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To construct CFA, MCFA, and maximum MCFA with LISREL v.8 and below, we provide

iMCFA (integrated Multilevel Confirmatory Analysis) to examine the potential multilevel

factorial structure in the complex survey data. Modeling multilevel structure for complex

survey data is complicated because building a multilevel model is not an infallible

statistical strategy unless the hypothesized model is close to the real data structure.

Methodologists have suggested using different modeling techniques to investigate

potential multilevel structure of survey data. Using iMCFA, researchers can visually

set the between- and within-level factorial structure to fit MCFA, CFA and/or MAX

MCFA models for complex survey data. iMCFA can then yield between- and within-level

variance-covariance matrices, calculate intraclass correlations, perform the analyses and

generate the outputs for respective models. The summary of the analytical outputs

from LISREL is gathered and tabulated for further model comparison and interpretation.

iMCFA also provides LISREL syntax of different models for researchers’ future use.

An empirical and a simulated multilevel dataset with complex and simple structures in

the within or between level was used to illustrate the usability and the effectiveness of

the iMCFA procedure on analyzing complex survey data. The analytic results of iMCFA

using Muthen’s limited information estimator were compared with those of Mplus using

Full Information Maximum Likelihood regarding the effectiveness of different estimation

methods.

Keywords: multilevel structural equation modeling, confirmatory factor analysis, complex survey data, Lisrel,

Mplus, maximum model

INTRODUCTION

Confirmatory Factor Analysis (CFA) has been widely utilized to examine the factorial structure
of measures/scales in behavioral, sociological, educational, and organizational fields (Thompson,
2004; Kaplan, 2008; Kline, 2016). Researchers utilize CFAs to examine the reliability and validity
of the underlying structure of test items and the theoretical constructs (Raykov, 2004; Raykov
and Marcoulides, 2006; Geldhof et al., 2013). A fundamental assumption of the CFA analysis is
that the responses from participants are independently and identically distributed (Bollen, 1989;
Kaplan, 2008; Kline, 2016). However, the independence assumption can hardly be met for the
survey dataset in the empirical studies. For instance, in educational and organizational research,
we might utilize the complex survey sampling strategy (e.g., multistage sampling, cluster sampling,
etc.) to collect the responses of an individual or lower sampling unit, which are nested within
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between-level clusters/groups (Stapleton, 2006, 2008; e.g., Wu
et al., 2014; Wu, 2017). Within this context, participants in
the same group with the same cluster information might
yield more homogenous responses than those in different
groups (Bovaird, 2007). Using the CFA without considering the
dependent/multilevel structure in the complex survey data will
result in biased parameter estimates and erroneous standard
error estimates as well as inconsistent statistical inferences of the
analytic results (Muthén and Satorra, 1995; Stapleton, 2008; Wu
and Kwok, 2012; Wu et al., 2017).

In order to examine the multilevel factorial structure of
complex survey data, various CFA techniques have been
proposed, such as the model-based approach (Multilevel CFA,
MCFA, e.g., Muthén, 1991; Hox, 1993; Mehta and Neale, 2005)
and the maximummodel in CFA (MAXCFA, e.g., Ryu andWest,
2009; Wu and Kwok, 2012). The MCFA builds up a hierarchical
statistical model corresponding to the multilevel structure of the
complex survey data, so that the within-cluster and between-
cluster model parameters can be separately and freely estimated
(Muthén and Satorra, 1989). MAX MCFA is a special case of
MCFA (Ryu and West, 2009; Wu and Kwok, 2012), which is
usually considered as a partially saturated model during the
process of building up a valid MCFA model (Hox, 2010). When
using the maximum modeling strategy, researchers build up a
MCFA model with a saturated between-level and a hypothesized
within-level model. By doing so, all the unique elements of the
variance-covariance matrix in the between-level will be estimated
with the consumption of all the available degrees of freedom.
Therefore, the saturated and just-identified between-level model
contributes nothing to the fitting function (Hox, 2010), which
allows us to diagnose the misspecification of the within-level
model with the level-specific model-fit information (Ryu and
West, 2009). These two approaches have been shown to yield
consistent parameter estimates and statistical inferences as the
population multilevel model (Wu and Kwok, 2012). However,
modeling the multilevel structure of complex survey data is more
complicated and requires more advanced statistical techniques
and specific computer software.

The purpose of this study is threefold. First, the study intends
to provide an integrated software for flexible multilevel modeling
with Lisrel v.8 and below. Second, we investigate the performance
of CFA, MCFA, and MAX MCFA in analyzing multilevel data
with a complex within and simple between structure1 as well
as a complex between and simple within structure. Third, we
compare analysis results for the three modeling techniques using
Muthen’s limited information estimator (MUML in iMCFA)
and Full Information Maximum Likelihood (FIML in Mplus).
A review of literature on different ways of multilevel model
construction and constraints of the current SEM software was
provided, followed by the demonstration of iMCFA (i.e., the
integrated Multilevel Confirmatory Analysis program).

Multilevel Model Construction
Researchers have constructed MCFA models in two major
approaches. For the first approach, they separated the

1In this study, we refer simple structure CFA as the model with one factor, and

complex structure CFA as the model with more than one factors.

level-varying covariance components from total covariance
structures and used the level-specific covariance component to
build the specific-level models (Muthén, 1994; Yuan and Bentler,
2007). For the second approach, they used the maximum model
(or the unrestricted/saturated model) as the baseline to construct
the between-level model with theoretical evidence (Yuan and
Bentler, 2003; Stapleton, 2008; Hox, 2010).

The basic idea of MCFA is to decompose the total variance-
covariance matrix, 6T , into between-level variance-covariance
(V-C) matrix, 6B, and within-level V-C matrix, 6W . Assuming
ygi is the observed variables for participant i within cluster g, the

total V-C matrix 6T = Var
[

ygi

]

. The corresponding between-

andwithin-level V-C components will be orthogonal and additive
(Searle et al., 1992; Muthén, 1994). Same score decomposition
can be performed for the observed complex survey sample data,
and the resulted sample V-C matrix can be shown as,

ST = SB+SW

where SB and SW are the level-varying V-C estimators to their
population counterparts, 6B and 6W, respectively (Muthén,
1994; Hox, 2002; Hox and Maas, 2004; Heck and Thomas,
2008). With the variance-covariance matrix decomposition,
Muthén (1989, 1990) presented an a partial Maximum likelihood
estimation method, also named MUML (Muthén’s limited
information estimator). In MUML, two variance-covariance
matrices of different levels are constructed as

ST = SB,MUML+SPW,MUML (1)

Consider a multilevel dataset with the sample size of N,
i.e., on average Ng participants nested within respective G
groups. The above three variance-covariance matrices are
defined as

ST =
1

N − 1

G
∑

g = 1

Ng
∑

i = 1

(

ygi − y
) (

ygi − y
)′

SPW,MUML =
1

N − G

G
∑

g = 1

Ng
∑

i = 1

(

ygi − yg

) (

ygi − yg

)′

SB,MUML =
1

G− 1

G
∑

g = 1

(

yg − y
) (

yg − y
)′

(2)

where the grand mean y = 1
N

G
∑

g = 1

Ng
∑

i = 1
ygi and group mean of gth

group yg =
1
Ng

Ng
∑

i = 1
ygi.

In Equation (2), Muthén showed that the pooled within-
level observed variance-covariance matrix SPW,MUML is the
consistent and unbiased estimator to 6W, and the scaled
between-level observed variance-covariance matrix SB,MUML is
the consistent and unbiased estimator to 6W + c6B, where c =

(N (G− 1))−1

(

N2 −
G
∑

g
n2g

)

is close to the averaged group size.
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In a balance design (i.e., all between-level units have the same
group size), MUML is the same as the original unbiased ML
estimator. But in an unbalance design, MUML is the simplified
version of quasi-ML estimationmethod (Varin and Vidoni, 2005)
and only uses a common group size, c, as the weighting scalar of
the between-level variance component in the likelihood function,
that is,

FMUML

(

6, 6̂
)

= FMUML

(

S, 6̂
)

= G
{

ln
∣

∣

∣
6̂W + c6̂B

∣

∣

∣

+ tr

(

(

6̂W + c6̂B

)−1
SB

)

− ln |SB| − p

}

+ (N − G)

{

ln
∣

∣

∣
6̂W

∣

∣

∣
+ tr

(

6̂
−1

W SPW

)

− ln |SPW| − p
}

(3)

MUML is also called as limited information or quasi-maximum
likelihood estimation because it assumes that all groups have
equal group size, even though they may not. Researchers can use
the MUML in Mplus (Muthén and Muthén, 1998-2017) with the
routine of “ESTIMATOR=MUML.”

Due to the limitation of conductingMCFA analyses in LISREL
v.8 and below, we can decompose the between- and within-
level variance-covariance structures shown in Equation (2).
One nice feature about MUML is that researchers can use
the multi-group analysis routine provided in various SEM
programs to conduct the multilevel CFA analysis. Researchers
need to separate the original data into two groups: the between-
level group with between-level V-C matrix SB,MUML and group
number G, and the within-level group with within-level V-
C matrix SPW,MUML with sample size N-G. The multilevel
data can then be analyzed with the multi-group routine.
The detailed steps of this process is provided in Heck and
Thomas (2008) and Muthén (1994). Compared with Full-
information Maximum Likelihood estimator (FIML, Arbuckle,
1996; Mehta and Neale, 2005), MUML is simpler in computing
the parameter estimates while FIML is computationally heavier
as the size of sub-groups increases. Muthén and Satorra (1995)
concluded that MUML generally performs equally well as
FIML in various conditions; however, Hox and Maas (2004)
showed FIML has more accurate parameter estimates than
MUML does. We will check the analytical result consistency
between iMCFA using MUML and Mplus using FIML with
unbalanced- and balanced-design2 samples in the provided
scenarios.

Multilevel SEM Modeling Software
With the advance of software packages, researchers now are
more comfortable to build up multilevel models in their
research practice (Hox, 2010; for comprehensive review of
available software and packages, please refer to Goldstein, 2010;
Snijders and Bosker, 2011). For example, an newly developed R
package, xxM (Mehta, 2013), can be used to estimate multilevel
SEM models featuring complex level-dependent data structures.
The xxM is based on OpenMx (Boker et al., 2017) and a

2Balanced-design samples refer to equal sample size with respect to each group,

whereas unbalanced-design samples refer to varying sample sizes in groups.

framework called n-Level Structural Equation Modeling (NL-
SEM, e.g., Ryu and Mehta, 2017) which allows specifying
multilevel models with observed and latent variables. Mplus
(Muthén and Muthén, 1998-2017) and LISREL (Jöreskog et al.,
2001) are commonly used structural equation modeling software
for MCFAs. Researchers can use those software to examine
the level-varying factorial structures, and simultaneously test
different-level hypotheses (Muthén, 1994) with distinct model
specifications. These programs present the overall model fit
test statistics and fit indices with the provided multilevel SEM
routines (e.g., TYPE = TWOLEVEL in Mplus), which cannot
reveal possible misfit in respective levels. Instead, researchers
can use partially saturated model (e.g., MAX MCFA in this
study) or adjust the multi-group comparison approach (Muthén,
1994; Yuan and Bentler, 2007) to obtain level-specific model
fit indices and test statistics in any SEM software. However,
the programming of multilevel modeling practice would be
intimidating to some researchers. Moreover, researchers can
only specify the MCFA model with the same between- and
within-level structure with Lisrel v.8 and below using SIMPLIS
syntax via multi-group comparison (Jöreskog and Sörbom,
2004). To perform a MCFA with different factorial structures
in the between and within level, researchers had to apply
the LISREL syntax with matrix specification. Although the
SURVEYGLIM procedure can be used to obtain the between-
level and within-level covariance matrices after LISREL v.8.3
(Jöreskog et al., 2001), constructing MCFA using LISREL is still
a daunting task which requires statistical computing operation
in a multi-group comparison setting and LISREL coding in a
matrix form.

Therefore, with the above-mentioned issues, researchers are
in need of an effective and flexible multilevel modeling software
which allows result comparison among competing models for
optimal model selection.

Modeling Multilevel CFA Models Using
iMCFA
Methodologists have provided suggestions and guidelines for
constructing multilevel SEM models. Muthén (1994) proposed
a stepwise procedure for multilevel model construction. He
suggested that, in lack of model fit test and indices result
for conventional CFA model, researchers should compute
the intraclass correlation (ICC) measures for complex survey
data. If the ICC value is nonzero or larger than certain
thresholds (Muthén, 1994; Hedges and Hedberg, 2007; Hox,
2010), researchers should then build the multilevel model
with respective within- and between-level structures. Hox
(2002) suggested to compare the overall model-fit χ2 test
statistics of the one-level CFA (i.e., the null model) and of
the independent MCFA (i.e., the MCFA with only variance
estimates of between-level indicators and a hypothesized within-
level model) with the saturated MCFA (i.e., MAX MCFA) as
the first step to decide whether researchers should move on to
establish a MCFA. Still other researchers (Yuan and Bentler,
2007; Ryu and West, 2009) provided level-specific model fit
test statistics and fit indices to detect possible between level
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variation and potential model miss-specifications at respective
levels.

The above-mentioned studies involved the design of the
balanced synthetic dataset under the segregating approach (Yuan
and Bentler, 2007) or the partially saturated model approach
(Ryu andWest, 2009) to capitalize on the importance of building
adequate models with respective to the different level structures
in analyzing the complex survey data. Constructing multilevel
modeling according to the complex sampling design of the
survey data could prevent erroneous inferences on the parameter
estimates (Muthén, 1994; Yuan and Bentler, 2007), especially
under a scenario with level-varying structures, in which the
factor structure at the between level is different from that at
the within level (Wu and Kwok, 2012). Besides, the precision of
the inference of the relationship between items and factors, the
scale reliability of constructs, and the variance explained of items
would also be secured if we specify adequate multilevel models
on the survey data (e.g., Raykov, 2004; Raykov and Marcoulides,
2006; Geldhof et al., 2013). Thus, we provide iMCFA using Lisrel
v8.8 or below to help researchers build up valid multilevel models
and to obtain ICC, variance-covariance matrix for separate level,
and tabulated model comparison results on different modeling
strategies3.

In this study, we provide a general three-step procedure to
construct a valid MCFA for complex survey data with level-
varying structures and included the comparison of fit statistics
and indices among three competing models for more precise
model construction using iMCFA. At the first step, researchers
should evaluate the model fit information of CFA as well as
the congruency of the within-level parameter estimates between
CFA and MAX MCFA. If CFA demonstrates bad overall model
fit information or produces incongruent parameter estimates
(especially the random effect estimates, e.g., factor variance or
indicator residual variance) to the within-level of MAX MCFA,
this is a strong message of potential between-level variation
and level-varying structures. Next, researchers should focus on
specifying within-level model using MAX MCFA by referencing
to the model-fitχ2 statistic and fit indices. After the within-
level model is set, researchers can then proceed to construct a
valid between-level model using MCFA based on the between-
level model fit information at the third step with theoretical and
empirical supports. An integrated MCFA program (iMCFA) is
provided to manage the dataset and to perform the one-level
CFA, MAX MCFA, and MCFA with Lisrel v.8 and below, which
can aid the process of model selection and comparison. Two
unbalanced and balanced datasets with level-varying structures
(Study 1: the empirical unbalanced family IQ dataset with
simple between and complex within structure; Study 2: the
simulated balanced dataset with complex between and simple
within structure) were used to illustrate the effectiveness and
efficiency of the proposed approach and tool in building a valid
MCFA model.

3Users could utilize the generated V-C matrices and the modeling syntax from

iMCFA in LISREL v. 9 to request for the analytical result and the diagram.

However, due to major changes on the shell commands of LISREL v.9, the current

procedure cannot be directly applied on LISREL 9 and its later versions.

METHODS

We developed iMCFA to perform CFAs for complex survey
data. The program is written in c++/CLI (Common language
interface) in Microsoft Visual Studio 2012 (Microsoft Co. Ltd.).
Researchers can use iMCFA to set the between- and within-
level CFA models according to the theories and experiences,
and to perform MCFA, CFA and/or MAX MCFA. Besides the
computation of the level-varying variance-covariance matrices
and automatic generation and execution of LISREL syntax,
iMCFA will tabulate the results among the three competing
models for further statistical decision making.

Performing CFA Analyses Using iMCFA
The snapshot of user interface of iMCFA is shown in Figure 1.

The interface of iMCFA is divided into three main phases,
Phase 1: Data preparation, Phase 2: Model specifications and
ICC calculation, and Phase 3: Syntax generation and Analyses
execution. In the first phase, users need to specify the folder
of LISREL program in Step (1), which contains LISREL∗.exe,
LisWin32.exe, and multilev∗.exe, the folder of dataset file in Step
(2) and the folder to save the generated syntax in Step (3).
The default input data format for iMCFA is the LISREL data
format (∗.psf). Besides study variables, the imported dataset must
include a Cluster ID variable and a Case ID variable, which
identify the between-level and within-level sample units. The
dataset should be sorted ascendingly according to Cluster ID and
Case ID. iMCFA provides a tool to generate the Case ID variable.
This tool can also convert the dataset from pure text format
(∗.dat) into LISREL data format (∗.psf). The project name in Step
(4) will be used as the prefix in the file name of all generated files,
including the files of syntax, output, and variance-covariance
matrix of variables. In Step (5), users have to specify a value of
missing data (the default value will be−999999) to complete the
data preparation phase.

In Phase 2 ofmodel specification, Step (6) required researchers
to specify the between- and within-level CFA structures. Users
can add or remove latent and manifest variables after the data
are read in. The variable labels can be edited and should be less
than seven characters. After completing the above steps, click the
‘Get ICC’ button at Step (7) to do the ICC analysis and save
information of sample size, cluster number, cluster size c, and
variance-covariance matrix SPW, SB, SB,MUML and ST for the
following analyses. At Step (8), the iMCFA gathers and saves all
the matrices and values into the database for the following MAX
MCFA, CFA, and MCFA analyses. For experienced researchers,
these matrices can be used to conduct the multilevel analysis
using any analytical programs with the distinct level-varying
covariance matrices.

At Step (9) of Analysis and Syntax Phase 3, researchers
can execute MAX MCFA, CFA, and MCFA separately. For
MAX MCFA models, the within-level structure is based on
the specification of the within-level model at Step (6), and the
between-level structure is saturated, meaning all the between-
level indicators are inter-correlated. For CFA models, the one-
level structure is based on the specification of within-level model

at Step (6). Researchers can specify MCFA model with unequal
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FIGURE 1 | Snapshot of iMCFA interface with an example of two-level CFA model with one factors at between level and two factors at within level.

between- and within-level structures using iMCFA. For example,
we specify aMCFAmodel (shown in Figure 2) with one between-
level factor and two within-level factors. To correctly perform the
MCFA, researchers need to keep the order and the number of
items the same in between- and within-level model specified at
step (6).

LISREL syntax for three models will be generated and

executed after clicking the buttons of “Get MAX MCFA,” “Get
CFA,” and “Get MCFA.” The model goodness-of-fit test statistics

and indices and parameter estimates will be retrieved from
the output at this step. The syntax will be presented in the

bottom-right text box. For convenience, users can click the
“Open in LISREL” button to execute the corresponding syntax
in LISREL, which can generate the analytic result and the model

diagram.
On the top of the panel, researchers can request the tabulated

analysis results by clicking tabs of “Model fit statistics” and
“Parameter Est.” The Model fit statistics tab shows the fit

test statistic and fit index information for three models. The

Parameter Est. tab summarizes the estimates of factor loadings,
residual variances of each item, and the covariances among latent

factors for three models. Researchers are allowed to save these
tables in a text file, which can be found in the same folder of
syntax files.

In the following sections, we used two datasets to demonstrate
iMCFA, one was a family IQ dataset (famdataIQ.psf, Hox, 1993,
2010) and the other was a simulated dataset (simMCFA.psf,
Wu and Kwok, 2012). The commonly-used criteria of model fit
indices were used to assess the goodness of fit of the proposed
models to the dataset.

Study 1: Empirical Unbalanced Dataset
With Simple Between and Complex Within
Structure
Data Description
The empirical dataset (famdataIQ.psf) is from the dissertation
study of Van Peet (1992) which also appeared in Hox (1993,
2010). Data were collected on 400 children nested within 60
families with a minimum 4 and maximum 12 children in each
family (M = 6.67). The instrument used was the Groninger
Intelligent Test (GIT) which consisted of six subtests, including
wordlist, laying cards, matrices, hidden figures, naming animals,
and naming occupations. Strong correlation among members
in a family were expected because intelligence is assumed to
be greatly influenced by heredity and environments. Scores on
the six subtests for this hierarchical data were then divided
into family level and individual level variables. According to
Hox (1993), there was a common factor in the family level
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FIGURE 2 | MCFA model with 1 factor at between level and 2 factors at within level for FamdataIQ dataset.

FIGURE 3 | LISREL illustration of MAX MCFA model on FamdataIQ dataset.

due to shared genetic and environmental influences while in
the individual level two separate factors existed to explain the
idiosyncrasy in each individual’s intelligence.

Model Specification
The famdataIQ.psf involved eight variables: family id, user
id, wordlist (wordst), laying cards (cards), matrices (matrix),

hidden figures (figure), naming animals (animal), and naming
occupations (occpat). We constructed two factors (f1 and f2) in
the within level and one factor (B_f1) in the between level based
onHox (1993). In the within level, wordst, cards, andmatrix were

loaded on f1, while figure, animal, and occpat were loaded on f2.
In the between level, all six items were loaded on B_f1 as shown
in Figure 2.
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FIGURE 4 | LISREL illustration of MCFA model on famdataIQ dataset.

Result for Study 1

Three modeling techniques in iMCFA were applied to analyze
the family IQ dataset. All models had adequate model-fit test
statistic and fit indices for the data with unequal family- and

individual-level structure (e.g., for MCFA, χ2 = 7.920 with
df = 9, CFI = 1.000, RMSEA < 0.001, SRMR = 0.012; for

MAX MCFA, χ2 = 8.027 with df = 8, CFI = 1.000, RMSEA
= 0.004, SRMR = 0.022; for CFA, χ2 =10.241 with df = 8,
CFI = 0.999, RMSEA = 0.027, SRMR = 0.016;). The ICCs
for six indicators were larger than 0.369 (as shown in Table 1),
which indicated potential between-level variation and the need to

use multilevel CFA techniques (Hox, 2010). The path diagrams
with analytical result of MCFA and MAX CFA are illustrated
in Figure 3, 4. The results of MCFA confirmed the existence
of a general between-level intelligence construct, which could
explain the influence of heredity and environment in a family.
The three modeling techniques exhibited a 2-factor structure
in the within-level model representing the idiosyncrasies in
each individual’s intelligence (Van Peet, 1992; Zimprich and
Martin, 2009). We then compared the performance of these three
modeling techniques on this complex survey dataset.

The analysis result of three modeling techniques was tabulated
in Table 2. The MAX MCFA model yielded similar model
evaluation result and parameter estimates as the MCFA in
the within level. However, when CFA was applied on this
family dataset, the factor loading estimates were statistically
different from those of the MAX MCFA model or MCFA [e.g.,
λ̂MCFA
occupats,W_IQ2 = λ̂MAX

occupats,W_IQ2 = 0.901, vs. λ̂CFAoccupats,W_IQ2 =

1.071, t(df) = 1.99(798), p = 0.046]. The relative difference of
factor loading estimates for CFA compared to the MAX MCFA
and MCFA ranged from −6.18 to 15.87%, which could be
considered as a moderate to substantial difference (Flora and
Curran, 2004). This level of incongruence between parameter

TABLE 1 | ICC and R2-values of indicators of three models for FamdataIQ

dataset (N = 400, G = 60).

Wordst Cards Matrix Figure Animal Occpat

ICC 0.399 0.408 0.369 0.374 0.419 0.503

R2_MCFA

Individual-level 0.614 0.651 0.589 0.588 0.678 0.596

Family-level 0.885 0.874 0.781 0.787 0.937 0.880

R2_ CFA 0.735 0.733 0.657 0.649 0.789 0.737

R2_MAX CFA 0.614 0.651 0.589 0.588 0.678 0.596

estimates of CFA and MAX MCFA might indicate the necessity
of constructing a multilevel model with level-varying structures
for this dataset.

As for the random effect estimate, CFA generated an overall
estimate of factor variance, which was roughly the summation
of the family- and individual-level variance components (e.g.,
9CFA

wordst
= 7.131 equals 9MCFA

wordst,W
= 6.228 plus 9MCFA

wordst,B
=

1.024) and the MAX MCFA yielded consistent individual-level
factor variance to the MCFA (e.g., 9MCFA

wordst,W
= 9MAX

wordst,W
=

6.228). However, CFA tended to generate inflated R2 for the
within-level indicators compared to MCFA and MAXMCFA.

We also compared the parameter estimates of three proposed
CFA modeling techniques using iMCFA with MUML variance
decomposition and those obtained from Mplus 6.11 with FIML
estimation (as shown in Table S.1 in the Appendix). For the
parameter estimates in the within-level model, the averaged
relative bias was 0.022% (SD = 0.543%) for MCFA, 0.040% (SD
= 0.126%) for MAXMCFA, and 1.037% (SD= 1.827%) for CFA.
The relative bias of estimates between these two programs for
multilevel CFAs could be deemed as trivial (Flora and Curran,
2004).
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TABLE 2 | Three CFA models of empirical famdataIQ dataset. (N = 400, G = 60).

MCFA CFA MAX MCFA

Chi-square (df) 7.920(9) 10.241(8) 8.027(8)

CFI 1.000 0.999 1.000

RMSEA 0.000 0.027 0.004

SRMR 0.012 0.016 0.022

Est. SE Est. SE Est. SE

INDIVIDUAL LEVEL

W_IQ1 by

wordlist 1 1 1

cards 1.001*** 0.069 0.979*** 0.049 1.001*** 0.069

matrices 0.962*** 0.068 0.906*** 0.048 0.962*** 0.068

W_IQ2 by

figures 1 1 0 1 0

animals 1.026*** 0.071 1.093*** 0.056 1.026*** 0.071

occupats 0.901*** 0.064 1.071*** 0.056 0.901*** 0.064

Cov(W_IQ1,W_IQ2) 3.721*** 0.658 12.622*** 1.344 3.721*** 0.658

Var(W_IQ1) 9.918*** 1.173 19.755*** 1.937 9.918*** 1.173

Var(W_IQ2) 9.724*** 1.179 17.136*** 1.828 9.724*** 1.179

RESIDUAL VAR

wordlist 6.228*** 0.677 7.131*** 0.799 6.228*** 0.677

cards 5.335*** 0.637 6.881*** 0.768 5.355*** 0.637

matrices 6.414*** 0.659 8.483*** 0.800 6.414*** 0.659

figures 6.824*** 0.696 9.286*** 0.840 6.824*** 0.696

animals 4.859*** 0.625 5.489*** 0.703 4.859*** 0.625

occupats 5.358*** 0.556 7.016*** 0.757 5.358*** 0.556

FAMILY LEVEL

B_IQ by

wordlist 1

cards 0.985*** 0.083

matrices 0.831*** 0.080

figures 0.878*** 0.109

animals 1.050*** 0.113

occupats 1.091*** 0.118

Var(B_IQ) 9.677*** 1.797

RESIDUAL VAR

wordlist 1.024ns 0.760

cards 1.449* 0.728

matrices 1.947* 0.767

figures 2.161** 0.813

animals 0.495 ns 0.662

occupats 1.763* 0.759

p < 0.05*, p < 0.01**, p < 0.001***.

χ
2, Chi-square value; df, Degrees of freedom; CFI, Comparative fit index; RMSEA, Root

mean square error of approximation; SRMR, Standardized root mean square residual. The

normal font denotes the fixed effect and intercept estimate; the italic denotes the random

effect estimate.

Study 2: Simulated Balanced Dataset With
Complex Between and Simple Within
Structure
Data Description
The simMCFA.psf involved nine indicators (V1 to V9). In the
population model, all nine indicators were loaded on one factor
(W_f1) at the within level and three factors (B_f1, B_f2, and
B_f3) at the between level. This simulated balanced dataset was

generated using Monte Carlo procedure of Mplus 6.11 with
10,000 observations nested within 50 groups (i.e., each group had
200 participants). All factor loadings were set at 0.80, and the
residual variances of outcome variables were fixed at 0.36 in both
within- and between-level models. Moreover, covariances among
three between-level latent factors were fixed at 0.30. The ICCs in
Table 3 for nine indicators were larger than 0.388. The detailed
settings of the true model with cross-loaded factor loadings could
be referred to scenario 3 in Wu and Kwok (2012).

Result for Study 2
The same three modeling techniques with a simple structure
in the within level were applied for the simulated dataset.
The analysis results were tabulated in Table 4. Furthermore,
we also constructed a misspecified MCFA with one factor in
both between- and within-level model, that is, the between-
level model did not confirm to the true three-factor structure.
Likewise, the correctly-specified MCFA and MAXMCFAmodels
yielded similar model evaluation results and parameter estimates;
however, CFA yielded inadequate overall model-fit test statistic
and fit indices (For CFA, overall χ2 = 12699.87 with df = 27,
CFI = 0.881, RMSEA = 0.217 SRMR = 0.090; For MAX MCFA,
within-level χ2 = 26.089 with df = 27, CFI = 1.000,
RMSEA < 0.001, SRMR = 0.003; For MCFA, the between-level
χ2 = 824.5 with df = 24, CFI = 0.991, RMSEA = 0.058,
SRMR = 0.027). When the CFA was applied, the factor loading
estimates deviated from those of the MCFA and the MAXMCFA
[e.g., λ̂MCFA

V5,f 1
= 0.802 and λ̂MAX

V5,f 1
= 0.802 vs. λ̂CFA

V2,f 1
= 0.603,

t(df) = 15.63(19998), p < 0.001], and the relative bias of factor
loading estimates for the CFA comparing to the MCFA and
MAX MCFA ranged from −38.47 to 1.20%, which could be seen
as trivial to substantial differences (Flora and Curran, 2004).
Both the model lack-of-fit information and the incongruence
of parameter estimates inform the need of further multilevel
modeling with level-varying structures. Researchers can use
maximum modeling techniques with the within-level model
goodness-of-fit tests and indices to construct a valid within-level
model, and proceed to use MCFA with the respective between-
level model-fit information to have a valid between-level model.

Comparing the correctly- and miss-specified MCFAs, the
model-fit χ2 statistic indicated that the misspecified MCFA
model did not fit the data exactly, and the fit indices exhibited
more severe model badness-of-fit result (For misspecified MCFA
on the left hand side of Table 4, CFI = 0.931, RMSEA = 0.171,
and SRMR = 0.204). With the valid within-level structure at
the MAX MCFA step, researchers can then build up several
competing MCFAs with different between-level models and
conduct the model comparison analyses with the aid of model-
fit χ2 and fit indices provided in the MCFA step of iMCFA to
select the proper multilevel model with statistical and theoretical
evidence.

CFA tended to generate smaller R2 for the within-level
indicators compared to the MCFA and MAX MCFA models
as shown in Table 3. We compared the parameter estimates of
iMCFA with MUML and those of Mplus 6.11 with FIML (as
shown in Table S.2 in the Appendix). For the individual-level
model, the relative bias of MCFA, MAX MCFA, and CFA was
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TABLE 3 | ICC and R2-values of nine indicators of three models for simMCFA dataset.

V1 V2 V3 V4 V5 V6 V7 V8 V9

ICC 0.516 0.516 0.535 0.487 0.388 0.484 0.353 0.470 0.456

R2_MCFA

Within-level 0.642 0.641 0.636 0.637 0.640 0.638 0.633 0.635 0.639

Between-level 0.737 0.675 0.783 0.639 0.675 0.420 0.662 0.593 0.818

R2_ CFA 0.616 0.577 0.601 0.468 0.439 0.372 0.424 0.421 0.434

R2_ MAX_MCFA 0.642 0.641 0.636 0.637 0.640 0.638 0.633 0.635 0.639

very close to zero. Indicating the parameters estimates generated
by the MUML were consistent with those generated by the FIML
estimator.

DISCUSSION AND CONCLUSION

In order to reduce the complexity of using multilevel CFA
techniques, we provided the iMCFA program as an integrated
tool to manage three most commonly-used CFA modeling
techniques, namely regular CFA, MAX MCFA, and MCFA,
on a user-friendly interface to analyze complex survey data
with LISREL v.8 and below. The capacity to specify level-
varying structures is fundamental to ensure the accuracy of
analytical results in various CFA analyses with complex survey
dataset. Failing to build up a model conforming to the true
multilevel data structure may lead to erroneous analytical
results and incorrect conclusions (Wu and Kwok, 2012).
Even with the advance of the analytical software on analyzing
various SEM models, it is difficult for researchers to specify
MCFA models with level-varying structures with the supports
of model-fit test and fit indices. Specifically, there is still
not an efficient function in these programs to compare the
adequacy of different modeling techniques simultaneously on
the multilevel data. In this study, we used the iMCFA program
to compare the performance of MCFA, miss-specified MCFA,
MAX MCFA and CFA on two different datasets (one empirical
unbalanced and one simulated balanced dataset) considering
their level-varying structure and balanced/unbalanced
design.

The different analytical results of CFA compared with the
MAX MCFA technique may indicate a potential between-level
structure in the dataset. In the illustrations, we demonstrated that
when the relative bias of within-level factor loading estimates
of CFA and MAX MCFA was moderate to substantial (Flora
and Curran, 2004), there could be level-varying structures in
the complex survey data. For the multilevel dataset with level-
varying structures, CFA generated conflated parameter estimates
of fixed and random effects with overall variance-covariance
matrix along with the inconsistent standard error estimates.
Besides, due to the conflated estimates in the one-level modeling,
the variance explained measures (e.g., R2) of CFA were different
from the outputs of MCFA and MAX MCFA (Wu and Kwok,
2012; Geldhof et al., 2013; Wu et al., 2017). For a complex survey
dataset, the association between the R2 generated by regular CFA
and the R2 measures in respective between- and within-levels by
MCFA models warrants future simulation and/or mathematical
investigations.

With level-specific variance components, MCFA could only
generate consistent results when the analytical model is close
to the true multilevel structures in both between- and within-
level models simultaneously; while with a saturated between-level
model, MAX MCFA model could be utilized to construct the
individual model consistent with the within-level structure of
the true multilevel model. If researchers and practitioners fail to
use modeling techniques that are congruent with the multilevel
structure of the complex survey data, they should exert caution
in interpreting or making inferences from a regular CFA and
MCFA. Instead, researchers would benefit from the use of MAX
MCFA model offered in iMCFA in dealing with the complex
survey data. If researchers are interested in only the research
question about the within-level model, they should use the result
fromMAXMCFA analysis to draw a conclusion for the variation
of within-level sampling units.

If researchers aim to answer research questions concerning
different levels of the dataset, they could start with a MAXMCFA
model to build an optimal within-level model. Next, they could
go further to specify their between-level structure using MCFA
to capture the between-level variation in their complex survey
dataset (Hox, 2002). The model-fit information are indicators of
the quality of hypothesized between-level model.

To complete the above-mentioned steps for building up an
adequate multilevel CFA model, researchers or practitioners can
use iMCFA to conduct multilevel CFA with equal or unequal
between- and within-level structures in an effective and efficient
way. They can use the tabulated analytical results provided by
iMCFA to compare the performance of the three modeling
techniques and to select the optimal model for statistical
inference. Researchers can further use the generated LISREL
syntax to request model diagrams and perform more detailed
and advanced analyses in LISREL v.8 and below. The generated
LISREL syntax of the MAX MCFA model and the MCFA for
familyIQ dataset is provided in the Appendix.We also performed
the equality check for the analytical result of iMCFA with
the proposed algorithm. The within-level fixed-effect parameter
estimates of target model generated by iMCFA were consistent
with Mplus4, which is one of the most commonly used SEM
software.

4In study 2, the simulation dataset was generated in Mplus with FIML estimation.

The analytical result were congruent in the within-level fixed-effect estimates

between two programs. The noticeable differences between some of the between-

level fixed- and random-effects (in Table S.2) would result from the different

estimation methods. More simulation studies with comprehensive experimental

designs should be conducted to thoroughly investigate the performance of different

modeling techniques, estimation methods, and statistical programs on analyzing

complex survey data.
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TABLE 4 | Fit information and parameter estimates of hypothesized and misspecified models on dataset.

MCFA MISS MCFA CFA MAX MCFA

Chi-square (df) 824.499(24) 7897.358(27) 12699.87(27) 26.089(27)

CFI 0.991 0.931 0.881 1.000

RMSEA 0.058 0.171 0.217 0.000

SRMR 0.027 0.204 0.090 0.003

Est. SE Est. SE Est. SE Est. SE

WITHIN LEVEL

W_f1 by V1 0.800 — 0.800 — 0.800 — 0.800 —

V2 0.799 0.009 0.799 0.009 0.774 0.010 0.799 0.009

V3 0.792 0.009 0.792 0.009 0.801 0.010 0.792 0.009

V4 0.791 0.009 0.791 0.009 0.673 0.010 0.791 0.009

V5 0.802 0.009 0.802 0.009 0.603 0.009 0.802 0.009

V6 0.794 0.009 0.794 0.009 0.599 0.010 0.794 0.009

V7 0.798 0.009 0.798 0.009 0.576 0.009 0.798 0.009

V8 0.787 0.009 0.787 0.009 0.625 0.009 0.787 0.009

V9 0.798 0.009 0.798 0.009 0.633 0.009 0.798 0.009

Var(W_f1) 1.001 0.021 1.001 0.021 1.985 0.044 1.001 0.021

RESIDUAL VAR

V1 0.357 0.006 0.357 0.006 0.791 0.014 0.357 0.006

V2 0.358 0.006 0.358 0.006 0.872 0.015 0.358 0.006

V3 0.359 0.006 0.359 0.006 0.848 0.014 0.359 0.006

V4 0.358 0.006 0.358 0.006 1.020 0.016 0.358 0.006

V5 0.362 0.006 0.362 0.006 0.920 0.014 0.362 0.006

V6 0.358 0.006 0.358 0.006 1.205 0.018 0.358 0.006

V7 0.369 0.006 0.369 0.006 0.895 0.014 0.369 0.006

V8 0.356 0.006 0.356 0.006 1.066 0.016 0.356 0.006

V9 0.360 0.006 0.360 0.006 1.037 0.016 0.360 0.006

BETWEEN LEVEL

B_f1 by V1 0.800 — 0.800 —

V2 0.802 0.015 1.191 0.099

V3 0.879 0.017 1.075 0.092

B_f2 by V4 0.800 — 2.196 0.174

V5 0.601 0.019 1.557 0.122

V6 0.566 0.019 1.592 0.128

B_f3 by V7 0.800 — 1.894 0.199

V8 0.973 0.025 2.198 0.224

V9 1.139 0.031 2.496 0.250

Var(B_f1) 1.253 0.045 0.051 0.009

Cov(B_f1,B_f2) 0.552 0.031

Cov(B_f1,B_f3) 1.025 0.048

Var(B_f2) 0.305 0.022

Cov(B_f2,B_f3) 0.036 0.021

Var(B_f3) 0.538 0.029

Residual Var

V1 0.292 0.014 0.593 0.015

V2 0.347 0.014 0.620 0.016

V3 0.240 0.015 0.634 0.016

V4 0.270 0.018 0.400 0.015

V5 0.238 0.012 0.379 0.013

(Continued)
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TABLE 4 | Continued

MCFA MISS MCFA CFA MAX MCFA

V6 0.569 0.016 0.672 0.017

V7 0.193 0.011 0.195 0.011

V8 0.343 0.014 0.338 0.014

V9 0.149 0.016 0.199 0.014

(N of sample = 10,000 with Group Number = 50 and Group Size = 200).

All above parameter estimates are statistically significant at the level of p < 0.05.

χ
2, Chi-square value; df, Degrees of freedom; CFI, Comparative fit index; RMSEA, Root mean square error of approximation; SRMR, Standardized root mean square residual. The

normal font denotes the fixed effect and intercept estimate; the italic denotes the random effect estimate. MCFA: the multilevel CFA model with one within-level factor and three between-

level factors as the population model of simulation dataset. MISS MCFA: the miss-specified multilevel CFA model with one within-level factor and one between-level factor. CFA: the

miss-specified CFA model with a uni-factor single-level structure. MAX MCFA: the multilevel CFA model with one within-level factor and saturated between-level structure.

In sum, when analyzing complex survey data with level-
varying structures, we recommend researchers in the applied
areas to use iMCFA to simultaneously perform their analyses with
the three proposedmodeling techniques. TheMAXMCFAmodel
answers research questions about the within-level sampling units,
and serves as the baseline for further MCFA construction in
response to the level-varying questions for both levels. The factor
scores of multilevel measurement analysis from iMCFA could
be incorporated in the structure model as the 2-step approach
(Anderson and Gerbing, 1988, 1992) to conduct the multilevel
SEM analysis. Our illustrations demonstrated that iMCFA can
help researchers in their empirical and theoretical study to
perform multilevel analyses on complex survey data.

System Requirement, Functionality, and
Future Development of iMCFA
iMCFA requires 15MB of hard disk space to store and has been
developed and tested on Windows 7/8/10 32 bits and 64 bits
operation systems with LISREL version v8.7 or v8.8 installed.
Executing time will vary depending on the complexity of users’
model. To consider the computation loading, for the current
version of iMCFA, we set the limit of the maximal number of
factors as 10, and the maximal number of items as 100.

The iMCFA tool focuses on integrating the functionalities with
respect to performing multilevel confirmatory factor analysis
with simple or complex structures. By default, iMCFA sets
the first indicator of each factor to be the marker variable
(e.g., the wordst for f1 and the figure for f2 in Figure 1).
Users could re-arrange the input sequence of variables to set
the markers. The current version allows only the indicators
of continuous scale. Users could set up missing flag in Phase
1 to mark the missingness. To utilize the MUML estimation
with multi-group comparison analysis in Lisrel, iMCFA uses the
pair-wise deletion for incomplete data to compose level-specific
variance-covariance matrices for the complex survey data. With
the assumption of Missing at Random (MAR), users can process
the incomplete dataset with multiple imputation procedure
(Little and Rubin, 1987; Enders, 2010) prior to the use of
iMCFA. Users can also revise the generated syntax of three
modeling techniques from iMCFA to utilize Full Information
Maximum Likelihood method (FIML, Arbuckle, 1996), the

default estimation method in Lisrel, for their incomplete raw
data with missing values. The equality constraints or fitting
multiple-group models are not allowed in the current version of
iMCFA.

The function to specify the factor loadings of cross-loaded
items and correlated item residuals, and the feature of parameter
comparisons with Wald test (Wald, 1943) and family-wise Type-
I error rate control among three models will be provided in
the following version. In addition, standard errors, t values,
and significance of corresponding parameters are not included
in the iMCFA tabulated output because the output focuses on
comparing the model fit of the three modeling techniques.
Nonetheless, researchers can use the generated syntax to request
the information from LISREL.

Though we applied iMCFA on various types of datasets and
models in this study, for more general cases of balanced or
unbalanced complex survey data with level-varying structures,
the performance of different estimation methods, the sensitivity
of level-specific model-fit test statistics and fit indices in
detecting lack-of-fit in multilevel CFA and SEM analysis
still need more investigation using simulation and empirical
approaches.
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