of a specific AA at a particular position in the multiple
sequence alignment [106, 107].

Protein structure encoding
Local structure: Individual local structural information
included SS [40], interface propensity (IP) [108], accessible
surface area (ASA) [109], electrostatic patches (EP) [110]
and distance map (DM) [111]. The SS reveals primary
structural information, which has 3/8-class labeling
systems. Dictionary of SS of protein [112] assigns eight
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SS states to AAs, including 310-helix G, alpha-helix H,
pi-helix I, beta- bridge B, beta-strand E, beta-turn T and
coil C. SPIDER3 [109] converts the 8-class assignment
into the 3-class assignment, where Helix H is composed
of G, H and I; Beta strand B is composed of B and
E; Coil (C) is composed of T and C. Li et al. [108]
introduce IP, the residue-nucleotide propensities with
SS information of proteins and RNAs. The propensity of
a specific residue-nucleotide pair is calculated from its
observed probability at interfaces divided by its expected
probability. The IP of a residue type with a particular
class of SSs is represented as an average value of its
pairwise propensities for the four kinds of nucleic acids.
ASA is a kind of widely used feature for RNA-binding site
prediction, which can be calculated by NACCESS [113]
when the protein structure is available in PDB. For the
protein absent in the PDB, there are several predictive
methods, such as ASAquick [114] and RNAsol [115] to
predict ASA. EP can describe the protein surface charge
status, which is an important factor in RNA-binding
process. Generally, RNA-binding interfaces on protein are
more likely to be positively charged, and the electrostatic
feature can be calculated by PatchFinderPlus [116]. DM
can efficiently represent contacted structural informa-
tion by residue-pairwise distance matrix, which can be
calculated by SPOT-Contact [117]. DM has been applied
for protein profile prediction, such as solubility [118] and
DTI [53].

For the comprehensive local structural information,
atom features within concentric shells or grid boxes
are introduced to describe the physicochemical environ-
ment in a specific physical space, which can be cal-
culated by FEATURE [119] or AutoDock [120]. In FEA-
TURE, 80 physicochemical properties (e.g. negative/posi-
tive charges, hydrophobicity, SA) on atoms of the protein
with 7.5Å of a grid point in a radial distribution are
divided into six concentric shells of spheres, resulting
in a 6 × 80 matrix. AutoDock utilizes an atom-channel
(carbon-, oxygen-, nitrogen-, sulfur-) framework to define
a local 20Å cubical box to state the presence of carbon,
oxygen, sulfur and nitrogen atoms in a corresponding
atom type channel, divided into 1Å cubical voxel, result-
ing in a 4 × 20 × 20 × 20 matrix. MaSIF [121], dMaSIF
[122] and Graphein [123] apply geometric deep learning
on protein structure surface. MaSIF emphasizes the sig-
nificance of the protein surface, and presents a method
to encode geometric features (shape index and distance-
dependent curvature) and chemical features (hydropa-
thy, continuum electrostatics and free electrons/protons)
on the surface with the geodesic radius of 9Å or 12Å,
resulting in a 1×80 matrix. Instead of using surface mesh,
dMaSIF employs atomic point cloud representation to
extract task-specific geometric and chemical features.
Graphein is an efficient tool for constructing graph and
surface-mesh representation of protein structures.

Global structure: Global structural information is
rarely used in RNA-binding site prediction since the
interaction is regarded as a local recognition problem.

However, global structural information may play an
important role in identifying RBP in future applications.
Ishiguro et al. [124] introduce supernodes to connect
other nodes in the graph representing the compound
structure. Proteins with the neighbor-radius contact map
could be encoded in a similar way [125].

Computational models
After encoding the proteins and RNAs, we need to build
and train a model to perform the interaction predic-
tion. We divide the methods into two categories, either
template-based and shallow-learning methods or deep
learning methods, which will be introduced in detail
in this section. Table 3 also summarizes the models of
different representative works.

Template-based and shallow-learning models
The template-based approach, which is similar to homol-
ogy modeling, is applied for the binding site prediction
with known homologous structures. The models, such as
DBD-Threader [126] and SPOT-Seq [82], can directly adopt
the known knowledge without feature extraction and
mainly rely on the protein structure alignment process.
However, for the protein without known homologous
structure, the approach is incapable of solving this situ-
ation. It is hard for the template-based approach to copy
specific sites from few homologous cases. On the other
hand, the shallow-learning methods attempt to general-
ize common rules learned from the known experience of
a dataset [3]. Because of their satisfactory performance
and good interpretability, shallow-learning approaches,
such as SVM, random forest, logistic regression, decision
tree and naïve Bayes, have been widely used in RNA-
binding sites and binding preference prediction [36, 43].
Although shallow-learning methods are very powerful
in terms of interpolation, the prediction of extrapolation
can not be guaranteed since the predefined feature limits
the module learning from the raw data. The predefined
feature provides a explicit but fixed insight of the learn-
ing module. However, with the increasing amount of data,
the feature extraction procedure can be flexible and
learned by the model, so-called deep learning. Generally,
deep learning methods yield higher performance of the
binding site and binding preference prediction, especially
for sophisticated protein [2]. It will be introduced in the
following section in detail. On the other hand, several
works, including RNABindRPlus [127] and RBRDetector
[128], are attempting to incorporate both template-based
and shallow-learning approaches to improve the perfor-
mance.

Deep learning models
The existing methods emphasize the importance of
sequence information. DeepBind [2] is the first deep
learning approach for RNA-binding preference pre-
diction, which employs a single layer of convolution.
DeepBind demonstrates the powerful capability of
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convolutional neural networks (CNNs) as well as their
ability to detect the known motifs. DeepBind takes
only the RNA sequences as inputs and identifies the
preference of RBPs. Based on DeepBind, DeeperBind
[129] introduces the long short-term memory (LSTM)
layers into the DeepBind architecture to learn the
long-range dependency between the sequence features
extracted by the CNN layers. iDeepS [92] also combines
CNN and recurrent neural network (RNN) layers since
both of them are helpful for performance, and extra
RNA structural motifs are also integrated into the
model. iDeepE [22] feeds the local and global sequence
information into CNNs, and demonstrates that multiple
overlapping fixed-length sub-sequences (similar to
k-mer) provide informative feature for the binding
preference prediction. DeepRAM [20] comprehensively
evaluates the model based on CNNs, RNNs, and hybrid
CNN/RNN architectures, revealing that the hybrid
frameworks outperform the former two architectures.
Besides, DeepCLIP [49] also employs 1D convolution
layers and bidirectional LSTM (BiLSTM) to capture the
mutation profile of protein–RNA binding preference.
However, single input of sequence limits the model
capacity to capture the authentic mechanism of RNA–
protein interaction.

With the developing insight of RNA–protein interac-
tion, RNA structural information is discovered to exerts
an important role in the binding mechanism. Thus, in
order to predict binding site, deepnet-rbp [50] utilized a
multi-modal deep learning framework. It systematically
integrated RNA primary sequences, predicted SSs from
RNAshapes, and tertiary structural features extracted by
JAR3D. As for RNA-binding preference prediction, DLPRB
[130] also took the advantage of the predicted SSs to
explore RNA structural contexts. The PrismNet [14] con-
sidered that there are a large number of structurally
variable sites across the cell lines. Consequently, icSHAPE
[100] was introduced in PrismNet to describe the in vivo
structural profile with 1×L matrix (see the section In vivo
structure profile). The PrismNet encodes the sequence
with the one-hot encoding and extra in vivo structure
scores as the fifth dimension. Besides, PrismNet applied
a squeeze-and-excitation module [131] to adaptively cal-
ibrate convolutional channels of channel-wise attention
and residual blocks, and capture the joint sequence-and-
structural binding determinants.

In addition, the protein local structural environ-
ment of the binding sites is also crucial to the RNA–
protein interaction. Torng and Altman [47] applied 3D
CNNs to protein structure information, generated by
AutoDock or FEATURE, and provided the comparable
performance as the former RNA–protein interaction
binding site prediction method. Furthermore, NucleicNet
[17] considered the RNA-binding issue from the per-
spective of three-dimensional protein structure, which
is extracted in units of residues. In order to extract
RNA-binding properties in various locations on protein
structure, the FEATURE [132] framework is used to

encode physicochemical properties on the grid point of
protein surfaces. For each viewpoint, a high-dimensional
feature vector for six concentric shells of spheres with
80 physicochemical properties for each shell will be
generated. Furthermore, the NucleicNet predictor used
the hierarchical classification of residue sites, first for
binding or not, if affirmative, the possible type of RNA
constituent binding to the location.

To efficiently capture such structural information
of RNA and protein local environment, many studies
applied graph neural networks (GNNs) to extract the
comprehensive features. RPI-Net [96] employed an end-
to-end learning approach with GNN from the sequences
and structures of RNAs, which provide dense information
for binding site prediction. For the graph construction of
protein structural context, GraphBind [133] defined a
sliding sphere in the 3D space for the target residue and
applied a Hierarchical GNN to learn the latent patterns
of structural and physicochemical characteristics for
binding residue recognition.

Model evaluation
After building the model, the last step is evaluating the
performance of the model to help the users understand
the usefulness and weak points of the propose methods.
In this section, we summarize the commonly used eval-
uation criteria in this field.

Cross-fold and cross-dataset validation
Cross-fold (3-, 5-, 10-fold) validation is usually used to
evaluate the performance of models with metrics of the
area under the receiver operating characteristic and F1
score. For the 10-fold cross-validation, the dataset would
be divided into 10-folds, and for each time, 9-folds of
them are used for training while the left one is for testing.
One problem is that many works are evaluated using
data within a specific protein category, indicating that
the models only learn protein-specific features instead of
general binding features, which limits the application of
the models. To assess the generalizability of the model,
people should also use cross-dataset validation, which
means that general models should be established and
evaluated with protein data from different categories and
different sources [20].

Structure visualization
The specific patterns inferred from these models can
be visualized as the sequence logo diagrams (Weblogo
[138]) for the RBP. Generally, these patterns can be
regarded as the RNA motifs, which can be mapped to
the RNA-binding motif dataset, CISBP-RNA (8056 records
of RBP binding motifs) [139]. Besides, the RNA-binding
motifs with particular SSs, including stems, multiloops,
hairpins, internal loops, and dangling, are prone to
access the surface of RBPs. Thus, the structural informa-
tion extracted from the model can explain their binding
tendency.
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In vitro and in vivo experimental validation
RNAcompete assay (RNAC) [140] is a large-scale in vitro
experiment that uses the epitope-tagged RBP to compet-
itively select RNA sequences from a designed pool. In
NucleicNet [17], the authors obtain 7-mer RNA-binding
profiles summarized as a Z-score for the individual RNA
sequence. The RBPs with both available RNAC data and
PDB structure, such as PABPC1, PCBP2, PTBP1, RBFOX1,
SNRPA, SRSF2, TARDBP and U2AF2, are tested. The results
suggest that NucleicNet is capable of differentiating
between the top and bottom ten sequences indicated
by RNAC Z-scores. Thus, RNAC is suitable to evaluate
the model performance. In vivo experimental validation
in PrismNet [14] is to distinguish the relevant affinity
of the given RBPs, such as SND1 with specific confor-
mation (hairpin) or single-stranded conformation. With
different melting-and-folding treatments to perturb
RNA structure without altering the sequence, the
authors can obtain two conformations of the given
RNA, the one refolding into the hairpin structure
and the other retaining single-stranded conformation.
PrismNet predicts that a double-stranded binding site
for SND1, which is consistent with the in vivo affinity
experiment.

Challenges and opportunities
We may encounter several challenges when modeling
the interaction between proteins and RNAs. In terms of
the inputs to the models, we need to think of how to
encode structural information more efficiently and even
considering the dynamic structural information. Regard-
ing the model, we should design novel deep learning
models, which can process multi-modality data effec-
tively, including the information from proteins and RNAs,
as well as our prior knowledge. Furthermore, people also
care about the model interpretability, that is, what leads
the model to make a specific prediction. Revisiting the
protein–RNA interaction problem and advancement in
the related fields, we may want to resolve some more
sophisticated but appealing tasks. For instance, because
of the recent breakthrough in the protein structure pre-
diction field, it becomes increasingly possible to perform
high-resolution Ab initio protein–RNA interaction predic-
tion with only the protein sequence information. Finally,
based on the predicted interaction results, people are
also eager to design specific molecules with high binding
affinity against the target molecule. In this section, we
discuss the challenges and the potential opportunities in
this field in detail.

Structure encodings
As discussed above, structural information is critical to
predicting the protein–RNA interaction accurately. How-
ever, how to encode the structural information efficiently
remains to be an open question. Because deep learning
models are also useful to perform feature selection, when
encoding the structural information, we should try to

preserve as much raw information as possible, especially
the spatial information.

Regarding the protein structure, some traditional ways
of encoding, such as 3/8-class protein SS, lose too much
raw information. FEATURE [17], defining shells around a
location in the 3D space and summarizing the physico-
chemical properties within each shell, is another popu-
lar method. However, using such an encoding, we can-
not differentiate the properties within each shell. In the
machine learning field, people usually use 3D voxels,
point clouds, and polygon mesh to represent 3D objects.
3D voxel encoding is similar to the 2D pixel. And it
was shown to be better than FEATURE in predicting the
functional domain of proteins [47]. However, because
we extend the representation to another axes, we need
to design a more efficient algorithm for handling the
increasing dimension. Polygon mesh representation col-
lects vertices, edges, and faces to define the surface of
the protein structure. The combination of such a repre-
sentation and geodesical CNN is shown to extract the
fingerprint of the protein surface, which can be used to
predict the interaction between different molecules [121].
Point cloud methods sample points from the 3D object,
using the coordinates of those points to represent the
structure of the object. Although it has not been widely
applied in this field, it has shown great power in the
computer vision field for 3D object classification and
segmentation.

In terms of the RNA structure, people usually use the
SS profile to encode them, indicating whether each base
is single-strand or double-strand. However, this encoding
loses too much information. For example, we would not
know which base forms the hydrogen bond with the
other specific base. Recently, researchers have shown
that predicting the RNA SS by predicting the contact
map matrix can boost the performance significantly
[98]. A similar idea can be applied to the protein–RNA
interaction prediction. Meanwhile, using the graph to
represent the RNA SS is another natural approach [96].
However, we need to specify which information we want
to extract from the graph. In addition, a thermodynamic
study revealed the vital role of non-canonical bases in
RNA structure formation and stability [141]. For example,
in the non-canonical base purine, hydrogen replaces the
exocyclic amino group of Adenine. This replacement
leads to the Purine-Uracil pair containing only one
hydrogen bond instead of two hydrogen bonds in the
Adenine-Uracil pair, which could affect the stability of
the structure. Ideally, these ubiquitous non-canonical
bases should be included in structure encoding.

Despite the specific encoding that we may use from
the machine learning field, we still need to consider the
chemical background of the problem. The structures in
the atom-scale are different from the 3D objects in real
life. Although we may use rigid bodies to approximate
and model them, they are not rigid bodies. The physic-
ochemical properties [17] should be considered when we
design the methods.
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Dynamic structure information
Another fundamental property of biomolecules that
most machine learning methods fail to consider is their
dynamics. As we know, biomolecules are not static,
rigid bodies. Every part of the molecule is continuously
moving and oscillating in high frequency. The apo protein
structures would not stay in the state with the lowest
energy all the time. Instead, they may change from one
sub-optimal state to another from time to time. When
it comes to the interaction between two molecules,
such as the interaction between proteins and RNAs, the
situation will be even more complex. For example, some
molecules, such as Argonaute, need to undergo sub-
stantial conformation change to bind to RNA sequences.
The other proteins may also have conformation changes
once incorporating RNAs. This phenomenon leads to two
difficulties when we model the protein–RNA interaction.
Firstly, the structure database that we rely on is not
perfect for providing the structural information that
we need. Simply removing the RNA structure from the
protein–RNA complex may not reveal the actual protein
apo structure. Secondly, failing to model molecule
dynamics may lead to the performance degradation of
the machine learning method when we apply the method
to real-life problems. To resolve the above challenges, we
should use both the PDB structures and the information
from molecular dynamic simulation. In practice, we may
consider the state of a molecule at each time point as a
screenshot. The entire protein dynamics trajectory can
be considered as a video. Deep learning techniques to
process videos, such as multi-instance learning, would
be helpful to resolve this challenge.

Incorporating prior knowledge
In addition to the data, researchers have accumulated
expertise and prior knowledge about this problem. For
example, we know that Aquifex aeolicus Ribonuclease III
(Aa-RNase III) is most likely bind with double-stranded
RNAs. Incorporating such knowledge into the machine
learning model can further boost the model’s prediction
performance and usefulness. There are multiple ways
to achieve that. We can manipulate the data prepared
for training the model by up-sampling the class favored
by the prior knowledge. When we train the model, such
knowledge could be incorporated into the model implic-
itly. But we should handle the data carefully to avoid
overfitting. On the other hand, we may design a spe-
cific machine learning model that explicitly incorporates
prior knowledge. For example, by embedding constraint
optimization as a module into the deep learning model
[98], we can reduce the data size requirement for training
a deep learning model.

Using information from both RNA and protein
In the previous studies, when predicting the binding
sites on the protein surface, people usually only use
the information from the protein. On the other hand,
researchers often only use the RNA information when

modeling the protein’s binding preference to the RNA
sequences. Because the interaction is related to both
molecules, it is more desirable to consider both when
modeling the process. However, as protein and RNA
are different molecules, it is not reasonable to use just
one deep learning model to process them. Instead, we
should use multi-modality models. Essentially, for each
molecule, we have a deep learning module to extract
features from it. Then, the features can be combined to
perform the final prediction. In practice, we may pre-
train each module separately first and then fine-tune
all the modules together in an end-to-end fashion. By
considering the two molecules simultaneously, we do
not have to train a model for each protein, and we are
more likely to obtain one general model, which deciphers
the principle behind protein–RNA interaction.

Model interpretability for structural modeling
It is always difficult to explain deep learning models.
For the bio-molecular sequence analysis, after the
investigation in the past few years, people have proposed
a number of methods to explain the prediction of
deep learning models [44, 142, 143]. Such explanations
converge with the motif discovery techniques before
the surge of deep learning. However, for the prediction
at the structure level, the explanation is much more
difficult. In the structure field, we encounter a serious
dilemma between explanation and performance, no
matter utilizing deep learning or not. For example, those
methods with a strong physicochemical foundation and
carefully designed force fields usually have inferior
performance compared with the machine learning-
based methods. Before the wide usage of deep learning
in this field, threading and similarity-based methods are
also often used. Although such methods cannot handle
queries without homologs, researchers know when they
will work and when they will not. However, after deep
learning methods are applied to this field, people will use
them by default because of their superior performance,
although researchers cannot explain what physicochem-
ical and structural biology knowledge are used by the
model to perform the prediction. Currently, the request
for model interpretability in the structure field is not
very urgent because people were still struggling with
the performance before the appearance of AlphaFold2
[58]. However, with the fast performance improvement,
it is foreseeable that the demand for an explanation of
the model will soon increase. The model explanation
techniques from the machine learning field can be used
to identify, which input features influence the final
prediction. However, such an explanation is too trivial for
this field. Building the connection between the feature
and the biological insight would be a more interesting
problem, requiring more effort from the researchers.

High-resolution prediction
When predicting the binding sites on the protein surface,
researchers usually annotate at the amino acid (AA)
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level. Regarding the binding preference against the RNA
sequences, the resolution is usually until the nucleotide.
From the structural aspect, the above prediction res-
olution is still too low. In reality, when studying the
interaction between proteins and RNAs, we want to know
the exact binding pocket and even the binding location
on the protein and RNA surface. With such information,
we can understand the functional mechanisms of those
important proteins, such as Ago and CRISPR-associated
proteins. Some recent works are trying to increase the
resolution of the prediction [17, 121]. More works can
be done to improve the existing methods further. For
example, although Lam et al. [17] generate grid points on
the protein surface and predicts at the grid point level,
which increases the prediction resolution significantly
on the protein side, the authors have not considered
the information from the RNA side at all. Consequently,
the method is unable to determine the sequence and
orientation of the binding RNA precisely. Introducing
features from the RNA structure should increase the
prediction resolution for the RNA, although the entire
framework needs to be redesigned. As discussed in the
previous sections, with more advanced structural encod-
ing techniques and frameworks considering both protein
and RNA information, the prediction resolution would be
increased significantly in the near future.

Ab initio prediction
Currently, when predicting the interaction between
proteins and RNAs with structural information, people
usually assume that we have already known the protein
structure. However, in reality, determining the protein
and RNA structure is not a trivial task. Even if we
can determine the structure of molecules in nature by
biological experiments, it is almost impossible to resolve
the structure of molecules with mutations, which is
important for drug discovery and development. Under
that circumstance, it is desirable that we can predict
everything from the protein and RNA sequences, which is
referred as Ab initio prediction here. With the sequences,
we may first predict the 3D structures of proteins and
RNAs. Then, based on the predicted structures, we will
further predict their interactions. Although this research
paradigm seems to be computational daunting and may
accumulate errors in the multiple steps, it becomes
increasingly appealing with the rapid development of
the protein structure prediction algorithms in recent
years. For example, AlphaFold2 [58] can already achieve
a similar prediction accuracy and resolution as Cryo-
EM on some proteins. For RNAs, recently proposed deep
learning-based method, namely, Atomic Rotationally
Equivariant Scorer [144], has significantly improved
prediction of RNA structures. Eventually, we can use
one end-to-end deep learning model to address the
two steps all at once. If we could predict the structural
interaction details only using the sequence information,
gene regulation and drug discovery investigation will be
accelerated significantly.

From prediction to design
After determining the molecular structure, we want to
know the molecular function, that is, how a specific
molecule can interact with another. However, only
investigating their function is not our ultimate goal.
Eventually, we want to design particular molecules with
desirable functions so that to resolve the problems that
we encounter in real life, such as curing diseases. As the
performance of prediction models has been improved
significantly in recent years, researchers are increasingly
interested in designing. For instance, people have been
using deep learning to optimize the CRISPR guide RNA
design [145, 146]. Deep learning has also shown its power
in designing new antimicrobial peptide [147]. Regarding
this specific topic of protein–RNA interaction, people
are especially interested in designing RNA sequences
with high binding affinity to protein, similar to the
CRISPR guide RNA designing mentioned above. Moreover,
a suitable guide RNA for Ago can also increase the
gene knock-down efficiency [17]. In addition to the
commonly used generative models, such as generative
adversarial network (GAN) [148] and variational auto-
encoder [149], recently, differentiable algorithms [98]
and energy models [150] have drawn great attention in
the machine learning field, which is potentially useful
for designing problems in the protein–RNA interaction
field.

Conclusion
The interactions between different molecules are essen-
tial for biological processes in our body. Among them, the
RBP–RNA interactions are of great interest to researchers,
considering their central role in gene expression regula-
tion [1, 151]. People have developed a number of com-
putational tools and methods to facilitate the study of
the RBP–RNA interaction, usually predicting the binding
sites and binding preference. However, as we discussed in
detail in the review, because of the limitation of the previ-
ous data, researchers usually only consider the sequence
information and auxiliary structural information to per-
form the prediction. Considering the recent progress of
AlphaFold and the tremendous amount of structure data
produced by it [60], the study of the RBP–RNA interac-
tions will be promoted significantly by deep learning
methods [17, 152] operating directly on the structure
data.
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Appendix Table

Table 4. A comprehensive summary and comparison of the representative works for studying the protein–RNA interaction

Paper Year Prediction Model Feature

Feature encoding format Feature Information

[134] 2004 Binding site Fully-connected NN Feature vector Sequence composition, sequence
neighbourhood, SA

[40] 2006 Binding preference PWM Single-stranded motif finding RNA sequence and SS
[38] 2010 Binding preference PWM Learning a motif model to build

structure annotations
RNA sequence and SS

[28] 2013 Binding site Clustering, maximum
voting

Structure alignment Binding-specific substructure,
sequence profile

[135] 2014 Binding site ANN Feature vector Sequence, evolutionary conservation,
surface deformations, SA, side chains

[35] 2014 Binding preference SVM Graph-kernel RNA sequence and SS
[29] 2014 Binding site Decision tree Score ranking Electrostatic and evolutionary

features of residues
[2] 2015 Binding preference CNN One-hot encoding RNA sequence
[39] 2016 Binding preference PWM k-mer embedding RNA SS
[32] 2016 Binding preference Template Sequence, structure alignment

and transformation matrix
Sequence and structure

[43] 2016 Binding site Random Forest Euclidean distance Electrostatic feature, triplet interface
propensit, PSSM, geometrical and
physicochemical properties

[50] 2016 Binding preference Multimodal DBNs Restricted Boltzmann machines,
replicated softmax

RNA sequence, SS, tertiary Structure

[41] 2017 Binding site HMM and logistic
regression

PSSM and feature vector AA sequence, SS, SA, putative
intrinsic disorder and evolutionary
information

[23] 2017 Binding preference Deep boosting k-mer embedding RNA sequence
[136] 2017 Binding site 3D CNN 3D Voxel Protein 3D structure with atom

properties
[153] 2017 Binding preference CNN PSSM and k-mer embedding Protein and RNA sequence
[36] 2017 Binding site SVM Feature vector Physicochemical and evolutionary

information of protein sequences
[92] 2018 Binding preference CNN+LSTM One-hot encoding RNA sequence and SS
[154] 2018 Binding preference Greedy search k-mer embedding RNA sequence and structure
[30] 2018 Binding site Docking Structure modeling Sequence and structure
[22] 2018 Binding preference Global and local CNN One-hot encoding RNA sequence
[30] 2018 Binding site CNN Feature Vector Hydrophobicity, normalized van der

Waals volume, polarity, polarizability,
charge and polarity of side chain

[37] 2019 Binding site SVM PSSM and feature vector Protein sequence and structure
[137] 2018 Binding preference CNN+RNN One-hot encoding RNA sequence and SS
[155] 2019 Binding preference CNN k-mer embedding and one-hot

encoding
RNA sequence and SS

[47] 2019 Binding site 3D CNN 3D Voxel Atom types, Van der Waals radii
[156] 2019 Binding preference Capsule Network[157] One-hot encoding RNA sequence and SS
[17] 2019 Binding site and

preference
CNN Feature vector Physicochemical characteristics of

protein structure surface
[158] 2020 Binding preference Recommendation

system
FastText[159] Protein and RNA sequence

[160] 2020 Binding preference Alignment PSSM RNA sequence and SS
[45] 2020 Binding site CNN PSSM and feature vector Sequence, structure, IP,

physicochemical, topology,
evolutionary properties and residue
fluctuation dynamics

[96] 2020 Binding preference GNN One-hot encoding, k-mer
embedding and PSSM

RNA sequence and SS

[34] 2020 Binding preference SVM k-mer embedding RNA sequence and structure
[49] 2020 Binding preference CNN+BiLSTM One-hot encoding RNA Sequence
[48] 2021 Binding site GNN Graph, feature vector Pseudo-positions, atomic features, SS,

evolutionary conversation
[14] 2021 Binding preference SENet[131] One-hot encoding RNA sequence and SS
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Abbreviations Definitions

Table 5.

Abbreviation Definition

AA Amino acid
ANN Artificial neural network

BiLSTM Bidirectional LSTM
CLIP Crosslinking and immunoprecipitation
CNN Convolutional neural network
DBN Deep belief network
DM Distance map

DTI Drug-target interaction
EP Electrostatic patches
GAN Generative adversarial network
GNN Graph neural network

icSHAPE in vivo click Selective 2’-hydroxyl acylation and profiling
experiment

IP Interface propensity
LSTM Long short-term memory

MPNPs Message passing neural processes
NPIDB Nucleic Acid-Protein Interaction Database
PDB Protein Data Bank

PSSM Position-specific scoring matrix
PWM Position weight matrix
RASP RNA atlas of structure probing
RBP RNA-binding protein
RNAC RNAcompete assay
RNN Recurrent neural network

SVM Support vector machine
UTRs Untranslated regions
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