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Abstract

Glucocorticoids (GC) are common components of many chemotherapeutic regimens for lymphoid 

malignancies. GC-induced apoptosis involves an intrinsic mitochondria-dependent pathway. We 

and others have shown that BIM (BCL-2 interacting mediator of cell death), a BH3-only pro-

apoptotic protein, is up-regulated by dexamethasone (Dex) treatment in acute lymphoblastic 

leukemia (ALL) cells and plays an essential role in Dex-induced apoptosis. Furthermore, BIM is 

inactivated by extracellular signal-regulated kinase (ERK)-mediated phosphorylation. We 

therefore hypothesized co-treatment with Dex and MEK/ERK inhibitors would promote apoptosis 

in ALL cells through BIM up-regulation and activation. We show here that MEK inhibitors 

(PD184352 and PD98059) synergistically enhance Dex lethality in a variety of ALL cells and in 

two primary ALL specimens. Co-treatment with Dex and PD184352 results in BIM accumulation, 

pro-apoptotic BAX/BAK activation, and cytochrome c release from mitochondria. Down-

regulation of BIM by short-hairpin RNA in ALL cells suppressed BAX/BAK activation, 

cytochrome c release, and cell death by Dex/PD184352 co-treatment. BIM accumulated by this 

treatment sequesters anti-apoptotic BCL-XL/MCL-1, resulting in the release of BAK from these 

anti-apoptotic molecules. This study provides a rational foundation for future attempts to improve 

the activity of glucocorticoids with clinically relevant pharmacologic MEK inhibitors in the 

treatment of ALL and possibly other hematologic malignancies.
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Introduction

Glucocorticoids (GC) are common components in many chemotherapeutic protocols for 

lymphoid/myeloid malignancies, including ALL, multiple myeloma, chronic lymphocytic 

leukemia, and non-Hodgkin’s lymphoma.1–6 GC-induced apoptosis is essentially divided 
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into three stages: (1) an initiation stage, which involves glucocorticoid receptor (GR) 

activation and GR-mediated gene regulation; (2) a decision stage, which engages pro- and 

anti-apoptotic BCL-2 family proteins at the mitochondrial level; and (3) an execution stage, 

which involves caspase and endonuclease activation. Although the effects of GC on 

lymphocytes have been scrutinized for many years, the molecular mechanisms of sensitivity 

and resistance are still elusive. Since GC-resistant leukemia and myeloma are often 

associated with GR defects, bypassing the receptor by targeting downstream molecules may 

lead to the development of new therapeutic strategies. Numerous novel drug combinations 

are currently being tested to prevent resistance and improve GC efficacy in the therapy of 

lymphoid malignancies. However, it is still not entirely clear how the signaling pathways 

and their downstream target molecules, including the BCL-2 family members, participate in 

GC-induced cell death.

The BCL-2 family is subdivided into three main groups based on regions of BCL-2 

homology (BH) and function: multi-domain anti-apoptotic (e.g., BCL-2, MCL-1, BCL-XL), 

multi-domain pro-apoptotic (e.g., BAX, BAK), and BH3-only pro-apoptotic (e.g., BAD, 

BID, BIM, PUMA).7,8 It is now clear that activation of BH3-only proteins by apoptotic 

stimuli initiates mitochondria-dependent cell death pathway. BH3-only proteins cause 

cytochrome c release by activating BAX and/or BAK, and the anti-apoptotic BCL-2 family 

of proteins prevents this process. BIM (BCL-2-interacting mediator of cell death) was 

identified as a BH3-only protein that induces apoptosis and is antagonized by anti-apoptotic 

BCL-2 family members.9 BIM activity can be modulated at the transcriptional and post-

translational level.10,11 Transcriptional control of BIM involves contributions from Jun N-

terminal kinase (JNK), phosphoinositide 3-kinase (PI3K) and extracellular signal-regulated 

kinase (ERK) pathways. It has been reported that phosphorylation and ubiquitination of BIM 

can regulate its protein level.10 We have previously shown that the phosphorylation status 

of BIM controls its pro-apoptotic activity.12 Interleukin-3 (IL-3), a hematopoietic survival 

factor, induces ERK-mediated phosphorylation of BIM on three serine sites (Ser55, Ser65, 

Ser100). IL-3 withdrawal results in the dephosphorylation of BIM and only non-

phosphorylated BIM interacts with the multi-domain pro-apoptotic effector BAX at the 

mitochondrial membrane. Phosphorylation of BIM upon exposure of cells to IL-3 

dramatically reduces the BIM/BAX interaction. A non-phosphorylatable BIM molecule 

(S55A/S65A/S100A) demonstrates enhanced interaction with BAX and enhanced pro-

apoptotic activity. Thus, ERK-dependent phosphorylation of BIM in response to survival 

factor regulates BIM/BAX interaction and the pro-apoptotic activity of BIM. Several reports 

suggest that BIM has a unique character among the BH3-only members; BIM has the 

capacity to interact with all of the multi-domain anti-apoptotic BCL-2 family members 

(BCL-2, MCL-1, and BCL-XL) and also directly activate multi-domain pro-apoptotic 

BCL-2 family members (BAX, BAK).13–15 This mechanism is thought to be critical for the 

activation of the downstream apoptotic machinery through BIM.

Studies of BIM- or PUMA (p53 up-regulated modulator of apoptosis)-deficient mice/cells 

demonstrate that BH3-only proteins such as BIM and PUMA play important roles in 

dexamethasone (Dex)-induced cell death.16–18 Moreover, thymocytes from double 

knockout mice lacking both BAX and BAK, which have a complete block in the intrinsic 

apoptotic pathway, are GC resistant.19 We have demonstrated that up-regulation of BIM in 
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response to Dex in a T-ALL cell line, CCRF-CEM (CEM), is critical to the induction of 

apoptosis.20 It has also been demonstrated that induction of BIM is necessary for GC-

mediated apoptotic response in B-acute lymphoblastic leukemia (B-ALL) cells and the Bim 

gene is induced in childhood ALL patients sensitive to Dex treatment.21,22 Thus, BIM 

could be a target for the development of new therapeutic strategies against GC resistance.

Growth factors, cytokines, and proto-oncogenes transduce their growth and differentiation 

promoting signals through MEK/ERK cascade.23–27 Overexpression or constitutive 

activation of this pathway has been shown to play an important role in the pathogenesis and 

progression of many tumors. Thus, the components of this signaling cascade are potentially 

important as therapeutic targets. While MEK activity appears restricted to only one class of 

substrates, ERK activates more than 70 substrates including nuclear transcription factors. 

For this reason, several pharmacologic MEK inhibitors have recently entered the clinic, and 

have been shown to inhibit phosphorylation of their targets including ERK when 

administered at well-tolerated doses.28–30

Collectively, these considerations suggest a novel and potentially effective way to potentiate 

GC activity against ALL cells based on the concept that, a) GCs up-regulate BIM; and b) 

pharmacologic MEK inhibitors may further potentiate BIM activation by blocking BIM 

phosphorylation and degradation. We show here that MEK inhibitors synergistically 

promote Dex lethality in a variety of ALL cell lines, and that BIM plays a central role in 

apoptosis induced by this regimen.

Materials and methods

Cell lines and culture

CCRF-CEM (T-ALL), SUP-B15, (B-ALL), RS4;11 (B-ALL), and Molt-4 (T-ALL) were 

purchased from the American Tissue Culture Collection (Manassas, VA). The cells were 

cultured in RPMI 1640 supplemented with 10% heat-inactivated fetal bovine serum, 1 mM 

sodium pyruvate, streptomycin, and penicillin G at 37°C in a humidified, 5% CO2 incubator.

Chemicals and antibodies

Dexamethasone and PD98059 were purchased from Sigma (St. Louis, MO). PD184352 was 

kindly provided by Dr. Steven Grant (Virginia Commonwealth University), which was 

chemically synthesized in house based on the published structure of the drug. Reagents were 

dissolved in sterile DMSO and stored at −20°C under light protection. Antibodies for 

Western blot were purchased as follows: BIM (202000) from Calbiochem (San Diego, CA); 

BAX (N-20), β-tubulin, phospho-ERK, and ERK from Santa Cruz Biotechnology (Santa 

Cruz, CA); BAK from Upstate/Millipore (Billerica, MA); BCL-2 from Sigma; MCL-1 from 

Assay Designs (Ann Arbor, MI); BAD, PUMA, and BCL-XL from Cell Signaling 

Technology (Beverly, MA); MCL-1 and cytochrome c from BD-Pharmingen (San Diego, 

CA); GAPDH from Abcam (Cambridge, MA). A phospho-S65 BIM antibody was 

developed in our lab as described previously.12
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Plasmid construction and transfection

For down-regulation of BIM by short-hairpin RNA (shRNA), pSR-BIM and pSR-con 

(control) were constructed as described previously.20 For down-regulation of BAD by 

shRNA, a microRNA-adapted shRNA construct designed against human Bad (5’-

acgtgctcactaccaaatgtta-3’) was purchased from Open Biosystems (Huntsville, AL). HA-

tagged constitutive-active MEK1 (ca-MEK1) was obtained from Upstate/Millipore. 

Transfection was performed by electroporation using a Bio-Rad electroporator (Hercules, 

CA). The cells were suspended in RPMI 1640 (4×106/400 µl) with 10 µg of DNA and 

electroporated in 0.4 cm cuvettes at 300 V, 500 µF for CCRF-CEM cells and at 900 V, 200 

µF for RS4;11 cells. Puromycin (2 µg/ml for CCRF-CEM and 0.5 µg/ml for RS4;11 cells) or 

G418 (800 µg/ml for ca-MEK1) selection to establish stable clones began twenty four hours 

after electroporation.

Immunoprecipitation and Western blot analyses

Whole cell lysates were prepared with CHAPS lysis buffer [20 mM Tris (pH 7.4), 137 mM 

NaCl, 1 mM dithiothreitol (DTT), 1% CHAPS (3-[(3-

Cholamidopropyl)dimethylammonio]-1-propanesulfonate), 20 mM NaF, 10 mM β-

glycerophosphate, and a protease inhibitor cocktail (Sigma)]. For immunoprecipitation, 

equal amounts of protein were precleared with protein A/G beads (Pierce, Rockford, IL), 

and incubated with the appropriate antibodies on ice for 2 hrs. Then the antibody complexes 

were captured with protein A/G beads at 4 °C for 1 hr. After washing three times with the 

same lysis buffer, the beads were re-suspended in the sample buffer and separated by SDS-

PAGE. For Western blot analyses, equal amounts of proteins were loaded on SDS-PAGE, 

transferred to a nitrocellulose membrane and analyzed by immunoblotting.

Cell Viability Assay

Cell death was quantified by Annexin-V-FITC (BD Pharmingen)-propidium iodide (PI, 

Sigma) staining according to the manufacturer’s protocol, followed by flow cytometric 

analysis using FACScan (BD Biosciences).

Analysis of BAX and BAK conformational change

Cells were lysed in CHAPS buffer and 300 µg of protein were immunoprecipited with anti-

BAX (6A7, Sigma) or anti-BAK (Ab-1, Calbiochem), which only recognizes BAX or BAK 

that have undergone conformation change. Immunoprecipitated protein was then subjected 

to Western blot analysis using rabbit anti-BAX or anti-BAK as primary antibodies.

Subcellular fractionation

Two million cells were washed in PBS and lysed by incubating for 30 seconds at room 

temperature in digitonin lysis buffer (75 mM NaCl, 8 mM Na2HPO4, 1 mM NaH2PO4, 1 

mM EDTA, and 350 µg/ml digitonin). Lysates were centrifuged (×12,000g) for 1 min, and 

the supernatant (cytosolic fraction) was collected. The pellets (membrane fractions) were 

washed once in cold PBS and lysed in CHAPS lysis buffer. The cytosolic and membrane 

samples were quantified, separated by SDS-PAGE, and subjected to Western blot analysis.
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Isolation of patient-derived acuye lymphoblastic leukemia blasts

Peripheral blood samples were obtained from 2 patients diagnosed with ALL. Informed 

consent was obtained following institutional guidelines and approval was obtained from the 

institutional review board of Virginia Commonwealth University. Consent was provided 

according to the Declaration of Helsinki. Mononuclear cells were isolated by Ficoll-Paque 

density gradient centrifugation. The samples, which consisted of >70% blasts, were 

cryopreserved and stored in liquid nitrogen before use. Viability after thawing was 

determined by trypan blue dye exclusion and was greater than 90%.

Statistical Analysis

For flow cytometric analyses of Annexin-V/PI, values represent the means ± SD for three 

separate experiments. The significance of differences between experimental variables was 

determined using the Student’s t test. Values were considered statistically significant at 

P<0.05.

Results

Dexamethasone interacts synergistically with MEK inhibitors in CCRF-CEM cells and other 
ALL cell lines

We first tested our hypothesis that up-regulation of BIM (by Dex) together with diminished 

phosphorylation of BIM (by MEK inhibitors) enhances cell death in ALL cells. Treatment 

with Dex (100 nM) alone induced about 15% of apoptosis at 48 hr, and treatment with a 

MEK inhibitor, PD184352 (5 µM) was minimally toxic to CEM cells. In contrast, combined 

treatment resulted in pronounced increase in apoptosis (~60%) at the same time period 

(Figure 1a). Treatment with Dex or PD184352 alone reduced growth rates and co-treatment 

further enhanced the reduction. Dex alone or in combination with PD184352 induced G1 

cell cycle arrest, but only co-treatment induced significant amount of sub-G1 population, 

indicative of apoptosis (Supplemental Figure 1). Treatment of as low as 30 nM Dex 

significantly increased cell death in combination with 5 µM of PD184352 (Figure 1b). The 

PD184352 dose-response curve revealed that concentrations as low as 1 µM PD184352 

significantly increased the toxicity of 100 nM Dex (Figure 1c). Time course analysis 

indicated that simultaneous exposure of 100 nM Dex and 5 µM PD184352 resulted in little 

apoptosis after 24 hrs, but extensive cell death at later time points (Figure 1d). We also 

observed Dex and PD184352 interactions in RS4;11 (B-ALL), SUP-B15 (B-ALL), and 

Molt-4 (T-ALL)(Figure 1e–g). Of note, Molt-4 was highly resistant to Dex treatment alone 

(1 µM Dex treatment did not induce cell death); however, co-treatment with PD184352 

induced marked cell death (Figure 1g). These results indicate that minimally toxic 

concentrations of MEK inhibitors markedly potentiate the lethality of low concentrations of 

dexamethasone in ALL cells.

PD184352 enhances dexamethasone-induced BIM accumulation, BAX/BAK conformational 
changes, and cytochrome c release from mitochondria in ALL cells

We then examined the expression of the BCL-2 family proteins before the onset of 

apoptosis, which begins at 24 hrs in CEM cells (Figure 1d), at 16 hrs in SUP-B15 cells, and 
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at 24 hrs in Molt-4 cells (data not shown) after treatment. BIM was slightly accumulated 

with PD184352 or Dex treatment alone (about 2~3-fold increase compared with untreated 

cells), but significantly increased with co-treatment in all cell lines (about 5~10-fold 

increase). The phosphorylation of BIM was increased by Dex treatment alone, but was 

decreased by Dex+PD184352 co-treatment, as judged by a phosphorylation-specific 

antibody (Figure 2a, pBIM). Although non-malignant thymocytes from PUMA (a BH3-only 

member)-deficient mice are resistant to Dex-induced apoptosis,17,18 the expression of 

PUMA was little altered following Dex and/or PD184352 treatment (Figure 2a). Another 

BH3-only protein, BAD, is a downstream target of the ERK pathway which regulates 

survival/apoptosis,31 but its expression was constant (Figure 2a), suggesting that 

perturbations in PUMA or BAD may not be essential for apoptosis induced by Dex/

PD184352 co-treatment, at least in these ALL cell lines (see also below). The overall 

expression of the multi-domain pro-apoptotic effectors, BAX and BAK, was unchanged. We 

also examined the expression of anti-apoptotic members, BCL-2, BCL-XL, and MCL-1 

(Figure 2a). The expression of BCL-2 and BCL-XL was not significantly altered. The 

expression of MCL-1 was slightly (CEM and SUP-B15) or significantly (Molt-4) induced 

by Dex treatment alone, but then restored to basal levels when cells were treated with Dex 

and PD184352. The phosphorylation of ERK (i.e. ERK activity) was inhibited by PD184352 

regardless of Dex treatment (Figure 2a).

Following apoptotic stimuli, the multi-domain pro-apoptotic BCL-2 family, BAX and BAK 

undergo conformational changes (active forms), resulting in the mitochondrial outer 

membrane permeability transition and release of cytochrome c. We examined the effects of 

PD184352 and Dex on BAX and BAK conformation and release of cytochrome c from 

mitochondria (Figure 2b and 2c). Treatment of CEM cells for 24 hrs with Dex or PD184352 

alone induced modest conformational changes in BAX and BAK. Dex treatment alone also 

slightly induced cytochrome c release but not with PD184352 treatment alone. However, 

combined treatment with both agents resulted in marked conformational changes in both 

BAX and BAK and significant amount of cytochrome c release from mitochondria. These 

findings suggest that non-phosphorylated, accumulated BIM induces BAX/BAK 

conformational changes (activation), cytochrome c release, and ultimately apoptosis in this 

treatment.

BIM is essential for cell death induced by Dex/PD184352 co-treatment in ALL cells

To confirm the significance of BIM in this regimen, we established CEM cell clones that 

express shBIM to reduce the expression of endogenous BIM. As a control, a scrambled, 

non-specific shRNA construct was transfected. The accumulation of BIM in treatment with 

Dex and/or PD184352 was strongly and partially inhibited by shBIM in clone 2 and clone 

15, respectively (Figure 3a). However, down-regulation of BIM by shRNA did not affect 

ERK phosphorylation status following exposure of PD184352 with or without Dex, 

indicating that ERK inactivation acts upstream of BIM. We then asked whether BIM is 

required for BAX and BAK conformational changes, cytochrome c release from 

mitochondria, and ultimately cell death induced by co-treatment with Dex and PD184352. 

BAX and BAK conformational changes were completely inhibited by down-regulation of 

BIM in clone 2 (Figure 3b). Cytochrome c release was also completely abrogated (Figure 
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3c). Finally, cell death in response to combination treatment was sharply reduced by the 

introduction of shBIM. The inhibition of cell death correlated well with the reduction of 

BIM expression by shRNA in clone 2 and clone 15 (Figure 3a and 3d). In contrast, similar 

amounts of cell death were observed in all of these clones when they were treated with 

etoposide or staurosporine (data not shown), suggesting that the BIM-independent intrinsic 

pathway(s) is still functional. We also introduced a shBIM or a control construct into 

RS4;11 cells and established several stable clones. The accumulation of BIM following 

treatment with Dex and/or PD184352 was strongly inhibited by shBIM, but not by control 

shRNA (Figure 3e). Cell death in response to combination treatment was also strongly 

reduced by the introduction of shBIM (P <0.001; Figure 3f). Taken together, these findings 

indicate that minimally toxic concentrations of MEK inhibitors markedly enhance the 

lethality of low concentrations of Dex mostly through BIM in ALL cells, and BIM is 

essential for the activation of BAX and BAK, cytochrome c release, and cell death in this 

treatment.

BAD is dispensable for cell death induced by Dex and PD184352 co-treatment

Although total protein expression of BAD was constant with Dex and/or PD184352 

treatment (Figure 2), it has been well demonstrated that the phosphorylation status of this 

protein regulated by the ERK pathway contributes to survival/apoptosis.31 Thus, we 

investigated whether BAD also plays a role in Dex/PD184352-induced apoptosis. We 

introduced a shBAD (short hairpin BAD) construct into CEM cells and established several 

clones. As shown in Figure 4, down-regulation of BAD affected neither BIM expression nor 

cell death induced by co-treatment of Dex/PD184352 (P>0.05). These data strongly suggest 

that BAD is dispensable for this apoptotic stimulus.

Modulation of MEK1 expression affects Dex-induced BIM accumulation and apoptosis

To evaluate the significance of ERK activity in cell death induced by Dex/MEK inhibitors 

co-treatment, we first established the CEM clones that express constitutively active MEK1 

(ca-MEK1). These cells exhibited increased basal ERK activation compared with the empty 

vector control cells (Figure 5a, lane 1 versus lane 7). It has been shown that the MEK 

inhibitor PD184352, but not PD98059, inhibits ca-MEK1-induced ERK activation, 

presumably due to different targets in RAF/MEK/ERK signaling cascade.32–34 Therefore, 

we compared the abilities of PD184352 and PD98059 to promote Dex-induced cell death in 

CEM/ca-MEK1 clones. In CEM/control cells co-treatment with Dex/PD184352 or Dex/

PD98059 blocked ERK phosphorylation and induced BIM accumulation and caspase-3 

cleavage, indicative of apoptosis (Figure 5a, lanes 4 and 6). Co-treatment with Dex/

PD184352 blocked ERK phosphorylation and induced BIM accumulation and caspase-3 

cleavage, even in the expression of ca-MEK1 (Figure 5a, lane 10). In contrast, PD98059 

partially reduced ERK phosphorylation in CEM/ca-MEK1 cells, resulted in less BIM 

accumulation and caspase-3 cleavage compared with those in CEM/control cells (Figure 5a, 

lane 6 versus lane 12). As a consequence, CEM/ca-MEK1 cells were substantially resistant 

to Dex/PD98059-mediated apoptosis (P <0.005; Figure 5b, Lane 6 versus lane 12), while 

displaying equivalent sensitivity to the Dex/PD184352 regimen compared with the CEM/

control cells (P >0.05; Figure 5b, lane 4 versus lane 10).

Rambal et al. Page 7

Leukemia. Author manuscript; available in PMC 2010 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Reciprocally, we established the CEM cell clones that express MEK1 shRNA to reduce the 

expression of endogenous MEK1. Stable transfection into CEM cells with a construct 

encoding MEK1 shRNA resulted in reduction of MEK1 expression, accompanied with a 

pronounced reduction of phospho-ERK1/2. Increased concentration of Dex resulted in more 

accumulation of BIM and cleaved caspase-3 compared with control cells (Figure 5c). 

Furthermore, down-regulation of MEK1 significantly sensitized CEM cells to Dex-induced 

lethality compared with control (P <0.001; Figure 5d). Together, these results support the 

notion that the ERK activity controls the amount of BIM and Dex-induced lethality.

Blasts from ALL Patients Are Sensitive to Dex/PD184352-mediated Apoptosis

To determine whether primary ALL patient samples also display interactions between Dex 

and MEK inhibitors, leukemic blasts obtained from the peripheral blood of two ALL 

patients were isolated and exposed for 48 hr to Dex and PD184352 alone or in combination. 

When cells were co-treated with 10 nM Dex and 2 µM PD184352, the viability of both 

specimens significantly decreased (P<0.005 or P<0.01; Figure 6a), and in each case, was 

significantly less than for cells exposed to the agents individually (P<0.01). Western blot 

analysis of blasts obtained from patient #1 displayed changes similar to those observed in 

CEM cells. Specifically, co-administration of Dex and PD184352 resulted in a marked 

increase in BIM and decreased expression of MCL-1 (Figure 6b). Thus, these findings 

indicate that combined treatment with Dex and PD184352 may result in an increase in 

apoptosis in at least some primary ALL blast specimens, analogous to findings in 

continuously cultured ALL cell lines.

BIM binds BCL-XL and MCL-1, causing the release of BAK

It has been proposed that BAK is regulated through activation by BH3-only proteins and 

sequestered by anti-apoptotic BCL-2 family proteins.35 Therefore, we examined whether 

accumulated BIM regulates BAK activation mediated by co-treatment with Dex and 

PD184352. We first performed immunoprecipitation with an anti-BIM antibody using CEM 

cells treated with Dex and/or PD184352 for 24 hrs, the time before the onset of massive 

apoptosis. When cells were co-treated with Dex and PD184352, an anti-BIM antibody co-

immunoprecipitated BCL-2, BCL-XL, and MCL-1 most abundantly, indicating that 

accumulated BIM interacts with anti-apoptotic BCL-2 family proteins in response to 

apoptosis induced by Dex/PD184352 co-treatment (Figure 7a, upper panel). Reciprocal co-

immunoprecipitation experiments with an anti-BCL-XL or an anti-MCL-1 antibody 

confirmed this observation (Figure 7a, middle and bottom panel). Furthermore, 

immunoprecipitation with an anti-BCL-XL or an anti-MCL-1 antibody revealed that both 

BCL-XL and MCL-1 still interacted with BAK in cells treated with a single agent, whereas 

BAK was released from the complexes with both BCL-XL and MCL-1 upon co-treatment 

(Figure 7a, middle and bottom panel). These results strongly suggest that the interaction of 

BIM with both BCL-XL and MCL-1 leads to displacement and release of BAK from these 

complexes, resulting in the activation of BAK when cells are treated with Dex and 

PD184352 (Figure 7b).
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Discussion

Glucocorticoids have been used in chemotherapy for leukemia, lymphoma, and myeloma for 

decades. Although they are effective in the initial stages, resistance often emerges, and the 

molecular mechanisms of sensitivity/resistance to this agent are still not fully understood. 

We and others have recently demonstrated BIM, a BH3-only pro-apoptotic BCL-2 family, is 

transcriptionally induced by Dex treatment in various cell types and plays a critical role in 

Dex-induced cell death.20–22 The activity of BIM is regulated not only by transcription, but 

also by post-translational mechanisms. Among these, ERK-mediated phosphorylation, 

ubiquitylation, and subsequent protein degradation has been demonstrated in a variety of 

cells and MEK inhibitors abrogate such regulation.10 Thus, we hypothesized combined 

treatment with Dex and MEK inhibitors might act synergistically in their cell killing 

activity. We demonstrate here that Dex interacts in a highly synergistic manner with a 

clinically relevant MEK inhibitor to induce apoptosis in both B- and T-ALL cells. We also 

observed similar interactions in a multiple myeloma cell line, MM.1S (Harada et. al., 

unpublished results). Furthermore, marked cell death was observed by co-treatment with 

Dex and PD184352 in Molt-4, an ALL cell line which was highly resistant to Dex treatment 

alone (Figure 1g). Consequently, this strategy may represent an attractive strategy to 

overcome or circumvent at least some forms of intrinsic Dex resistance. Finally, it is 

important to note that evidence of enhanced apoptosis, including BIM accumulation, was 

also observed in two primary ALL blast samples after ex vivo exposure to the combination 

of Dex and PD184352. The appearance of apoptotic cells in the peripheral blood of 

leukemic patients undergoing chemotherapy has been well documented, and it is 

conceivable that these agents might exert similar effects when administered in vivo. 

However, whether the combination of the above regimens promotes apoptosis in a larger 

series of primary ALL specimens and whether the observed in vitro interactions occur in the 

in vivo setting remain to be determined.

The observation that down-regulation of BIM by shRNA almost completely suppressed 

BAX/BAK activation, cytochrome c release, and cell death induced by Dex/MEK inhibitors 

co-treatment (Figure 3) strongly suggests that BIM is a central regulator in this regimen at 

least in CCRF-CEM T-ALL and RS4;11 B-ALL cells. Recent results involving epithelial 

breast cancer cells suggest that BAD phosphorylation status represents the primary 

integrator of cell death following interruption of the AKT and ERK pathways.36 However, 

down-regulation of BAD with shRNA, in marked contrast to BIM, failed to protect CEM 

cells from Dex/PD184352-mediated lethality (Figure 4), suggesting that BAD is not a 

critical molecule in lethality in this setting. Differences between current and previous reports 

may therefore reflect cell type-specific roles of BAD in integrating death signals following 

concomitant interruption of the MEK/ERK and AKT pathways. It has been shown that non-

malignant thymocytes from PUMA-deficient mice are resistant to Dex-induced apoptosis.

17,18 Thus, it is possible that this BH3-only protein may contribute to apoptosis induced by 

Dex/MEK inhibitors regimen, although its role may be relatively minor.

The evidence presented here suggests that the amount of BIM protein regulated by ERK 

plays a significant role in apoptosis induced by Dex/MEK inhibitors regimen. Constitutively 

active MEK1 (ca-MEK1) reduced BIM expression level and apoptosis induced by Dex in 
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combination with PD98059, a MEK inhibitor that primarily inhibits the RAF/MEK1 

interaction.32 In contrast, ca-MEK1 was ineffective in overcoming the effects of PD184352, 

which directly inhibits both RAF/MEK1 interaction and MEK1 activity (Figure 5a, b).33,34 

Reciprocally, down-regulation of MEK1 by shRNA significantly increased BIM expression 

and sensitized CEM cells to Dex-induced lethality (Figure 5c, d). These findings indicate 

that stabilization of BIM protein proceeds through ERK inactivation. In addition to BIM, 

inactivation of ERK has been shown to induce apoptosis by multiple mechanisms, including 

activation of procaspase-9.37 Thus, it is possible that other mechanism(s) may also 

contribute to synergistic interactions between Dex and MEK inhibitors.

The function of BH3-only proteins is linked to specific stimuli and/or specific cell types, and 

likely represents one of the control points that provide the specificity for apoptotic signaling 

pathways that ultimately converge on BAX and BAK. In recent years, two models have 

been proposed to account for the various experimental results in activation of BAX and 

BAK.38,39 The first model is referred as the direct binding model. According to this model, 

BH3-only proteins directly bind and activate the multi-domain pro-apoptotic protein BAX 

(and presumably BAK). Another model is referred as displacement (or indirect activation): 

BAX and BAK are constitutively active and must be continuously bound and inhibited by 

multi-domain anti-apoptotic proteins for cells to survive. In apoptotic cells, BH3-only 

proteins displace BAX and BAK from anti-apoptotic proteins such as MCL-1 and BCL-XL. 

BIM has the capacity to interact with all of the multi-domain anti-apoptotic BCL-2 family 

members (BCL-2, MCL-1, and BCLXL) and also to activate BAX and BAK directly.13–15 

Our results in Figure 7a are consistent with the displacement model to activate BAK: the 

accumulation of BIM induced by Dex plus dephosphorylated/stabilized by MEK inhibitors 

leads to sequester MCL-1 and BCL-XL, resulting in the release of BAK to be activated 

(Figure 7b). BIM is also required for BAX activation in Dex/PD184352 co-treatment 

(Figure 3b), but we could not detect BIM/BAX direct interaction by co-immunoprecipitation 

(data not shown). Thus, further studies are needed to clarify the mechanisms for BAX 

activation.

It is widely recognized that the RAS/RAF/MEK/ERK signaling pathway mediates survival 

signaling in diverse transformed cell types. The implication of the present findings is that in 

ALL cells, phosphorylation/degradation of BIM mediated by ERK may represent a pro-

survival mechanism by which such cells escape the lethal consequences of glucocorticoids 

(GC) treatment. A corollary of this hypothesis is that MEK inhibition may potentiate the 

lethal effects of Dex and potentially other novel agents by preventing BIM phosphorylation/

degradation. Thus, BIM phosphorylation/expression status may represent a determinant of 

the activity of such strategies. If validated, this concept could have implications for the 

development of novel anti-leukemia regimens involving the combined administration of 

clinically relevant agents targeting at the RAS/RAF/MEK/ERK pathway (e.g. MEK 

inhibitors, farnesyltransferase inhibitors, HMG CoA-reductase inhibitors) and GC. A recent 

study has demonstrated that the receptor tyrosine kinase inhibitor, SU11657 (potentially 

inactivating the RAS pathway) interacts synergistically with Dex to modulate signaling 

through BIM and to induce apoptosis in a highly GC-resistant ALL xenograft model.40 BIM 

also plays an important role in cell death induced by other chemotherapeutic drugs such as 

STI571 (imatinib mesylate)41–43 and histone deacetylase inhibitors (HDACI).44,45 In 
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these cases, BIM is transcriptionally induced through FOXO and E2F, respectively. If our 

hypothesis that combination of BIM up-regulation and stabilization synergistically promotes 

cell death is validated, it will be interesting to test whether combinations of STI571 or 

HDACI with MEK inhibitors interacts synergistically in ALL cells. In fact, it has been 

shown that this is the case in BCR/ABL+ leukemia cells and other adherent malignant cells.

46,47 To date, several pharmacological MEK inhibitors including PD184352 (or CI-1040), 

PD0325901, and AZD6244 (ARRY142886) have been developed clinically.28–30 Results 

of early clinical trials indicate that it is feasible to achieve the desired pharmacodynamic 

effect (e.g. ERK inactivation) at well-tolerated doses of MEK inhibitors. Collectively, our 

findings could have implications for understanding the mechanisms underlying synergistic 

interactions between MEK inhibitors and other targeted agents in ALL and potentially other 

hematologic malignancies.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Co-treatment with dexamethasone and a MEK inhibitor, PD184352, markedly 
increases apoptosis in ALL cells
(a) CEM cells were exposed to 5 µM PD184352 (PD) and 100 nM dexamethasone (Dex) 

alone or in combination for 48 hrs.

(b) CEM cells were exposed for 48 hrs to the designated concentration of dexamethasone 

(Dex) alone or in conjunction with 5 µM PD184352 (PD). * P < 0.001.

(c) CEM cells were exposed for 48 hrs to the designated concentration of PD184352 (PD) 

alone or in conjunction with 100 nM dexamethasone (Dex). ** P < 0.001

(d) CEM cells were exposed to 5 µM PD184352 (PD) and 100 nM dexamethasone (Dex) 

alone or in combination for the indicated time.

(e) RS4;11 (B-ALL) cells were exposed to 5 µM PD184352 (PD) and 30 nM dexamethasone 

(Dex) alone or in combination for 48 hrs.
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(f) SUP-B15 (B-ALL) cells were exposed to 3 µM PD184352 (PD) and 30 nM 

dexamethasone (Dex) alone or in combination for 48 hrs.

(g) Molt-4 (T-ALL) cells were exposed to 10 µM PD184352 (PD) and 1 µM dexamethasone 

(Dex) alone or in combination for 72 hrs.

The percentage of apoptotic cells was determined by Annexin V-propidium iodide (PI) 

staining followed by FACS analysis. In all the results, values represent the mean ± SD of 

three independent experiments.
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Figure 2. Co-treatment with dexamethasone and PD184352 results in BIM accumulation, pro-
apoptotic BAX/BAK conformational change, and cytochrome c release from mitochondria
(a) Cells were treated with dexamethasone (Dex) and/or PD184352 (PD) for 24 hrs (CEM 

and Molt-4) or 16 hrs (SUP-B15), respectively, with the same doses as Figure 1. Equal 

amounts of total cell extracts were subjected to Western blotting with the indicated 

antibodies.

(b) The CEM cell extracts in (a) were subjected to immunoprecipitations with a BAX (6A7) 

or a BAK (Ab-1) conformational change-specific antibody, respectively. Western blotting 

was performed on precipitated samples and on lysates collected before immunoprecipitation 

with an anti-BAX or an anti-BAK antibody.
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(c) Cells were treated as (a) and mitochondria-free cytosol and membrane fractions were 

prepared. Cytochrome c release from mitochondria was monitored by Western blotting with 

an anti-cytochrome c antibody.
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Figure 3. BIM is required for apoptosis in CEM and RS4;11 cells treated with dexamethasone 
and PD184352
(a) CEM cells were transfected with either pSR-BIM (shBIM) or pSR-con (control). 

Puromycin-resistant clones were established from each transfection. Cells were treated with 

dexamethasone (Dex, 100 nM) and/or PD184352 (PD, 5 µM) for 24 hrs. Equal amounts of 

total cell extracts were subjected to Western blotting with the indicated antibodies.

(b) The cells were treated as (a) and BAX or BAK conformational changes were determined 

as Figure 2b.

(c) The cells were treated as (a) and cytochrome c release from mitochondria was monitored 

as Figure 2c.

(d) The cells were treated as (a) for 48 hrs and cell viabilities were determined by Annexin 

V-PI staining followed by FACS analysis. Values represent the mean ± SD of three 

separates experiments.

(e) RS4;11 cells were transfected with either pSR-BIM (shBIM) or pSR-con (control) and 

puromycin-resistant clones were established from each transfection. Cells were treated with 

dexamethasone (Dex, 30 nM) and/or PD184352 (PD, 5 µM) for 24 hrs and equal amounts of 

total cell extracts were subjected to Western blotting with the indicated antibodies.
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(f) Down-regulation of BIM expression in the shBIM clones were monitored by Western 

blotting (inset). The cells were treated as (e) for 48 hrs and cell viabilities were determined 

by Annexin V-PI staining followed by FACS analysis. Values represent the mean ± SD of 

three separate experiments. * or **, P<0.001 when comparing Dex-treated or Dex

+PD184352-treated shBIM cells versus control cells, respectively.
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Figure 4. BAD is dispensable for cell death induced by dexamethasone and PD184352 co-
treatment
(a) CEM cells were transfected with either shBAD or a scrambled, non-specific shRNA 

control. Puromycin-resistant clones were established from each transfection. Cells were 

untreated (Upper panel) or treated with dexamethasone (Dex, 100 nM) and/or PD184352 

(PD, 5 µM) for 24 hrs (Lower panel). Equal amounts of total cell extracts were subjected to 

Western blotting with the indicated antibodies.

(g) The cells were treated as (a) for 48 hrs and cell viabilities were determined by Annexin 

V-PI staining followed by FACS analysis. Values represent the mean ± SD of three separate 

experiments. * or **, P>0.05 when comparing Dex-treated or Dex+PD184352-treated 

shBAD cells versus control cells, respectively.
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Figure 5. Modulation of MEK expression affects dexamethasone-induced BIM expression and 
apoptosis
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(a) CEM cells were stably transfected with a HA-tagged constitutively-active MEK1 (ca-

MEK1) construct or its empty vector (control). CEM/control and CEM/ca-MEK1 cells were 

exposed to dexamethasone (Dex, 100 nM) plus or minus 50 µM PD98059 or 5 µM 

PD184352 for 24 hours, respectively, after which cells were lysed and subjected to Western 

blot analysis with the indicated antibodies.

(b) The cells were treated with Dex plus minus PD184352 or PD98059 for 48 hrs and cell 

viabilities were determined by Annexin V-PI staining followed by FACS analysis. Values 

represent the mean ± SD of three separate experiments. Another set of each clone yielded 

equivalent results.

(c) CEM cells were stably transfected with constructs encoding MEK1 shRNA or a 

scrambled sequence as a control. The cells were treated with the indicated doses of Dex for 

24 hrs, lysed, and subjected to Western blot analysis with the indicated antibodies.

(d) The cells were treated with the indicated doses of Dex for 48 hrs and cell viabilities were 

determined by Annexin V-PI staining followed by FACS analysis. Values represent the 

mean ± SD of three separate experiments.*, P<0.001 when comparing Dex-treated shMEK1 

cells versus control cells. Another set of each clone yielded equivalent results.
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Figure 6. Blasts from ALL Patients Are Sensitive to Dex/PD184352-mediated Apoptosis
(a) Blasts were isolated from the peripheral blood of 2 patients with ALL, after which they 

were exposed ex vivo to dexamethasone (Dex, 10 nM) and/or PD184352 (PD, 2 µM) for 48 

hrs. Apoptotic cells were identified by Annexin V-PI staining followed by FACS analysis. 

Cell viability was calculated by the percentage of annexin V-negative and PI-negative 

population, and the values with mock-treatment were considered as 100%. Values represent 

the means ±SD of triplicates.

(b) The cells from patient 1 were treated as (a) for 24 hrs and equal amounts of total cell 

extracts were subjected to Western blotting with the indicated antibodies.
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Figure 7. Accumulated BIM interacts with BCL-XL and MCL-1 to activate BAK in apoptosis 
induced by co-treatment with dexamethasone and MEK inhibitors
(a) Immunoprecipitations with the extracts from Figure 2a were carried out with an anti-

BIM, an anti-BCL-XL, or an anti-MCL-1 antibody. Western blotting was performed on 

precipitated samples with the indicated antibodies.

(b) Apoptosis pathway induced by co-treatment with dexamethasone and MEK inhibitors. 

See text for details.

Rambal et al. Page 27

Leukemia. Author manuscript; available in PMC 2010 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


