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Abstract: Aim: Hypertension is a strong risk factor for atherosclerosis. Increased carotid intima-media
thickness (cIMT) and carotid plaques are considered subclinical markers of atherosclerosis. This
study aimed at evaluating the serum expression of miRNAs previously related to adverse vascular
remodeling and correlating them with carotid plaques and cIMT in hypertensive patients. Methods:
We cross-sectionally evaluated the clinical and carotid characteristics as well as serum expression of
miR-145-5p, miR-let7c, miR-92a, miR-30a and miR-451 in 177 hypertensive patients. Carotid plaques
and cIMT were evaluated by ultrasound, and the expression of selected miRNAs was evaluated by
a quantitative polymerase chain reaction. Results: Among all participants (age = 60.6 ± 10.7 years,
43% males), there were 59% with carotid plaques. We observed an increased expression of miR-
145-5p (Fold Change = 2.0, p = 0.035) and miR-let7c (Fold Change = 3.8, p = 0.045) in participants
with atherosclerotic plaque when compared to those without plaque. In the logistic regression
analysis adjusted for relevant covariates, these miRNAs showed a stronger association with carotid
plaques (miR-145-5p: Beta ± SE = 0.050 ± 0.020, p = 0.016 and miR-let7c: Beta ± SE = 0.056 ± 0.019,
p = 0.003). Conclusions: Hypertensive patients with carotid plaques have an increased expression of
miR-145-5p and miR-let7c, suggesting a potential role of these miRNAs as a biomarker for subclinical
atherosclerosis in hypertensive individuals.

Keywords: hypertension; carotid atherosclerosis; miRNAs

1. Introduction

Atherosclerotic cardiovascular diseases are the main cause of mortality worldwide [1].
In the primary prevention setting, the presence of carotid atherosclerotic plaques and in-
creased carotid intima media thickness (cIMT) are considered in the definition of subclinical
atherosclerosis and, as such, are predictors of cardiovascular events [2]. Hypertension is a
major risk factor for atherosclerosis in distinct population grounds [3,4]. In line with this,
high blood pressure (BP) levels are associated with increased cIMT and the presence of
carotid plaques [5–7].

MicroRNAs (miRNAs) are a class of small noncoding RNAs that normally inhibit trans-
lation, resulting in the degradation of the target mRNA. Currently, more than 2600 miRNAs
are known in humans, which have been involved in both physiological and pathologi-
cal processes [8,9]. Available evidence suggests that miRNAs might play an important
role in atherogenesis and vascular remodeling by acting as a regulator of cell growth
and proliferation and of inflammation [10]. In this regard, several miRNAs, including
miR-145-5p, miR-let7c, miR-92a, miR-30a and miR-451, have been reported to be associated
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with atherosclerosis and/or adverse vascular remodeling [11–15]. However, the impor-
tance of these miRNAs as markers of atherosclerotic burden among hypertensive patients
is uncertain.

The present study aimed at evaluating the serum expression of miR-145-5p, miR-let7c,
miR-92a, miR-30a and miR-451, and correlating them with carotid plaques and cIMT in
hypertensive patients.

2. Materials and Methods
2.1. Study Population

In this study, the clinical and echocardiographic characteristics of 177 consecutive
hypertensive patients followed at a university outpatient clinic were evaluated. Exclu-
sion criteria included age < 18 years, hypertrophic cardiomyopathy, and moderate or
severe valve disease. The study was approved by the Ethics Committee of the State Uni-
versity of Campinas and follows the guidelines of the Declaration of Helsinki of 1975
(CAAE:56841616.5.0000.5404). Written consent was obtained from all participants.

2.2. Clinical Characteristics

The blood pressure and heart rate were measured prior to echocardiographic analysis
using a validated digital oscillometer device (HEM-7113, Omron Corp., Kyoto, Japan)
with appropriate cuff sizes. The mean of two BP readings was calculated, and when they
differed by more than 5 mmHg a new reading was taken, and then the mean of the three
measurements was calculated. Hypertension was defined as office BP 140/90 mmHg or
the use of antihypertensive medications. The pulse pressure was calculated as Systolic
BP–Diastolic BP. The body mass index (BMI) was calculated as the weight divided by height
squared (kg/m2). Fasting blood glucose, creatinine, triglycerides, low-density lipopro-
tein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C), and glycated
hemoglobin were measured using standard laboratory techniques. Hypercholesterolemia
was defined as LDL-C > 130 mg/dL or the use of cholesterol-lowering medications. Type
2 diabetes mellitus (T2DM) was diagnosed as fasting glucose ≥ 126 mg/dL or glycated
hemoglobin ≥ 6.5 g/dL or the use of antidiabetic medication.

2.3. Carotid Ultrasound

High resolution images of the right and left common carotid arteries (CCA) were
obtained 2 cm proximal to each participant’s carotid bifurcation. A Vivid q device (General
Electric, Milwaukee, WI, USA) equipped with a linear transducer (12L-RS; 6–13 MHz)
set at 10 MHz was used, as previously reported [16,17], and analyses were performed
by an experienced physician. For each image, five measurements of far-wall cIMT were
manually performed by a physician (L.F.R.S.C–R.) in plaque-free areas using the ImageJ
software (NIH, Bethesda, Maryland, USA), and the average of the left and right CCA
measurements was used to calculate the thickness [16,17]. Carotid plaques were defined
as CCA cIMT ≥1.5 mm or focal wall thickening encroaching into the lumen by 50% or
0.5 mm. The intra observer and inter observer variability were 1.2% and 3.5%, respectively,
when considering the analysis of 20 images from 10 patients.

2.4. RNA Isolation and Quantitative Real Time PCR (qRT-PCR)

The miRNA was extracted from serum samples using the miRNeasy Serum/Plasma
Kit (Qiagen, Valencia, CA, USA). The quantity and quality of miRNAs were measured by
NanoDrop ND-2000 Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA)
as previously reported [18]. The reverse transcription (RT) reactions were run in a Mas-
tercycler ep (Eppendorf, Hamburg, Germany) 96-Well Thermal Cycler according to the
manufacturer’s instructions and performed using the SuperScript®III First Strand Synthesis
Kit (Applied Biosystems, Waltham, MA, USA).

The expression levels of miRNAs were run in triplicate and detected by the miRNA
qRT-PCR Assay Kit for miR-145-5p (002278), miR-let7c (000379), miR-92a (000431), miR-30a
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(000417) and miR-451 (001141) in StepOne Plus Real-Time PCR Systems (Thermo Fisher
Scientific, Inc.). The reactions were heated to 95 ◦C for 10 min, followed by 40 cycles of
95 ◦C for 15 s and 60 ◦C for 1 min. The relative expression of miRNA was calculated with
the comparative threshold cycle (2−∆∆Ct) method, and the fold change (FC) was calculated
as FC = 2−∆∆Ct, where Ct is defined as the PCR cycle number at which the fluorescence
meets the threshold in the amplification plot [19]. Data were normalized using a geometric
mean of U6 snRNA (noncoding small nuclear RNA-001973) and miR-16 (000391) as the
housekeeping genes.

2.5. Gene Set Enrichment Analysis

To understand the biological relevance of differentially expressed miRNAs, we per-
formed a functional enrichment analysis. The differentially expressed miRNAs that corre-
lated between patients with and without carotid plaque were loaded into miRWalk 2.0 [20].
Only mRNAs predicted in at least four of the five tools (miRanda, miRDB, miRWalk,
RNA22 and TargetScan) were considered as possible miRNA targets. We used the Database
for Integrated Annotation, Visualization and Discovery (DAVID) to obtain Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to determine the enriched
pathways. In addition, we used Cytoscape software [21] to build a network displaying
miRNAs and their gene targets.

2.6. Statistical Analysis

Statistical analyses were performed using SPSS software (SPSS 16.0). Variables with a
normal or non-normal distribution are presented as the mean ± standard deviation (SD)
and median [25th, 75th percentiles], and their differences between individuals with and
without plaques were evaluated by an unpaired student’s t-test and Mann–Whitney U-test,
respectively. A chi-square test was used to compare categorical variables. The correlation
between cIMT and the expression of miRNAs was assessed by the Pearson’s method.
The evaluation of the association between carotid plaques or cIMT and the expression
of miRNAs was assessed by a multivariable linear regression analysis adjusted for age,
sex, T2DM, BMI, pulse pressure, LDL-C antihypertensive medications and statins. A
p-value < 0.05 was considered statistically significant.

3. Results
3.1. Clinical Characteristics of Participants

Among all participants (age = 60.6 ± 10.7 years, 43% males), the mean cIMT was
0.746 ± 0.140, and 59% presented carotid plaques. The clinical, laboratory and cIMT
measures of the participants according to the presence or not of atherosclerotic plaque are
presented in Table 1. Participants with plaques were older, had a lower diastolic BP, and
higher values of creatinine and cIMT than those without plaques.

3.2. Relationship between miRNA and Carotid Plaques and cIMT

qRT-PCR was used to analyze the level of miRNA expression in serum samples from
hypertensive patients. The results showed that the expression level of miR-145-5p and
miR-let7c in the serum of patients with carotid plaques was higher than in those without
plaques (FC = 2, p = 0.035; FC = 3.8, p = 0.045), respectively (Figure 1).

The results of the multivariable linear regression analysis showed an association of
plaque presence with miR-145-5p (Beta ± SE = 0.047 ± 0.020; p = 0.022) and miR-let7c
(Beta ± SE = 0.056 ± 0.018; p = 0.003) levels after adjustment for age, sex, pulse pressure,
BMI, T2DM, LDL-C, smoking, statins use and therapy with antihypertensive drugs.

The results of the bivariate correlation analysis showed a correlation of the serum
expression of miR-145-5p with cIMT (r = 0.195; p = 0.013) in hypertensive patients (Figure 2),
which remained significant after adjustment for confounding variables such as age, sex,
pulse pressure, BMI, T2DM, LDL-C, smoking, statins use and antihypertensive therapy in



Biomolecules 2021, 11, 1840 4 of 10

the multivariate linear regression analysis (Beta ± SE = 0.016 ± 0.007; p = 0.022). No further
correlation between other studied miRNAs and cIMT was found.
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Table 1. Characteristics of the participants according to the presence of carotid plaques.

Variables Plaques–No Plaques–Yes p-Value

n = 72 (40%) n = 105 (59%)

Clinical
Age, years 55.0 ± 11.2 64.3 ± 8.6 <0.001

Male sex, % 42 45 0.80
Systolic blood pressure, mmHg 150.7 ± 25.7 152.4 ± 25.6 0.67
Diastolic blood pressure, mmHg 88.1 ± 16.4 81.5 ± 14.9 0.007

Pulse pressure, mmHg 62.7 ± 17.3 70.7 ± 20.3 0.006
Body mass index, kg/m2 30.3 ± 6.1 29.9 ± 5.4 0.68

Diabetes mellitus, % 48 57 0.43
Current smoking, % 7 7 0.96

Coronary artery disease, % 19 27 0.79
Previous stroke, % 12 19 0.74

Diuretics, % 71 69 0.87
ACEI or ARB, % 85 80 0.55
Beta-blocker, % 58 63 0.65

Calcium-channel blocker, % 64 59 0.62
Statin, % 65 74 0.26

Glucose, mg/dL 99 [87, 108] 103 [92, 133] 0.07
Triglycerides, mg/dL 124 [90, 173] 154 [103, 204] 0.26

HDL-C, mg/dL 46.4 ± 13.4 44.1 ± 12.5 0.25
LDL-C, mg/dL 96.9 ± 28.5 90.4 ± 35.5 0.19

Creatinine, mg/dL 0.9 [0.7, 1.1] 1.1 [0.8, 1.3] 0.039
cIMT, mm 0.669 ± 0.103 0.799 ± 0.138 <0.001

Continuous data with normal and non-normal distribution are presented as mean ± standard deviation and
median [25th, 75th percentiles]. ACEI or ARB—angiotensin-converting enzyme inhibitor or angiotensin receptor
blocker; HDL-C—high density lipoprotein-cholesterol; LDL-C—low density lipoprotein-cholesterol; cIMT—
carotid intima-media thickness.

Using miRWALK2.0 software, 1644 genes were identified as potential genes targeted
by miR-145-5p and miR-let7c (Supplementary Table S1), with 111 being common to the
two miRNAs (Figure 3). The GO results showed that regarding the biological process,
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the term “response to cholesterol” was the most enriched, followed by the terms related
to “Calcium and WNT signaling pathways”, while in the cellular components, the term
“alphaV-beta3 integrin-IGF-1-IGF1R complex” was the most enriched. In the molecular
functions, the terms “Wnt-activated receptor activity” and “Wnt-protein binding” were the
most enriched. The results of the KEGG enrichment analysis showed that some pathways
were related to atherosclerosis such as the Hippo, FoxO signaling pathways and the term
“Adherens junction” (Figure 4).
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4. Discussion

In the present study, we measured the serum expression of five miRNAs previously
described as playing a potential role in vascular remodeling (miR-145-5p, miR-let7c, miR-
92a, miR-30a and miR-451) and evaluated their association with carotid atherosclerotic
plaques and cIMT in a sample of hypertensive patients. We observed increased circulating
levels of miR-145-5p and miR-let7c expression in hypertensive patients with atherosclerotic
plaque, even adjusting for relevant confounders. Conversely, only miR-145-5p had a
significant association with cIMT. Because the presence of carotid plaques is considered a
more specific marker of atherosclerosis than cIMT [22], the present findings suggest that
both miR-145-5p and miR-let7c might be involved in atherogenesis among hypertensive
subjects.

Reports regarding the role of miR-145 in atherosclerosis have yielded conflicting
results. Previous data obtained in experimental models suggested an atheroprotective role
of miR-145 [23,24], especially by modulating the switch of vascular smooth muscle cells
from a proliferative and migratory to a contractile state [23].

By contrast, longitudinal studies have shown that an increased expression of miR-
145 may be related to the development of atherosclerosis [11,25]. For instance, Santovito
et al. [11] demonstrated an increased expression of miR-145 in carotid atherosclerotic
plaques of hypertensive patients when compared to plaques from individuals without
hypertension, while Knoka et al. [25] demonstrated an association between higher circulat-
ing levels of miR-145 and the vulnerability of coronary plaques. Our study, in agreement
with both studies, reported that higher circulating levels of miR-145-5p were associated
with carotid plaques in hypertensive patients. The reason for the apparent discrepancies
between the results of the experimental and clinical studies are not clear, but some explana-
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tions may be suggested. First, increases in mir-145 expression may be part of a negative
feedback mechanism that impedes plaque progression, as suggested by Knoka et al. [25].
In this case, the increase in miR-145 expression in the vulnerable plaque would prevent its
further destabilization. However, we do not have data on miRNA expression in atheroscle-
rotic plaque to support this hypothesis. Second, it is possible that the role of miR-145 in
atherogenesis may vary depending on the disease stage. Although increased miR-145
expression may have an atheroprotective effect in the early stages of atherosclerosis, it may
contribute to the development of plaque destabilization in later stages [25].

T cells, dendritic cells and macrophages, in addition to oxidized LDL, are main
components of atherosclerotic plaques [26]. In two studies, Frostegards et al. demonstrated
that miR-let7c expression was increased in atherosclerotic plaque induced by increases
in oxidized LDL, an effect that can be abolished by statins [27] and to a lesser degree by
PSCK9 inhibition [28]. Furthermore, miR-let7c was reported to play an important role in
the activation of T and dendritic cells induced by oxidized LDL [27]. In another study,
Huang et al. observed a higher plasma expression of miR-let7c in hypertensive patients
with cIMT and a positive correlation between miRNA and cIMT confirmed by a multiple
linear regression analysis [12]. Overall, these data suggest that miR-let7c may exert pro-
atherogenic effects in both experimental and clinical settings. In agreement with this
assumption, we found an increased expression of miR-let7c in the serum of hypertensive
patients with atherosclerotic plaques when compared to hypertensive patients without
apparent atherosclerotic plaques. Interestingly, we did not observe a correlation between
miR-let7c and cIMT. In this regard, it is important to recognize that the presence of carotid
atherosclerotic plaques, as a later manifestation of atherosclerotic disease, is a stronger
predictor of cardiovascular events as compared with cIMT [29]. Furthermore, this may also
be due to the fact that cIMT measures the carotid intima and medial wall layers [22]. In this
sense, the association we found between miR-let7c and atherosclerotic plaque provides
more robust evidence that this miRNA might be related to atherosclerosis.

A functional enrichment analysis was performed to identify their target genes and
pathways to understand the relevance of these two miRNAs, and we observed that miR-
145-5p and miR-let7c regulated potential genes and pathways related to metabolic signaling
pathways, as well as inflammatory, focal and calcium ones. In particular, our in-silico
analysis detected at least nine target genes, ADRB3 [30], CBL [31], IGF1 and IGF1R [32],
SMAD2 and TGFBR1 [33], NFIA [34], TRIM13 and TRIM65 [35], with reports in the
literature of a reduced expression in the atherosclerotic plaque, suggesting that these genes
may be involved in the atherogenesis process regulated by miR-145-5p and let7c.

The analysis of KEGG revealed the involvement of signaling pathways associated
with atherosclerosis, such as Hippo [36], FoxO [37] and Adherens junction [38], while the
gene ontology results indicated for both “Biological Processes” and “Molecular Function”
the participation of genes associated with the WNT signaling pathway, which has been
linked to the pathophysiology of atherosclerosis [39].

We recognize that our study has some limitations. We did not evaluate the expres-
sion of these miRNAs in atherosclerotic plaque, but our findings appear to reproduce in
serum the results from other studies evaluating the expression of miRNA in plaques of
hypertensive patients [11]. As with any cross-sectional study, the influence of residual
confounding cannot be excluded, and the association between these miRNAs and the
presence of plaque must be carefully evaluated. Furthermore, it is possible that the use
of medications may have influenced our findings. Notably, miR-145 expression may be
influenced by some antihypertensive drugs, like angiotensin-converting enzyme inhibitors
and angiotensin receptor blockers [40]. To overcome this limitation, we included potential
confounding variables and the use of each class of antihypertensive medication and statins
as independent variables in our multivariable analyses.
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5. Conclusions

In summary (Figure S1), our data demonstrate that hypertensive patients with carotid
plaque have an increased expression of miR-145-5p and miR-let7c, suggesting that these
miRNAs can be used as potential biomarkers of carotid atherosclerosis in patients with
arterial hypertension.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biom11121840/s1, Table S1: A list of potential genes targeted by miR-145-5p and miR-let7c
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