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Muscle atrophy is a side effect of several terrestrial diseases which also affects
astronauts severely in space missions due to the reduced gravity in spaceflight. An
integrative graph-theoretic network-based drug repurposing methodology quantifying
the interplay of key gene regulations and protein–protein interactions in muscle atrophy
conditions is presented. Transcriptomic datasets from mice in spaceflight from GeneLab
have been extensively mined to extract the key genes that cause muscle atrophy
in organ muscle tissues such as the thymus, liver, and spleen. Top muscle atrophy
gene regulators are selected by Bayesian Markov blanket method and gene–disease
knowledge graph is constructed using the scalable precision medicine knowledge
engine. A deep graph neural network is trained for predicting links in the network. The
top ranked diseases are identified and drugs are selected for repurposing using drug
bank resource. A disease drug knowledge graph is constructed and the graph neural
network is trained for predicting new drugs. The results are compared with machine
learning methods such as random forest, and gradient boosting classifiers. Network
measure based methods shows that preferential attachment has good performance
for link prediction in both the gene–disease and disease–drug graphs. The receiver
operating characteristic curves, and prediction accuracies for each method show that
the random walk similarity measure and deep graph neural network outperforms the
other methods. Several key target genes identified by the graph neural network are
associated with diseases such as cancer, diabetes, and neural disorders. The novel
link prediction approach applied to the disease drug knowledge graph identifies the
Monoclonal Antibodies drug therapy as suitable candidate for drug repurposing for
spaceflight induced microgravity. There are a total of 21 drugs identified as possible
candidates for treating muscle atrophy. Graph neural network is a promising deep
learning architecture for link prediction from gene–disease, and disease–drug networks.

Keywords: muscle atrophy, network measures, random walk, graph neural network, random forest, gradient
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INTRODUCTION

Drug discovery is an expensive process costing an average of
$1.8 million per drug. Most drug discovery done on Earth is
under a constant environment with a gravity value of 9.81 m/s2.
Spaceflight in satellites and the International Space Station (ISS)
provides a gravitational acceleration of 1 × 10−6 m/s2. This
is referred to as microgravity which has direct and indirect
effects on an organism. The direct effects are changes in weight,
distortion and deformation of organelles, and other measurable
changes. The indirect changes are those that occur prior
due to microgravity. Bacterial virulence and increased genetic
recombination have been observed in space thereby requiring
increased concentrations of antibiotics for treatment. Spaceflight
environment is conducive for drug discovery, as observed in an
experiment conducted on spaceflight tested a molecule Amgn-
0007 and sActRIIB for increasing bone mineral density in mice
(Zea, 2015).

In addition to aging, muscle atrophy is slightly implicated
in the etiology of chronic diseases such as diabetes, cancer,
obesity, and muscular dystrophy (Kalyani et al., 2014; Muscular
Dystrophy, n.d.).1 Muscle wasting also develops as a consequence
of acquired immune deficiency syndrome (AIDS) (Dudgeon
et al., 2006), neuromuscular disorders, and organ failure
(cachexia) (Wyart et al., 2020; Rausch et al., 2021). Muscle
wasting is the hallmark of cancer cachexia and is associated
with serious clinical consequences such as physical impairment,
poor quality of life, reduced tolerance to treatments, and
shorter survival (Burckart et al., 2010). Muscle atrophy is
a severe disabling clinical condition that is accompanied by
cancer development in the pancreatic, lung, liver, and bladder
(Bei and Xiao, 2017; Yang et al., 2018). Prolonged stay in
spaceflight of up to 4 months can lead to a 17% loss of muscle
mass. Muscle atrophy condition is accelerated in space due
to microgravity by unloading of the muscles. Gene expression
datasets have been analyzed using traditional fold change analysis
and clustering methods for the identification of differentially
regulated genes involved in muscle atrophy in mice flown
in spaceflight (Horie et al., 2019a,b). Spaceflight simulation
studies have shown differential expression of small number of
microRNAs in the context of muscle physiology in response
to loading (Rullman et al., 2016). Recent miRNA studies
have shown that muscle degeneration with accelerated aging
enhanced by exposure to space radiation and microgravity
are driven by circulating miRNA and are being suggested as
a potential biomarker (Malkani et al., 2020). But, advanced
network analysis to identify causally related key target genes
and their association with other diseases, and the application of
Artificial Intelligence (AI) methods for identification of drugs
suitable for treatment of muscle atrophy in spaceflight have not
been performed.

Several treatments have been proposed and used for
countering muscle atrophy in humans. Inhibition of a protein
called myostatin has shown to result in an increase in muscle

1https://www.mayoclinic.org/diseases-conditions/muscular-dystrophy/
symptoms-causes/syc-20375388

mass (Smith et al., 2020). The drug formeterol has been
used for counteracting muscle atrophy in mice in spaceflight
(Ballerini et al., 2020). There are many drug candidates that can
be used for treating muscle atrophy, and the use of traditional
methods for drug repurposing are time consuming due to the
large volume of compounds that need to be tested. AI based
methods have gained importance in this pandemic era for rapid,
low-cost, and effective drug repurposing (Gysi et al., 2020). AI
methods rely on the fact that drugs that target one disease
can target another disease with similarly functioning protein–
protein interaction networks. AI related methods are Machine
Learning methods and/or Deep Learning (DL), a sub-branch of
ML (Chen et al., 2020). ML methods such as Support Vector
Machines (SVM), Random Forest (RF), and Gradient Boosting
(Gboost) method have been used for drug repositioning to
treat schizophrenia and anxiety disorders (Zhao and So, 2018).
Employing ML based drug repositioning is a cost-effective way
of automatizing the drug discovery process, and gaining deeper
knowledge in the genetic causality of diseases, their associations,
and planning preclinical trials for the selected drugs (Koromina
et al., 2019; Réda et al., 2020). DL neural network architectures
can explore a large amount of data, and search for similarities
in several thousands of protein-protein interactions. If the input
data is in the form of sequences, then Recurrent Neural Networks
(RNN) are trained with the time-stamped data and used for
prediction of drugs (Wang et al., 2020). Hybrid models that
combine the power of Convolutional Neural Networks (CNN)
and RNN have been used for drug repurposing (Xuan et al.,
2019; Jarada et al., 2020). Gene protein and protein–protein
interactions are generally depicted in the form of a graph,
which have led to identifying disease networks and network
medicine approaches for drug repurposing (Gysi et al., 2020).
Network measures and evaluation metrics such as Area Under
Receiver Operating Characteristic (AUROC) curves, and Area
Under Precision and Recall (AUPR) have been used for network
link prediction in drug discovery (Chen et al., 2018; Abbas
et al., 2021). Network medicine uses graph representation for
learning the patterns of protein–protein interactions. The SPOKE
database (Nelson et al., 2021) is a heterogeneous knowledge
graph connecting biological and clinical data from over 30
databases, that is used in this work in combination with
transcriptomic datasets to create the inputs to the AI model.
The Bayesian Markov blanket method applied to spaceflight
transcriptomic datasets for muscle atrophy gives information
on which genes are highly activated due to muscle unloading
in spaceflight.

In this paper, we analyze spaceflight gene expression datasets
for muscle atrophy using advanced network analysis methods
and combine it with the power of AI for identifying drugs that can
be repurposed for successful treatment of muscle atrophy. The
rest of the paper is organized as follows. Section “Materials and
Methods” presents the GeneLab datasets, and the methods used
for drug repurposing, Section “Results” presents the knowledge
graphs, and the link prediction results, section “Discussion”
presents a discussion of the gene-disease associations, and
disease-drug link predictions, and the “Conclusions” section
presents the conclusions.
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MATERIALS AND METHODS

This section describes the GLDS datasets used for mining, the
SPOKE database, the network analysis methods, and the ML
and AI methods for link prediction. Gene expression data were
downloaded from NASA GeneLab repository. The datasets were
preprocessed by NASA GeneLab.

GLDS-4
Thymus lobes were extracted from young adult C57BL/6NTac
mice at 8 weeks of age after exposure to spaceflight aboard
the space shuttle STS-118 for a period of 13 days. Gene
expression analysis demonstrate that spaceflight induces
significant changes in the thymic mRNA expression of genes
that regulate stress, glucocorticoid receptor metabolism, and
T cell signaling activity (Lebsack et al., 2010). Key master
regulators such as TGF-β1 coordinating systemic response of
mice to spaceflight microgravity and/or space radiation were
identified in Beheshti et al. (2018).

GLDS-244
A cohort of healthy mice was implanted with subcutaneous
nanofluidic delivery system (nF) of formoterol (FMT), a β2-
adrenergic receptor agonist for therapeutic treatment of skeletal
muscle loss. The mice were subjected to spaceflight microgravity
on ISS for 29 and 56 days before euthanizing. RNA sequencing
analysis of thymus tissues showed that nF-FMT treatment mass
loss in comparison to control mice (Ballerini et al., 2020).

GLDS-245
Liver tissue was extracted from the same cohort of mice used in
GLDS-244 experiment. RNA sequence data was obtained from
liver preserved in liquid nitrogen after dissection and stored at
–80◦C. RNA sequencing analysis of thymus tissues was done.

GLDS-246
A cohort of forty 32-weeks-old female C57BL/6NTac mice
were either sham operated or implanted with vehicle or
treatment-filled nDS, launched in two Transporters (20 mice per
Transporter) on SpaceX-13. They were transferred to Rodent
Habitats onboard the ISS, and maintained in microgravity.
After 56 days, they were euthanized on the ISS and RNA
samples from spleen tissue was extracted and sequencing
analysis was performed.

GLDS-288
The spleens and lymph nodes were analyzed from mice
flown aboard the ISS in orbit for 35 days, as part of a
Japan Aerospace Exploration Agency mission. The mice were
exposed to 1 g microgravity in the ISS. Paired end sequencing
(PE36bp) was performed with NextSeq500. Whole-transcript
cDNA sequencing (RNASeq) analysis of the spleen suggested
that erythrocyte-related genes regulated by the transcription
factor GATA1 and Tal1 were significantly down-regulated in ISS
(Horie et al., 2019b).

GLDS-289
Twelve C57BL/6 J male mice (8-week-old for MHU-1 and
9-week-old for MHU-2) in transportation cage units (TCU)
were launched aboard the SpaceX rocket from the KSC and
transported to the ISS. After one month in spaceflight, RNA
sequencing analysis showed a significantly reduced expression of
cell cycle-regulating genes, resulting in reduced size of thymus.
However, exposure to 1× g alleviated the impairment of thymus
homeostasis induced by spaceflight (Horie et al., 2019a).

Gene Regulatory Network Inferencing
Using Incremental Association Markov
Blanket Method
In genomics, genome to phenome analysis, and transcriptional
regulatory analysis are facilitated by construction of Gene
Regulatory Networks (GRNs) from gene expression datasets.
The GRNs also show causal relations between the genes.
Traditionally, causal relations are difficult to infer and require
careful application of experimental interventions. However,
causal relations can be discovered by statistical analysis of purely
observational data, which is known as causal structure learning
(Anand, 2009). Using Markov property, a gene is conditionally
independent of all other genes except its parents, children,
and children’s parent variables (genes). Causal relationships are
useful for combining omics data with Genome Wide Association
Studies (GWAS), for inferring relationships between genotype
and phenotype (Ainsworth et al., 2017).

The method used for causal relation inferencing used here
is the Markov Blankets (MB) method and Bayesian Network
(BN) learning (Tsamardinos et al., 2003; Ram and Chetty, 2011;
Syed Sazzad et al., 2020). Joint conditional probabilities are
represented by a graph in a Bayesian network, the nodes (genes)
are connected by Markov property which states that a node
is conditionally independent of its non-descendants, given its
parents. Applying the faithfulness condition, the IAMB of any
node (gene) in a BN is the set of parents, children, and spouses
(the other parents of their common children) of the gene. In our
case, each gene is a variable with a series of expression values.
The Markov blanket of a gene X is the smallest set MB(X)
containing all genes carrying information about X that cannot
be obtained from any other gene. Association measures and
conditional independent tests are applied to identify the strongly
relevant genes (Pellet and Elisseeff, 2008; Bui and Jun, 2012).
Hence, MB(T) is a causal structure learning algorithm useful
for the discovery of regulatory interactions among genes from
gene expression data. Here, MB is used to construct GRNs for
regulatory relationship between genes/proteins.

Gene Disease Knowledge Graph Using
SPOKE
Gene disease associations are important as the key genes of
muscle atrophy are also affected by other diseases which can
turn out to be lethal when transferred to the next generation.
Hence, it is vital to predict which new disease can occur because
of the higher activity of particular genes in the GRNs for muscle
atrophy. In order to obtain the gene disease associations, we use
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the Scalable Precision Medicine Knowledge Engine (SPOKE),
which is a large heterogeneous network containing multiple
types of biological data capturing the essential structure of
biomedicine and human health for discovery (Scalable Precision
Medicine Knowledge Engine, n.d.). The maximally regulated
genes identified from the GRNs are input to the SPOKE which
generates all the diseases associated with these key genes obtained
from the GRNs for muscle atrophy. These associations are used to
construct the Gene Disease Knowledge Graph (GDKG).

Network Measures
We define a network using a graph based representation.
Formally, a graph is a pair of sets G: = (V,E) where | V| is the
set of vertices (molecules, genes, proteins, nodes, points) and | E|
is the set of edges, which is an ordered pair of V. The graph (V,
E, o, t) is called directed, if directed edges are allowed, i.e., not all
edges have reverse edges as members of E. In a directed graph,
G = (V,E,o,t), the edges are e(u,v) ε E, the origin of e is denoted by
o and the terminal v is denoted by t(v). In a network G = (V,E),
for a node u, 0(u) = {v| (u,v)εE} represents the set of neighbors
of node u. The link prediction task in a network G = (V,E) is
to determine whether there is or will be a link e(u,v) between a
pair of nodes u and v, where u, v ∈ V , and e(u, v) /∈ E. Similarity
measures computed from neighborhoods in a graph are widely
used in link prediction algorithms (Abbas et al., 2021). Random
walks have been used for link prediction. Random walk methods
efficiently explore neighborhoods of a node to determine a
path from a starting node to a terminal node. Probabilities are
usually used to select the next neighboring node in the path.
Biomolecular networks are complex and random walks are an
efficient way for exploring them (Costa and Travieso, 2007; Janwa
et al., 2019). A semi-supervised scalable feature learning method
is proposed in Grover and Leskovec (2016), where the authors
develop a family of biased random walks resulting in a flexible
search space of nodes for link prediction. We have used this
method to obtain the highest ranked nodes for possible links
between muscle atrophy genes and their associated diseases.
Apart from random walk, we have computed the preferential
attachment network measure to obtain possible gene–disease
and disease–drug associations. Preferential Attachment is the
multiplication of the degrees of nodes u and v: PA (u, v) =
|0(u)| |0(v)|

Graph Neural Network for Prediction of
Gene-Disease Associations
A deep Graph Neural Network (GNN) architecture consisting of
multiple layers and hundreds of nodes is constructed and takes
as input the GDKG constructed as described in section “Gene
Disease Knowledge Graph Using SPOKE.” This graph G = (V,E)
is multimodal and heterogeneous with N nodes vi ε V is the set of
nodes representing proteins or genes, and diseases. The edges E
represents gene-disease associations. The link prediction task is to
predict whether there will, is, or will be a link e(u,v) between a pair
of nodes u and v, where u, v εV and e(u, v) /∈ E. A link prediction
problem is setup on the GDKG representation for identifying
links between genes and the diseases associated with it. The
GNN is a three layer model. The edge features of the GDKG

are the input to the input layer of the GNN. The hidden layer
consists of 300 neurons with “tanh” activation function. Limited-
memory Broyden–Fletcher–Goldfarb–Shanno (lbfgs) solver from
the sktlearn library is used for link prediction. It approximates
the second derivative matrix updates with gradient evaluations.
It stores only the last few updates, so it saves memory. The output
of the GNN is a matrix consisting of new predicted edges.

Random Forest Method
The RF is a classifier using the ensemble learning algorithm on
a multitude of decisions trees constructed at training time. It
trains decision trees using random sampling with replacement.
For each node in the base decision tree, random forest randomly
chooses an attribute subset including k (k ≤ m) attributes
from the attribute set of the node (including m attributes), and
then, chooses the best attribute from the subset to split samples
(the optimal judgment is usually based on the minimum of a
Gini index). The split process will be repeated until the split
termination condition is satisfied (generally, the Gini index is
small enough), and the model integrated by multiple decision
trees is a random forest (Wu et al., 2018). Each tree emits a
prediction, and the class with the most votes becomes the model’s
prediction. It is based on the principle that many uncorrelated
models (trees) operating as a committee will outperform any of
the individual constituent models.

Gradient Boosting Classifier
The Gboost classifier is also an ensemble learning method similar
to random forest except that it trains one tree at a time. This
additive model (ensemble) works in a forward stage-wise manner,
introducing a weak learner to improve the shortcomings of
existing weak learners (Li et al., 2016). In Gboost, shortcomings
are identified by gradients. Whereas in Adaboost, shortcomings
are identified by high-weight data points. Both high-weight data
points and gradients tell us how to improve our model. RF
combine results at the end of the process (by averaging or
“majority rules”) while Gboost combines results along the way.
Gboost is not a best method if there is lot of noise in the data, as it
results in overfitting. The parameters are harder to tune than RF.

Disease Drug Link Prediction
The top ranked disease associations from the GDKG that have
highest probability of predicted and existing links are selected.
For each of these disease up to ten drugs are chosen from the
DrugBank database (Drugbank online, n.d.).2 There are multiple
drugs that are used for several diseases. An adjacency matrix
with rows for diseases and columns for drugs is constructed. The
Disease Drug Knowledge Graph (DDKG) is generated and the
link prediction algorithm is run on this graph. This results in
top ranked drugs with highest probability that can be repurposed
for muscle atrophy. The choice of the best drug also depends
on the diagnostics and prognostics of the disease, hence the
most prevalent comorbidities with muscle atrophy is considered
for the drug selection. Drug selection is also a very sensitive
process and requires clinical intervention, hence, we provide

2https://go.drugbank.com/
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a list of drugs that may be considered for treatment of this
condition in spaceflight.

Figure 1 shows the sequence of steps followed for constructing
GDKG, DDKG, and link prediction for drug repurposing in
muscle atrophy. The predicted drugs have the highest probability
for muscle atrophy treatment in spaceflight. Once the DDKG is
constructed any machine learning approach for link prediction
can be used for predicting probable drugs. The network feature
extraction method used here is based on random walks, which
can be replaced with other local or global graph similarity based
indices such as common neighbors, Jaccard index, Sorensen
index, preferential attachment, Adamic-Adar index, resource
allocation index, hub promoted index, Leicht-Holme-Newman
index, parameter dependent index, local affinity structure index,
individual attraction index, mutual information index, functional
similarity weight, and local neighbors link index, Katz index, and

page rank (Fire et al., 2011; Mutlu et al., 2020). In this case, we
found random walk and preferential attachment to give better
results than the other features.

Metrics for Evaluation of Link Prediction
Methods
There are several measures to evaluate the performance of
link prediction methods. The Receiver Operating Curve (ROC)
represents the performance trade-off between true positive and
false positives at different decision boundary thresholds. AUROC
is the Area Under the Receiver Operating Characteristics
(AUROC) value, which is the area under the plot between
True Positive Rate (TPR) and the False Positive Rate (FPR).
It represents the trade-of between TP and FP prediction rates.
The TPR is also known as sensitivity, recall, or probability of

FIGURE 1 | Flow diagram showing sequence of steps followed for constructing GDKG, DDKG, and link prediction for drug repurposing to treat muscle atrophy in
spaceflight microgravity.
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detection. AUROC measures the separability of the classifier and
is therefore a vital metric (Yang et al., 2015).

Computational Network Measures
The network measures used to analyze the GDKG and DDKG
networks include spectral gap, girth or diameter, and density.
Measures computed on the gene nodes and drug nodes are degree
distribution, neighborhood connectivity, and subgraph centrality
(Biggs, 1993).

Spectral gap: For a graph G, the Laplacian eigenvalues can be
ordered as 1 = | λ1| ≥ | λ2| ≥ · · · ≥ | λn| (G may be directed or
undirected, weighted or unweighted, simple or not). The Spectral
gap is defined as: δλ = | λ1| – | λ2|. By normalizing the Laplacian
matrix of G, the eigenvalues are λ1 ≥ λ2 ≥ · · · ≥ λn > 0, and
the Laplacian spectral gap will be: δλ = 1 – | λ2|. The spectral
gap is also known as a random walk, in terms of this concept λ2
is the most important eigenvalue. Note that if the spectral gap
is 0, which means λ2 = 1 [0 is not (strongly) connected or if 0
is bipartite], this means a typical random walk will not converge
to a unique distribution or dominant eigenvector. As long as the
spectral gap is greater than 0, which means | λ2| < 1, then the
random walk converges to a unique dominant eigenvector, and
the spectral gap measures the rate of convergence, the larger the
spectral gap (the smaller| λ2|), the better the network flow [large
h(G), diffusion, mixing, random walk, expansion, sparsity, and
other highly desirable properties of the network G].

Girth of a graph is the smallest positive integer r such that
Trace(Ar) > 0. Let d = d(G) be the smallest integer (if it exists)
so that for every pair of vertices (u,v) there is a walk of length at
most d from u to v. Then d(G) is called the diameter or maximum
eccentricity of the graph G.

Density of a graph is the ratio between the number of
edges and the number of possible edges. Density is a measure
of the compactness of a module (subnetwork) and measures
the connectivity strength of pairs of genes in the module
(Hussain Ahmed et al., 2020).

The clustering coefficient models the degree of clustering of a
subset of nodes. A node is selected, and we see how connected
the node is with other nodes that are also connected to it. The
clustering coefficient is used to characterize network modularity,
which is a strength of measure of a network division into
modules or groups.

Degree distribution is the number of neighbors connected
to a node; in other words, it is the number of edges incident
on a node. The degree distribution can give information about
the structure of a network. The networks can be directed or
undirected. In the undirected case, the degree of node i is the
number of connections it has, and it can be represented as an
adjacency matrix, with the sum over all nodes. For directed
graphs, there are two types of degree distributions: in-degree,
which is the number of connections entering the node, and out-
degree, which is the number of outgoing connections. In this case,
the degree distribution is computed for the genes in the GDKG
and for the drugs in the DDKG.

Subgraph centrality of a node is a weighted sum of closed
walks of different lengths in the network starting and ending
at a node. Centrality measures are used widely in biological
networks to infer protein-protein interactions and identify
essential proteins (Opsahl et al., 2010).

Implementation
The GRN inferencing method using MB is implemented in R.
This method is used to construct the GRN’s for each of the

FIGURE 2 | Markov Blanket Gene Regulatory Network for GLDS-246 dataset. Red colored circles are genes with higher regulatory activity selected for constructing
the GDKG.
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TABLE 1 | Maximally regulated genes for muscle atrophy from the spaceflight
Genelab datasets GLDS-4, GLDS-244, GLDS-245, GLDS-246, GLDS-288, and
GLDS-289 selected by Markov Blanket network analysis.

Gene name Degree
distribution

Neighborhood
connectivity

Subgraph
centrality

AAMP 16 19.6875 1,066,536

ABCA2 7 63.28571 2,032,188

ABCA6 12 40.08333 2,517,512

ACTA2 13 33 1,265,017

ADAMTS8 2 129 483,438.2

AFP 6 59.5 1,090,336

AGA 2 129 483,438.2

AGBL5 7 63.28571 2,032,188

ALDH1L2 2 129 483,438.2

ANP32A 8 44.375 1,095,830

APIP 6 15 51,842.77

ARFIP1 2 129 483,438.2

ARHGEF7 7 63.28571 2,032,188

ARPC2 16 19.6875 1,066,536

ASB6 2 129 483,438.2

ASPH 2 129 483,438.2

ATF3 17 10 204,496.1

ATF7IP 23 27.6 3,275,739

BAG3 11 31.36364 839,991.3

BAIAP2 5 55 543,055.9

BATF3 17 10 204,496.1

BCL6 8 56.125 2,101,026

BRD4 7 63.28571 2,032,188

CCNI 2 129 483,438.2

CCT5 2 129 483,438.2

CD33 6 52.66667 697,061.2

CDKN1B 13 33.84615 1,540,483

CEBPB 3 14.66667 8,307.823

CHFR 8 51.57143 1,029,718

COL20A1 2 129 483,438.2

CRTC2 8 59.5 1090336

CRYL1 2 129 483,438.2

CYSLTR1 2 129 483,438.2

DDB1 2 129 483,438.2

DHX8 7 63.28571 2,032,188

DIS3 7 63.28571 2,032,188

DNMT3B 16 40.61538 2,985,855

DTX3 5 11.4 18,321.32

DUSP6 2 129 483,438.2

ECD 2 129 483,438.2

EEF1B2 8 47 1,208,616

ELP5 2 129 483,438.2

EPB42 2 129 483,438.2

ERP27 7 44.85714 686,034.2

FADS1 46 16.34091 4,995,617

FAM167A 13 6.615385 49,473.38

FAM20B 2 129 483,438.2

FCER1G 11 12.81818 141,251.6

FGD4 5 58 592,697.7

FGG 3 92.33333 551,896.8

FLVCR2 2 129 483,438.2

(Continued)

TABLE 1 | (Continued)

Gene name Degree
distribution

Neighborhood
connectivity

Subgraph
centrality

GBF1 22 27 3,570,302

GLI3 13 38.07692 2,695,724

GNA13 4 81.25 875,946

GULP1 2 129 483,438.2

HAUS4 2 129 483,438.2

HEMGN 7 65.6 906,075.6

HIC1 8 11.25 43,296.84

IKBIP 2 129 483,438.2

IKBKE 11 13 134,489.2

IMP3 3 14.66667 8,307.823

ING5 11 12.72727 194,840.4

INPP4A 2 129 483,438.2

INVS 7 63.28571 2,032,188

IQSEC1 5 58.4 625,550.6

LIMCH1 12 41.08333 2,669,384

LLGL2 2 129 483,438.2

LMAN2 24 22.45833 2,625,946

LOXL3 2 129 483,438.2

LUZP1 7 63.28571 2,032,188

MAP3K8 6 52.5 811,120

MBNL1 11 44.55556 1,288,207

MGAT5 12 34.45455 1,180,487

MMACHC 7 44 701,632.3

MTHFD1L 13 40.76923 2,703,941

MTSS1 5 57.8 587,272.6

MTUS1 2 129 483,438.2

MVP 5 58.2 651,412.9

NAGLU 5 60.4 617,943.7

NOTCH1 34 21.58065 5,186,101

NPM1 10 10.6 76,055.24

NQO1 9 11.22222 50,685.27

NSUN6 15 24.4 920,237.7

NUCKS1 13 34.30769 1,624,638

NUFIP2 5 55 543,055.9

NUP35 2 129 483,438.2

ODF2L 2 129 483,438.2

PCBD2 15 21.4 1,100,177

PCSK5 3 87.66667 510,939.4

PDCD11 10 47.7 2,313,937

PDLIM5 8 59.5 1,090,336

PDPR 2 129 483,438.2

PIK3C2A 9 52 2,218,154

PIK3CB 2 129 483,438.2

PLA2G7 4 71.75 599,936.5

PLG 18 7.5 97,555.15

PLXNA4 2 129 483,438.2

POLB 2 129 483,438.2

PPAN 3 86.33333 485,964.5

PPFIA1 7 63.28571 2,032,188

PPP1CB 7 56.16667 954,019.9

PTCD3 2 129 483,438.2

PTEN 36 18.77778 5,440,125

(Continued)
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TABLE 1 | (Continued)

Gene name Degree
distribution

Neighborhood
connectivity

Subgraph
centrality

PTPN22 36 16.76471 2,848,757

PTPN7 5 42.2 404,444.5

PVR 12 11.91667 142,451.7

RAB1B 6 10.66667 25,252.28

RAN 13 28.30769 1,013,655

RNF13 4 9 5,753.418

RPS24 2 129 483,438.2

RPS6KC1 2 129 483,438.2

RSRP1 2 6 1,857.078

RUSC2 7 63.28571 2,032,188

SAMD10 3 14.66667 8,307.823

SCAF8 11 45.72727 2,543,016

SEPHS1 2 129 483,438.2

SESTD1 9 50.55556 2,117,183

SFXN1 2 129 483,438.2

SGPP2 2 129 483,438.2

SH3TC2 2 129 483,438.2

SIN3B 7 63.28571 2,032,188

SLC12A6 8 56.625 2,121,072

SLC37A1 18 23.83333 1,425,904

SLC39A1 6 59.5 1,090,336

SLCO2A1 13 33.41667 1,510,348

SNX25 2 129 483,438.2

SPATA6 2 129 483,438.2

SPG11 7 63.28571 2,032,188

SPRY4 22 24.42857 2,141,129

ST14 2 129 483,438.2

SUB1 7 34.42857 498,913.4

SYNPO2 12 40.08333 2,517,512

TAF15 1 10 953.6951

TCF25 24 19.5 1,637,001

THUMPD3 2 129 483,438.2

TMEM106B 7 8 16,732.19

TMEM123 6 59.5 1,090,336

TMTC1 8 56.625 2,121,072

TNFRSF19 12 38.7 1,291,127

TPK1 6 67 945,841.4

TPM4 2 129 483,438.2

TPMT 10 28.8 663,140.7

TRIM25 4 14.25 42,289.27

TTPAL 2 129 483,438.2

TXNL1 5 60.4 617,943.7

UBA3 2 129 483,438.2

UBASH3A 23 23.7619 2,102,919

USP37 2 129 483,438.2

VPS37A 4 12.75 16,391.32

XRCC1 2 129 483,438.2

ZBTB37 2 129 483,438.2

ZFPM2 17 32.47059 3,141,241

ZMIZ1 40 17.97368 4,230,617

ZMYND11 2 129 483,438.2

The network measurements computed for these genes from the GDKG is given
in columns 2–4.

spaceflight muscle atrophy datasets. The GDKG construction is
done using SPOKE database and its adjacency matrix is created in
MS Excel. The drug disease adjacency matrix is first constructed
in MS Excel after downloading the drugs for each disease
from drug bank. Cytoscape is used to visualize the networks.
Exhaustive search method from the GridSearchCV library is used
to estimate the best parameters for the link prediction methods.
For the gene disease link prediction, the parameters chosen for
the RF method are: depth of 15 for the RF with 500 estimators,
and a learning rate of 0.2 for Gboost method. The GNN is a deep
neural network with 10 layers consisting of 100 hidden nodes
in each layer, it uses “relu” for activation, and Adam solver. For
disease drug link prediction, the estimated parameters are a depth
of 5 for the RF method with 500 estimators, and a learning rate
of 0.2 for the Gboost method. The GNN has 10 layers with 100
hidden nodes in each layer, uses “relu” for activation, and Lbfgs
solver. The GridSearchCV library also estimates the best number
of split for cross validation, as well. In our implementation,
we have chosen 10-fold cross validation. The computation of
network features, and graph features are implemented in Python
using the libraries networkX, node2vec, pandas, numpy, and
sklearn. The implementations are available in github.3

RESULTS

Results of GRN inferencing, knowledge graph construction,
and the training and validation of link prediction methods are
presented below.

GRN Inferencing and Construction of
Knowledge Graphs
The gene expression values corresponding to spaceflight
experiments are extracted from the excel files for the six GeneLab
datasets and input to the MB GRN inferencing method. The
number of values range from three to eight. Figure 2 shows
the MB GRN for GLDS-246 dataset. Table 1 gives the list of
the common genes identified from the GRNs that are highly
activated due to muscle atrophy in spaceflight microgravity
from the GLDS-4, 244, 245, 246, 288, and 289 datasets. Red
nodes are genes with higher regulatory activity for muscle
atrophy selected for constructing the GDKG. Figure 3 shows the
GDKG constructed from the highly activated genes from the six
datasets and the SPOKE database. Figure 4 shows the complete
DDKG. Table 2 lists the diseases identified from the GDKG.
The GDKG in matrix notation is of dimension 299 × 1195,
where 299 is the number of nodes and 1,195 is the number
of edges.

Training and Validation of Link Prediction
Methods
The Preferential Attachment (PA) method outputs the predicted
links from the GDKG and DDKG matrices. These matrices are
divided into training and validation sets. The training network is

3https://github.com/jjorozco777/An-integrative-Network-Science-and-
Artificial-Intelligence-Drug-Reporposing-Approach
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FIGURE 3 | Gene Disease Knowledge Graph constructed from muscle atrophy genes and their associations with diseases identified from the SPOKE database. The
red colored circles are the gene nodes and the blue colored circles are disease nodes.

of size 299 × 298 which is input to the random walk network
feature extraction method. The input matrix to the three link
prediction methods of RF, Gboost, and GNN is a network
measure matrix of dimension 2199 × 100, where 2,199 is the
number of pairs of nodes, and 100 is the number of random
walk features. Overall, the three link prediction methods perform
better than PA method. The output of all the link prediction
methods is a matrix of nodes and edges with a “1” indicating new

edge between the node pairs. If an edge does not exist originally
or after link prediction, that entry remains a “0.” Table 3 ranks
the top muscle atrophy gene–disease associations based on a
probability greater than 90% of link prediction using GNN. The
most common disease associated with muscle atrophy are cancer,
diabetes, and neural diseases. Table 4 lists the commonly used
drugs for these diseases. There are about 180 drugs mentioned
in the drug bank database as recommended treatment for the
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FIGURE 4 | Disease Drug Knowledge Graph constructed from muscle atrophy related diseases and drugs used for their treatment obtained from the drug bank
database. The blue colored circles are the disease nodes and the purple colored circles are the drugs.

diseases mentioned in Table 2 which overlap with muscle atrophy
condition. Table 5 lists 40 diseases with links to 21 drugs obtained
from link prediction with probabilities higher than 80%. Some
of these drugs treat more than one disease. Further fewer drugs
can be selected by choosing a higher threshold for prediction
probability. Table 6 lists the network measures computed for the
21 top ranked drugs in the DDKG. Table 7 lists the network
measures for the GDKG and DDKG networks. Table 8 shows the

True Positive, True Negative, False Positive, and False Negative
for each of the link prediction methods for the GDKG and DDKG
networks. Figures 5, 6 show the ROC curves for the GDKG and
the DDKG link prediction, respectively. As can be seen the GNN
has higher AUROC, followed by the RF method. The input graph
network features are divided into training and validation sets to
evaluate the link prediction methods. A 10-fold cross validation is
carried out. Tables 9, 10 summarizes the 10-fold cross validation
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TABLE 2 | Key diseases in which the genes that are maximally regulated in muscle atrophy are involved.

Disease Names

Gout Asthma Cancer Adenoma Colitis

Leprosy Obesity Alopecia Glaucoma Leukemia

Lymphoma Melanoma Myopathy Myositis Rhinitis

Syndrome Vitiligo Arthritis Carcinoma Pemphigus

Psoriasis Tauopathy Dermatitis Narcolepsy Vasculitis

Cholangitis Eye disease Lung cancer Scleroderma Skin cancer

Bone disease Hair disease Hypertension Liver cancer Lung disease

Nose disease Skin disease Brain disease Breast cancer Dental caries

Endometriosis Heart disease Hypotrichosis Kidney cancer Larynx cancer

Liver disease Lymphadenitis Mood disorder Mouth disease Neuroblastoma

Overnutrition Prion disease Schizophrenia Skin melanoma Tooth disease

Acute leukemia Aortic disease Artery disease Breast disease Cardiomyopathy

Celiac disease Hypothyroidism Kidney disease Kidney failure Lung carcinoma

Osteoarthritis Ovarian cancer Skin carcinoma Sleep disorder Spinal disease

Stomach cancer Uterine cancer B-cell lymphoma Benign neoplasm Crohn’s disease

Genetic disease Gonadal disease Graves’ disease Nephrolithiasis Ovarian disease

Prostate cancer Stomach disease Synucleinopathy Thoracic cancer Uterine disease

Allergic disease Bipolar disorder Breast carcinoma Cell type cancer Kawasaki disease

Muscular disease Pancreas disease Prostate disease Thoracic disease Vascular disease

Allergic rhinitis Bile duct disease Bronchial disease Colorectal cancer Diabetes mellitus

Esophageal cancer Inner ear disease Intestinal cancer Laryngeal disease Leukocyte disease

Lymphoid leukemia Mental depression Monogenic disease Nutrition disease Pancreatic cancer

Rheumatic disease Testicular cancer Autoimmune disease Bipolar I disorder Cognitive disorder

Colorectal adenoma Endometrial cancer Esophageal disease Hematologic cancer Intestinal disease

Lymph node disease Multiple sclerosis Prostate carcinoma Psychotic disorder Sjogren’s syndrome

Temporal arteritis Testicular disease Ulcerative colitis Alzheimer’s disease Androgenic alopecia

Atrial fibrillation Gallbladder disease Heart valve disease Laryngeal carcinoma Lupus erythematosus

Nicotine dependence open-angle glaucoma Organ system cancer Ovarian dysfunction Parkinson’s disease

Aortic valve disease Basal cell carcinoma Bullous skin disease Esophageal carcinoma Immune system cancer

Low tension glaucoma Motor neuron disease Nasal cavity disease non-Hodgkin lymphoma Pancreatic carcinoma

Rheumatoid arthritis Substance dependence Systemic scleroderma Thyroid gland cancer Aortic valve stenosis

Biliary tract disease Demyelinating disease Disease of metabolism Endogenous depression Hepatobiliary disease

Immune system disease Muscle tissue disease Myocardial infarction Nervous system cancer Thyroid gland disease

Urinary system cancer angle-closure glaucoma Ankylosing spondylitis Autoimmune thyroiditis Chronic kidney disease

Dilated cardiomyopathy Endocrine gland cancer Large intestine cancer Nasopharyngeal disease Nervous system disease

Sclerosing cholangitis Sensory system disease Urinary system disease Auditory system disease Cerebrovascular disease

Coronary artery disease Lymphatic system cancer Squamous cell carcinoma Thyroid gland carcinoma Autism spectrum disorder

Disease of mental health Endocrine system disease Heart conduction disease Intrinsic cardiomyopathy Lymphatic system disease

Obstructive lung disease Photosensitivity disease Type 1 diabetes mellitus Type 2 diabetes mellitus Viral infectious disease

Autosomal genetic disease Bone inflammation disease Cell type benign neoplasm Connective tissue disease Creutzfeldt-Jakob disease

Major depressive disorder Neurodegenerative disease Peripheral artery disease Polycystic ovary syndrome Reproductive organ cancer

Respiratory system cancer Teeth hard tissue disease Acquired metabolic disease Autosomal dominant
disease

Glucose metabolism
disease

Inflammatory bowel disease Intestinal benign neoplasm Respiratory system disease Sensorineural hearing loss substance-related disorder

Disease by infectious agent Hepatobiliary system
cancer

Integumentary system
cancer

Reproductive system
disease

Testicular germ cell cancer

Acute lymphoblastic
leukemia

Bacterial infectious disease Chronic lymphocytic
leukemia

Disease of anatomical entity Hematopoietic system
disease

Integumentary system
disease

Organ system benign
neoplasm

Plantar fascial fibromatosis Systemic lupus
erythematosus

Amyotrophic lateral
sclerosis

Cardiovascular system
disease

Central nervous system
cancer

Juvenile rheumatoid arthritis Marginal zone B-cell
lymphoma

Central nervous system
disease

Gastrointestinal system
cancer

Male reproductive organ
cancer

Musculoskeletal system
disease

Primary angle-closure
glaucoma

Carbohydrate metabolism
disease

(Continued)
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TABLE 2 | (Continued)

Disease Names

Gastrointestinal system
disease

Lower respiratory tract
disease

Specific developmental
disorder

Upper respiratory tract
disease

Female reproductive organ
cancer

Male reproductive system
disease

Pervasive developmental
disorder

Primary immunodeficiency
disease

Autonomic nervous system
neoplasm

Central nervous system
vasculitis

Disease of cellular
proliferation

Laryngeal squamous cell
carcinoma

Peripheral nervous system
disease

Female reproductive
system disease

Peripheral nervous system
neoplasm

Abdominal
obesity-metabolic
syndrome

Primary bacterial infectious
disease

Autoimmune disease of
exocrine system

Chronic obstructive
pulmonary disease

Abdominal
obesity-metabolic

syndrome 1

Autoimmune disease of
endocrine system

Developmental disorder of
mental health

Gastrointestinal system
benign neoplasm

Attention deficit
hyperactivity disorder

Autoimmune disease of the
nervous system

estrogen-receptor negative
breast cancer

Autoimmune disease of
cardiovascular system

Autoimmune disease of
central nervous system

Autoimmune disease of
gastrointestinal tract

Autoimmune disease of
musculoskeletal system

Human immunodeficiency
virus infectious disease

Autoimmune disease of
skin and connective tissue

Identified from the SPOKE GDKG gene–disease network.

accuracies using the link prediction methods for the GDKG and
DDKG networks, respectively. The average accuracies obtained
for the gene-disease network link predictions are 93.07, 92.32,
and 89.72% for the GNN, RF, and Gboost methods, respectively.
The average accuracies obtained for the disease-drug network
link predictions are 92.11, 92.63, and 91.62% for the GNN,
RF, and Gboost methods, respectively. Overall, the GNN has
the highest accuracy of 92.59%, followed by 92.48 and 90.67%
for the RF and Gboost methods, respectively. The preferential
attachment based link prediction gives an average accuracy
of 83.92 and 67.06% for gene disease, and disease–drug link
prediction, respectively. Here, we have combined the analysis
of the six GeneLab GLDS datasets related to organ muscle
atrophy in spaceflight. This is advantageous than analyzing
them individually, as it reduces space and time complexity of

TABLE 3 | New muscle atrophy gene disease associations predicted by random
walk network measure and GNN.

Gene name Disease name Link prediction

ATF3 Bone cancer and hypospadias 15

PTEN Tumor suppressor 29

TNFRSF19 Ovarian cancer 11

BCL6 Lymphoma 8

EEF1B2 Seizures 17

UBASH3A Type 1 diabetes mellitus 18

ZMIZ1 Neurodevelopmental disorder 32

PTPN22 Type 1 diabetes mellitus 22

AAMP Tylosis With Esophageal Cancer 15

NOTCH1 leukemia 28

CDKN1B Cell type cancer 8

FAM167A Maturity-onset diabetes 11

DNMT3B Immunodeficiency 15

ATF7IP Testicular germ cell cancer 14

FADS1 Lipid metabolism disorder 18

1 indicates existing association, 0 indicates predicted links.

processing. The three methods of RF, Gradient boosting, and
GNN perform equally well, while the GNN shows a slightly
higher accuracy.

DISCUSSION

The shared key genes from the Markov Blanket GRN of all the
six GeneLab datasets with maximal differential regulation are
given in Table 1. Figure 3 shows the GDKG constructed using
the top regulated genes from the six GeneLab datasets and the
SPOKE database. The red nodes represent the genes, and the
blue nodes represent diseases. Table 2 lists the disease nodes
present in Figure 3. Table 3 lists 15 new gene disease associations
predicted by the GNN link prediction method. There are several
differentially regulated genes resulting in reduced proliferation
of thymic cells, thereby reducing the size of the thymus (Horie
et al., 2019a). Of these the ATF3 is a key gene player identified
in Table 1. This gene encodes a member of the mammalian
activation transcription factor and is induced by a variety of
signals, including many of those encountered by cancer cells. It
is involved in the complex process of cellular stress response.
This gene has 15 additional links predicted by the GNN. PTEN
is an important gene that suppresses cell growth into tumors,
which has been identified as a key gene in the GDKG. This gene
is found to regulate muscle protein degradation in diabetes (Hu
et al., 2007). In the GDKG network this gene has 33 existing
links, and 29 new links to existing diseases are predicted. Tumor
Necrosis Factor (TNF) is one of the most important muscle-
wasting cytokine, elevated levels of which cause significant
muscular abnormalities (Bhatnagar et al., 2010). The protein
encoded by TNFRSF19 is a member of the TNF-receptor family.
When overexpressed it activates the JNK signaling pathway.
The diseases associated with this gene are ovarian cancer and
ectodermal dysplasia (Dostert et al., 2019). This gene originally
had nine links in the GDKG, and eleven new links were added
by the GNN link prediction method implying the importance
of this gene in muscle atrophy prognosis in spaceflight. The
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TABLE 4 | Significant drugs used for treatment of diseases listed in Table 2.

Drugs

Doxorubicin Risperidone Ivermectin Rivastigmine Streptokinase

Arcitumomab Sertraline Piperazine Diethylcarbamazine Cinnarizine

Nelarabine Paroxetine Suramin Aminoglutethimide Argatroban

Ifosfamide Lamotrigine Selegiline Prednisolone Nadroparin

Ixabepilone Phenelzine Albendazole Certolizumab pegol Lucinactant

Imatinib Venlafaxine Budesonide Dichlorphenamide Clindamycin

Etoposide Isocarboxazid Olsalazine Fluocinolone
acetonide

Telithromycin

Nimodipine L-carnitine Balsalazide Loteprednol Melatonin

Temozolomide Thiamine Verapamil Antihemophilic
factor

Amphetamine

Methotrexate Galsulfase Sulfasalazine Anastrozole Citalopram

Canagliflozin Idursulfase Warfarin Acenocoumarol Amisulpride

Insulin regular Rosuvastatin Azathioprine Hydrocortisone Fluvoxamine

Insulin lispro Cysteamine Infliximab N-acetyl-d-
glucosamine

Sulfapyridine

Insulin aspart Icosapent Golimumab Indomethacin Naproxen

Insulin glargine Vitamin c Adalimumab Dihydrotachysterol Tretinoin

Insulin,
isophane

Riboflavin L-arginine Ergocalciferol Ibuprofen

Insulin
glulisine

Secretin Hydralazine Botulinum toxin
type a

Mecasermin

Insulin detemir Ketoconazole Memantine Desmopressin Isopropamide

Pramlintide Sulfisoxazole Galantamine Nandrolone
decanoate

Inulin

L-carnitine Tinidazole Donepezil Nandrolone
phenpro.

Heparin

Secretin Chloroquine Tacrine Glucagon
recombinant

Mifepristone

Fluoxetine Tetracycline Vitamin e Nandrolone
phenpro.

Diazoxide

Insulin lispro Icosapent Daunorubicin Sulfinpyrazone Colchicine

Allopurinol Sulindac Etoricoxib Flumethasone
pivalate

Dronedarone

Cinacalcet Dantrolene Celecoxib Antihemophilic
factor

Tyloxapol

Maprotiline Icosapent Dornase alfa Nandrolone
decanoate

Urokinase

Insulin lispro L-ornithine Daunorubicin Sulfinpyrazone Colchicine

Probenecid Allopurinol Sulindac Etoricoxib Naproxen

Dronedarone Secretin Cinacalcet Dantrolene Celecoxib

Prednisone Tyloxapol Ivacaftor Agalsidase beta Dornase alfa

Enoxaparin Alendronate Probenecid Calcium acetate Ivacaftor

Insulin lispro L-ornithine Daunorubicin Sulfinpyrazone Colchicine

Probenecid Allopurinol Sulindac Etoricoxib Naproxen

Dronedarone Secretin Cinacalcet Dantrolene Celecoxib

Prednisone Tyloxapol Ivacaftor Tranylcypromine Dornase alfa

Enoxaparin Alendronate Probenecid Aminoglutethimide Ivacaftor

BCL6 gene is a regulator of T-cell-dependent inflammation and
autoimmune responses. BCL6 is likely to regulate B and T-cells
via cell-specific biochemical mechanisms. Dysregulation of BCL6
could contribute to BCL6+ T-cell lymphomas and regulated in
urinary bladder urothelial carcinoma (Wu et al., 2020). This
gene has eight existing links and eight links have been added
by the link prediction method, showing the importance of this

TABLE 5 | Possible drugs for repurposing for muscle atrophy treatment predicted
by random walk network feature and GNN.

Disease name Repurposed drugs Probabilities

Integumentory system cancer Arcitumomab 90.52

Hypertension L-arginine 89.44

Type 2 diabetes mellitus Insulin 88.980385

Cardiovascular system disease Selegiline 87.93291

Ulcerative colitis Infliximab 87.20253

Autonomic nervous system neoplasm Loteprednol 87.038925

Hematologic cancer L-ornithine 86.95308

Ulcerative colitis Olsalazine 86.79947

Vitiligo Loteprednol 86.54014

Crohn’s disease Infliximab 86.485664

Gastrointestinal system cancer Golimumab 86.456894

Colitis Olsalazine 86.39726

Colitis Azathioprine 86.141464

Intestinal benign neoplasm Olsalazine 86.11937

Inflammatory bowel disease Hydrocortisone 86.08773

Crohn’s disease Olsalazine 85.965416

Intestinal cancer Olsalazine 85.94351

Crohn’s disease Balsalazide 85.63084

Colorectal cancer Hydrocortisone 85.55948

Systemic scleroderma L-arginine 85.43495

Crohn’s disease Certolizumab pegol 85.31858

Gastrointestinal system disease Balsalazide 85.06852

Dermatitis L-ornithine 84.991

Gastrointestinal system disease Certolizumab pegol 84.908

Gastrointestinal system benign neoplasm Balsalazide 84.827

Crohn’s disease Budesonide 84.744

Muscular disease L-ornithine 84.532

Demyelinating disease Tinidazole 83.901

Demyelinating disease Ivermectin 83.811

Leprosy Tetracycline 83.778

Peripheral artery disease Riboflavin 83.776

Nasal disorder Tetracycline 83.659

Muscular disease Adalimumab 83.642

Reproductive organ cancer Tetracycline 83.485

Hematologic cancer Nimodipine 83.203

Autoimmune disease of the nervous system Ivermectin 83.107

Testicular cancer Tinidazole 82.969

Testicular cancer Sulfisoxazole 82.877

Neurodegenerative disease Tinidazole 82.860

Neurodegenerative disease Tetracycline 82.828

gene in spaceflight induced muscle atrophy. The EEF1B2 gene
encodes a translation elongation factor specifically expressed
in neurons and muscles (Doig et al., 2013). The protein is
a guanine nucleotide exchange factor involved in the transfer
of aminoacylated tRNAs to the ribosome. Diseases associated
with EEF1B2 are seizures, alacrima, achalasia, and intellectual
instability syndrome. This gene has seven existing links in the
GDKG, and 17 new predicted links. Apart from these five key
genes there are 10 more mentioned in Table 3. The network
measures for these 15 genes are listed in Table 1. Compared to
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TABLE 6 | Network measures for possible drug treatments for muscle
atrophy in spaceflight.

Drug name Degree
distribution

Neighborhood
connectivity

Subgraph
centrality

Adalimumab 42 9.76 437,551.8

Arcitumomab 60 9.83 652,802.9

Azathioprine 14 10 6,881.267

Balsalazide 14 10 6,881.267

Budesonide 14 10 6,881.267

Certolizumab pegol 14 10 6,881.267

Golimumab 14 10 6,881.267

Hydrocortisone 14 10 6,881.267

Infliximab 14 10 6,881.267

Insulin 6 10 39.17687

Ivermectin 26 10 5,830.759

L-arginine 30 10 258,302.4

L-ornithine 5 10 79,395.46

Loteprednol 40 10 469,331.1

Nimodipine 48 9.79 402,801.8

Olsalazine 14 10 6,881.267

Riboflavin 31 10.45 79,395.46

Selegiline 45 10 523,266.8

Sulfisoxazole 26 10 138,229.6

Tetracycline 26 10 138,229.6

Tinidazole 26 10 138,229.6

TABLE 7 | Network measures for the GDKG and DDKG networks.

Network measure GDKG DDKG

Spectral gap 9.015 1.011

Density 0.027 0.048

Average number of neighbors 7.993 11.178

the other genes in Table 1, these 15 genes with higher number
of predicted links also have higher values of degree distribution,
neighborhood connectivity, and subgraph centrality network
measures, as listed in Table 1. These genes also have higher link
prediction probabilities greater than 90%. The diseases associated
with these genes are cancer, diabetes, and neurological disorders
most of which have muscle atrophy as a side effect. Prolonged
exposure to spaceflight may cause risk of contracting these
diseases. Hence, preventive medicine and therapeutics are key in
warding off these conditions.

Implications for Spaceflight
Several spaceflight experiments have shown that changes in
the physical environment modulate cellular responses thus
accelerating the risk of age-related diseases such as bone loss,
muscle atrophy, and impaired immune responses (Versari et al.,
2013; Cadena et al., 2019). Investigations on muscle atrophy
in organs and tissues including cutaneous muscles in rodent
and human models are being conducted in spaceflight for
over a decade (Däpp et al., 2004; Neutelings et al., 2015;
Goropashnaya et al., 2020). There are about 20 datasets
available in GeneLab on muscle atrophy investigation on animal

TABLE 8 | Results using Graph Neural Network (GNN), Gradient Boosting (GB),
and Random Forest (RF) for link prediction in the Gene Disease Knowledge Graph
(GDKG) and Disease Drug Knowledge Graph (DDKG).

GDKG DDKG

GNN RF GB GNN RF GB

TP 448 476 466 235 254 249

TN 196 159 145 272 262 262

FP 34 71 85 9 21 21

FN 56 28 38 47 40 45

Table shows number of True Positive (TP), True Negative (TN), False Positive (FP),
and False Negative (FN) rates.

models in spaceflight (NASA Gene Lab data repository, n.d.).
Formeterol is the only drug tested so far in spaceflight to
mitigate muscle atrophy in mice (Ballerini et al., 2020). While
experimental drug repurposing and clinical testing are prolonged
and expensive, our proposed network science and artificial
intelligence framework is computationally inexpensive and can
be used for the rapid selection of candidate drugs to treat muscle
atrophy in spaceflight. As muscle atrophy is a condition caused
by many terrestrial diseases, the medications prescribed for these
diseases can be useful candidates for repurposing for muscle
atrophy. Hence, we constructed the GDKG for muscle atrophy
to determine the diseases that have muscle atrophy as a primary
side effect, and performed link prediction to identify the drugs
that treat these diseases and can be repurposed for treating
muscle atrophy. Figure 4 shows the DDKG constructed from the
top ranked gene diseases associations from the GDKG, and the
drugs used in treating these diseases. The blue nodes represent
diseases, and the purple nodes represent the drugs. Table 4
lists the drugs from the network in Figure 4. The three link
prediction algorithms are applied to the DDKG for identifying
possible drugs for muscle atrophy treatment. Table 5 lists the
drugs with probabilities higher than 80%. These drugs are used
for treating the conditions that have muscle atrophy as a severe
side effect such as cancer, diabetes, and nervous system disorders.
For example, antidiabetic agents such as metformin, incretins,
vitamin D, formoterol are medications that can reduce muscle
wastage while treating diabetes (Campins et al., 2017). Indeed
the GeneLab datasets GLDS-244 and GLDS-245 were collected
to evaluate the efficacy of the drug formoterol to treat muscle
atrophy in spaceflight flown mice (Ballerini et al., 2020). Muscle
loss is also present in Chronic Obstructive Pulmonary Disease
(COPD). The medication bimagrumab that treats COPD also
resulted in increase in thigh muscle volume. By constructing
the DDKG and applying link prediction, we have identified
drugs belonging to the Monoclonal AntiBodies (MABs) family
that are used for treating cancer as promising candidates
for muscle atrophy in spaceflight. These include adalimumab,
arcitumomab, certolizumab, golimumab, and infliximab. Table 5
lists the probabilities for these drugs as well as others that
treat cancer and other diseases. Hence, one drug is repeated
several times in Table 5. In total, there are 21 drugs that
have higher probabilities for predicted links. The network
measures for these drug nodes in the DDKG network is listed
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FIGURE 5 | Receiver Operating Characteristic curves for link prediction between genes differentially regulated in muscle atrophy and diseases in the GDKG using
PA, RF, Gboost, and GNN methods.

FIGURE 6 | Receiver Operating Characteristic curves for link prediction between muscle atrophy related diseases and drugs used for their treatment in the DDKG
using PA, RF, Gboost and GNN methods.

TABLE 9 | Ten-fold cross validation accuracies for link prediction using RF, Gboost, and GNN in GDKG.

Methods 1 2 3 4 5 6 7 8 9 10 AUROC

RF 92.17 93.65 95.91 92.66 91.55 96.59 91.13 92.57 92.49 90.55 92.32

Gboost 87.86 90.56 89.32 88.78 88.25 93.19 86.07 90.55 88.34 88.75 89.72

GNN 95.79 95.20 96.38 89.58 94.50 95.86 96.44 95.30 94.60 91.69 93.07
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TABLE 10 | Ten-fold cross validation accuracies for link prediction using RF, Gboost, and GNN in DDKG.

Methods 1 2 3 4 5 6 7 8 9 10 AUROC

RF 91.20 86.69 88.77 93.09 88.76 93.55 89.48 92.74 86.13 88.30 92.63

Gboost 91.49 89.54 91.46 91.78 89.70 94.23 90.09 93.58 88.74 89.68 91.62

GNN 88.15 87.80 88.67 92.00 88.81 90.91 91.01 89.11 87.39 86.95 92.11

in Table 6. As can be seen, all of these drugs have similar values
for degree distribution, and have a neighborhood connectivity
between 9 and 10. The drugs with highest measures for
degree distribution, neighborhood connectivity, and subgraph
centrality are Nimodipine, Arcitumomab, Selegiline, Tetracydine,
and Loteprednol. Arcitumomab, L-Arginine, L-Ornithine, and
Nimodipine which are used for treating cancer and muscle
disuse. Selgiline is used for treating cardiovascular diseases. Most
of the 21 drugs that can be repurposed for muscle atrophy treat
some type of cancer. The repurposing of a drug to treat muscle
atrophy is limited by the drug database as the condition itself is
secondary to diseases that have no cures. The selection of drugs to
treat muscle atrophy in spaceflight could be based on those that
can provide clear cures and can be effectively repurposed.

Network Analysis
Table 7 lists the network measures of girth, density and spectral
gap for the GDKG and DDKG networks. As can be seen from
these measures the GDKG network has higher spectral gap of
9.015. The larger the spectral gap (the smaller | λ2|), the higher the
network flow with sparseness, expansion, diffusion, and random
walk. Hence, these networks have a higher measure of random
walks, implying that the nodes that lie closer to each other in
the network perform similar functions. The advantage of using
networks and AI methods for drug repurposing is that the graphs
themselves are scalable and can include more genes, disease,
and drug nodes and the deep learning architecture can be built
to handle corresponding large scale prediction problems. The
network sciences approach and the AI based tool can be used to
predict key targets and potential diseases arising from spaceflight
missions and will facilitate countermeasure development.

Key Genes Description
Table 1 lists the highly activated genes from the spaceflight mice
muscle atrophy datasets. These genes are involved in protein
amino acid binding, glycoprotein binding, cell growth and/or
maintenance, and cell adhesion receptor inhibitor activity. These
genes are part of cellular metabolic pathways by which individual
cells transform chemical substances and pathways involving
organic or inorganic compounds that contain nitrogen. They are
also involved in chemical reactions and pathways involving an
organic substance, any molecular entity containing carbon, and
in chemical reactions and pathways involving those compounds
which are formed as a part of the normal anabolic and catabolic
processes. Some of these genes are involved in organ system
process carried out by any of the organs or tissues of the
neurological system. 15 key genes with the highest number of
newly predicted links is given in Table 3 and their associated
diseases from diseases from GeneCards (2021) is also given here.

As can be seen half of these genes are associated with some type
of cancer, followed by diabetes.

CONCLUSION

We have presented a novel method for generating GDKGs
for a particular disease from gene expression datasets using
network analysis and the SPOKE database. In this research,
we have worked with transcriptional gene expression datasets
for muscle atrophy in mice flown in spaceflight microgravity.
Link prediction applied to this network reveals interesting
relationships of key genes with different types of cancer. The link
prediction method is also used on the Disease Drug Knowledge
Graph resulting in the identification of novel drugs that are
possible candidates for treating muscle atrophy accelerated due
to spaceflight travel. We have combined six GeneLab datasets
in an innovative way with disease and drug databases and
applied network analysis and artificial intelligence methods for
drug repurposing.
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