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Abstract: Fetal growth is affected by exposure to both prenatal stress and environmental contaminants.
The attacks on the World Trade Center (WTC) resulted in exposure to chemicals and psychological
stress amongst New York City residents. We measured prenatal maternal stress and exposure to
persistent organic pollutants (polybrominated diphenyl ethers, polychlorinated biphenyls, and poly-
chlorinated dibenzo-p-dioxins (PCDDs)) in 108 participants from a Columbia University WTC birth
cohort. Principal component (PC) analyses were conducted to characterize the mixture of exposure
to the three groups of chemicals. We evaluated the associations between geographical exposures
(proximity to the WTC disaster) and both chemical exposures (PCs) and stress (demoralization). We
then evaluated the effect these exposures (PCs and stress) had on previously reported associations
between geographical WTC exposure and birth outcomes (birth weight and birth length) in this study
population to understand their individual roles in the observed associations. Geographical expo-
sure via proximity to the WTC was associated with the PC reflecting higher PCDD exposure (PC3)
(β = 0.60, 95% CI: 0.03, 1.18 for living/working within 2 miles of the WTC; and β = 0.73, 95% CI = 0.08,
1.38 for living within 2 miles of WTC). Previously reported reductions in birth weight and length asso-
ciated with WTC proximity (β = −215.2, 95% CI: −416.2, −14.3 and β = −1.47, 95% CI: −2.6, −0.34,
respectively) were attenuated and no longer significant for birth weight (β = −156.4, 95% CI: −358.2,
45.4) after adjusting for PC3, suggesting that PCDDs may act as partial mediators in this previously
observed association. The results of this study can help focus future research on the long-term health
effects of these prenatally exposed populations.

Keywords: World Trade Center disaster; stress; birth outcomes; persistent organic pollutants;
prenatal exposure

1. Introduction

Fetal growth has been shown to be influenced by both maternal stress [1–4] and expo-
sure to environmental contaminants, including persistent organic pollutants [5–10]. In the
event of manmade or natural disasters, pregnant women may be exposed to high levels of
both of these stressors at once, and they are, therefore, a particularly vulnerable population
during these events. The terrorist attacks on the World Trade Center (WTC) on 11, Septem-
ber 2001, were a catastrophic disaster and resulted in the release of thousands of tons of
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chemicals [11] as well as long-lasting psychological stress amongst both responders [12–14]
and New York City residents [15]. Exposure to pollutants continued long after the initial
collapse due to building rubble fires that burned intermittently for more than three months,
in addition to the infiltration of contaminated dust into residents’ homes and ventilation
systems [11]. Sampling of dust and ash-laden runoff near the WTC site identified numer-
ous toxic chemicals associated with the disaster including persistent organic pollutants
that have been associated with fetal growth, such as polychlorinated biphenyls (PCBs),
polybrominated diphenyl ethers (PBDEs), polychlorinated dibenzo-p-dioxins (PCDDs),
and polychlorinated dibenzofurans (PCDFs) [16–19]. Biomonitoring studies also identified
elevated PCDD/F and perfluorinated compound (PFAS) levels among firefighters [20] and
New York State employees and National Guard personnel [21,22] who responded to the
disaster. Less is known in regard to the exposures of pregnant women residing near the
WTC disaster. Previous studies in the same NYC birth cohort reported associations between
geographic proximity to the WTC disaster and exposure to both PFAS [23] and polycyclic
aromatic hydrocarbons (PAH)-adducts [24] among pregnant women; however, a separate
birth cohort using a different metric to categorize “exposed” pregnant women, found no
differences in PCBs, PBDEs, or PCDD/Fs between high- and low-exposure groups [25].

Post-traumatic stress has been well documented in WTC recovery workers [12,14,26],
and increased utilization of mental health services has been reported in the general Man-
hattan population [15] following the attacks. Maternal stress during pregnancy [3,4], and
even before conception [27], including disaster-related stress, has been consistently asso-
ciated with adverse birth outcomes. Indeed, among pregnant women residing in close
proximity to the WTC disaster, post-traumatic stress symptomatology [28] and probable
WTC-related post-traumatic stress disorder [29] have been associated with decrements
in fetal growth. Impacts of WTC-related stress on fetal growth were even identified in
non-NYC populations, including Arab populations in California [30] and a Dutch popu-
lation in the Netherlands [31]. Several other studies have reported associations between
different metrics of WTC exposure (e.g., geographic proximity, working at the WTC site,
experiencing injuries from the disaster) and adverse birth outcomes, including intrauter-
ine growth restriction [32], low birth weight [29,33], and reductions in birth weight and
length [34]. These studies have suggested both stress and environmental contaminants
as potential mediators in the observed associations. However, to date, no studies have
attempted to measure their roles in the relationship between WTC-related geographic
exposure and adverse birth outcomes. In this study, we measured psychological distress in
women who were pregnant during the WTC disaster and delivered at hospitals in close
proximity to the WTC site, as well as prenatal exposures to various POPs, including PCBs,
PBDEs, and PCDD/Fs. We then evaluated the potential mediating effect these variables
had on previously reported associations between geographic proximity to the WTC and
birth weight and birth length in this study population (Supplemental Figure S1). To our
knowledge, this is the first study to try to disentangle the effects of stress and chemical
exposures on birth outcomes among pregnant women exposed to the WTC disaster. This
is also the first study to evaluate WTC-related exposure to environmental contaminants
using mixture analyses.

2. Materials and Methods
2.1. Study Population

Data for this work came from a Columbia University birth cohort designed to study
the effects of WTC exposures on pregnancy outcomes and development. Detailed methods
have been described previously [34]. Singleton pregnant women were approached for
enrollment from three large downtown hospitals with maternity units, which were selected
based on their close proximity to the WTC site, as well as the characteristics of their
catchment areas. The three hospitals were Beth Israel and St. Vincent’s (approximately
2 miles from the WTC site) and New York University Downtown (within a half mile
of the WTC site). Eligible women were approached for enrollment at the time of labor
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and delivery, at each of the three hospitals, between 13 December 2001 and 26 June 2002.
Eligibility requirements included the following: age between 18 and 39 years; no smoking
(>1 cigarette/at any time) during pregnancy; and self-report of no pre-existing diabetes,
hypertension, HIV infection, or AIDS and no use of illegal drugs in the last year. Of the
738 women who were initially screened, 369 were eligible and gave consent for participation.
Of the 369 eligible women, 329 met full enrollment criteria: (1) contributed at least one
blood sample (cord or maternal blood), (2) provided access to their medical record, and
(3) completed a 30 to 45 min postpartum interview (conducted in their preferred or native
language: English, Spanish, or Chinese), all of which were required for full enrollment in
the study.

2.2. Sociodemographic and Exposure Variables

The postpartum interview was administered at the hospital in the woman’s preferred
or native language (English, Spanish, or Chinese—the three languages spoken in the hos-
pitals’ catchment area). Information on maternal education, date of birth, race, parity,
Medicaid status, home smoking exposure, and residential and work addresses was elicited
through the interview. Residential and work addresses (for the 4 weeks starting on and
following 9/11) were geocoded at the Center for International Earth Science Information
Network of Columbia University’s Earth Institute, using geographic information system
(GIS) software from the Environmental Systems Research Institute (Redlands, CA), includ-
ing ArcGIS 8.3 and the Street Map 2003 extension [34]. Using these data, two WTC-related
exposure categories were created: (1) women who lived within 2 miles of the WTC site and
(2) women who lived or worked within 2 miles of the WTC site. Two miles was selected to
delineate the exposure radius based on previous findings of an association between this
exposure group and birth outcomes [34], as well as for consistency with the World Trade
Center Health Registry definition of the WTC disaster area, which includes the area of
Manhattan south of Houston Street and any block of Brooklyn that is within a 1.5 mile
radius of the former World Trade Center site [35]. Maternal pre-pregnancy body mass
index (BMI) was calculated using weight in kilograms divided by height in meters squared,
both abstracted from participants’ medical chart. In the case of missing height (n = 36) or
weight (n = 49) from the medical record, self-reported information on these variables from
the hospital interview were used. Child sex and date of birth were abstracted from the
child’s medical record. Gestational age in days was also abstracted from the medical record
(if missing (n = 15), date of mother’s last menstrual period from interview minus child’s
date of birth was used). Gestational age on 9/11, used to determine trimester during the
WTC disaster, was calculated by subtracting days since the 9/11 disaster on the child’s
date of birth from the child’s gestational age in days at birth. Mothers were classified as
being in their first trimester on 9/11 if their child had a gestational age of ≤91 days on
9/11 and in their second or third trimester if their child had a gestational age >91 days.
Maternal age at delivery was determined by subtracting the child’s date of birth from the
mother’s date of birth. Medical complications during pregnancy (including preeclampsia,
placental abruption, hypertension, and gestational diabetes) and birth outcomes (child’s
birth weight and length) were abstracted from the medical record or obtained from the
maternal interview if the medical record was incomplete. Maternal demoralization was
used to determine maternal stress and was measured during the postpartum interview
using the Psychiatric Epidemiology Research Instrument Demoralization scale (PERI-D).
The PERI-D scale provides a measure of nonspecific psychological distress, with demon-
strated reliability across different ethnic groups [36–38]. Analyses for this study excluded
participants without maternal PCDD/F and either maternal or cord PBDE and PCB mea-
surements (n = 188). In addition, we removed from the analyses women who completed
less than 36 weeks and 6 days of gestation (due to multifactorial and complex causes of
preterm birth) (n = 5) or had missing data on maternal age, demoralization, race, education,
parity, pre-pregnancy BMI, trimester on 9/11, Medicaid status, pregnancy complications,
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home smoking exposure, child sex, and child birth weight and length (n = 28), resulting in
a sample size of 108 participants.

2.3. Sample Collection and Chemical Analysis

Blood samples from the umbilical cord were collected at the time of delivery; maternal
samples were typically collected on the day after delivery. On average, 30.7 mL blood
was collected from the umbilical cord, and 30–35 mL blood was collected from the mother.
Blood samples were transported to Columbia University laboratory facilities in Northern
Manhattan and processed within hours of collection. The buffy coat, packed red blood
cells, and plasma were separated and stored at −70 ◦C.

2.3.1. Polybrominated Diphenyl Ethers (PBDEs)

Detailed methods regarding the analysis of the plasma samples for PBDEs at the
Centers for Disease Control and Prevention have been previously described [39,40]. Briefly,
the samples were automatically fortified with 13C-labeled internal standards. The samples
were subjected to an initial liquid/liquid extraction with hexane:methyl-tert-butyl ether af-
ter denaturation with 1 M HCl and isopropanol [39]. Coextracted lipids were then removed
on a silica:silica/sulfuric acid column using the Rapid Trace equipment (Zymark, Hopkin-
ton, MA, USA) for automation. Final determination of the target analytes was performed
by gas chromatography–isotope dilution high-resolution mass spectrometry employing an
MAT95XP (Thermo Finnigan MAT, Bremen, Germany) instrument [40]. Concentrations
of target analytes are reported as nanograms per gram lipid weight (weight of plasma
lipids) (ng/g). The plasma lipid concentrations were determined using commercially avail-
able test kits from Roche Diagnostics Corp. (Indianapolis, IN, USA) for the quantitative
determination of total triglycerides (product no. 011002803-0600) and total cholesterol
(product no. 011573303-0600). Final determinations were made on a Hitachi 912 Chemistry
Analyzer (Hitachi, Tokyo, Japan). In all, 210 cord blood and 163 maternal plasma samples
were analyzed for the following PBDE congeners (by International Union of Pure and Ap-
plied Chemistry numbers): 2,2,2′,4,4′-tetraBDE (PBDE-47); 2,2′,3,4,4′-pentaBDE (PBDE-85);
2,2′,4,4′,5-pentaBDE (PBDE-99); 2,2′,4,4′,6-pentaBDE (PBDE-100); 2,2′,4,4′,5,5′-hexaBDE
(PBDE-153); 2,2′,4,4′,5,6′-hexaBDE (PBDE-154); 2,2′,3,4,4′,5′,6-heptaBDE (PBDE-183); and
2,2′,4,4′,5,5′-hexaBB (BB-153).

2.3.2. Polychlorinated Biphenyls (PCBs), Polychlorinated Dibenzo-p-Dioxins (PCDDs) and
Polychlorinated Dibenzofurans (PCDFs)

PCBs and PCDD/Fs were analyzed at the Centers for Disease Control and Preven-
tion. Detailed methods regarding the analysis of PCBs and PCDD/Fs in blood have
been previously described [41,42]. Briefly, the samples were spiked with 13C-labeled
internal standards, then extracted with organic solvents that were processed through a
five-column cleanup procedure. Final determination of the target analytes was performed
by gas chromatography–isotope dilution high-resolution mass spectrometry for PCDD/Fs
and by gas chromatography–isotope dilution high- and low-resolution mass spectrom-
etry for PCBs. Concentrations of target analytes are reported as nanograms per gram
lipid weight (weight of plasma lipids) (ng/g) for PCBs and picograms per gram lipid
weight (pg/g) for PCDD/Fs. Final determinations were made on a Hitachi 912 Chem-
istry Analyzer (Hitachi, Tokyo, Japan). In all, 210 cord blood and 173 maternal plasma
samples were analyzed for 36 PCB congeners and 17 PCDD/F congeners. PCB congeners
included PCB 18, PCB 28, PCB 44, PCB 49, PCB 52, PCB 66, PCB 74, PCB 87, PCB 99,
PCB 101, PCB 105, PCB 110, PCB 118, PCB 128, PCB 138.158, PCB 146, PCB 149, PCB
151, PCB 153, PCB 156, PCB 157, PCB 167, PCB 170, PCB 172, PCB 177, PCB 178, PCB
180, PCB 183, PCB 187, PCB 189, PCB 194, PCB 195, PCB 196.203, PCB 201, PCB 206,
PCB 209. PCDD congeners included 2,3,7,8-tetrachlorodibenzo-p-dioxin (2378D); 1,2,3,7,8-
pentachlorodibenzo-p-dioxin (12378D); 1,2,3,4,7,8-hexachlorodibenzo-p-dioxin (123478D);
1,2,3,6,7,8-hexachlorodibenzo-p-dioxin (123678D); 1,2,3,7,8,9-hexachlorodibenzo-p-dioxin
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(123789D); 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin (1234678D); and octachlorodibenzodi-
oxin (OCDD). PCDF congeners included 2,3,7,8-tetrachlorodibenzo-furan (2378F); 1,2,3,7,8-
pentachlorodibenzo-furan (12378F); 2,3,4,7,8-pentachlorodibenzo-furan (23478F); 1,2,3,4,7,8-
hexachlorodibenzo-furan (123478F); 1,2,3,6,7,8-hexachlorodibenzo-furan (123678F); 2,3,4,6,7,
8-hexachlorodibenzo-furan (234678F); 1,2,3,7,8,9-hexaachlorodibenzo-furan (123789F);
1,2,3,4,6,7,8-heptachlorodibenzo-furan (1234678F); 1,2,3,4,7,8,9-heptachlorodibenzo-furan
(1234789F); and octachlorodibenzofuran (OCDF).

2.4. Statistical Analyses

All statistical analyses were conducted in R software (version 3.5.1; R Project for Statis-
tical Computing). Analyses were restricted to compounds detected in ≥50% of maternal
and cord samples for 4 PBDEs (PBDE47, PBDE99 PBDE100, PBB153) and 10 PCBs (PCB44,
PCB49, PCB52, PCB66, PCB74, PCB99, PCB118, PCB138.158, PCB153, PCB180) and only
maternal samples for 3 PCDDs (123678D, 1234678D, OCDD) because no cord samples met
this threshold. No maternal or cord PCDF congeners met this threshold and were, therefore,
not included in any analyses. To maximize sample sizes, we used both maternal plasma
and cord blood PCB and PBDE concentrations. However, to account for differences in
maternal versus cord blood samples, we used separate prediction models developed using
all available PCB and PBDE samples (121 PBC and 94 PBDE paired cord blood and maternal
plasma samples) to transform maternal PCB and PBDE concentrations in participants with
maternal measurements but no cord blood measurements. Therefore, cord measurements
for these chemicals included actual cord measurements as well as maternal measurements
that were transformed through prediction models to reflect what the cord value would
have been for that participant had they had a true cord measurement. Prediction models
were developed separately for each congener by regressing log-transformed maternal mea-
surements on log-transformed cord measurements. Details of the transformation models
are provided (Supplemental Table S1). We transformed maternal plasma samples to cord
samples because a greater number of participants had cord blood samples than maternal
plasma samples. Correlations between maternal and cord plasma measurements for both
PBDEs and PCBs ranged from 0.32 to 0.85 and all were significant (p < 0.01) (Supplemental
Figure S2a,b). Only maternal concentrations were used for PCDDs because there were
no congeners detected in ≥50% of cord blood PCDD samples. In accord with published
practices [43], for all PCB, PBDE, and PCDD congeners included in analyses, samples below
the limit of detection were imputed as the lipid adjusted concentration divided by the
square root of 2. Maternal, cord and combined cord + transformed maternal-to-cord PCB
and PBDE, and just cord and maternal PCDD; percentage detected; and geometric mean
(range) are displayed in Supplemental Table S2.

The first aim of our analysis was to evaluate the association between our variables
representing geographic exposure to the WTC site (WTC proximity exposure variables) and
both maternal stress and maternal exposure to PCBs, PBDEs, and PBDDs, as well as the
association between maternal stress and maternal exposure to these chemicals with birth
outcomes. The second aim of our analysis was to evaluate the potential mediating role of
maternal stress and maternal chemical exposure in the previously reported associations be-
tween geographic exposure to the WTC site and birth outcomes (Supplemental Figure S1).
Because we were interested in evaluating the three chemical groups as a mixture, we used
principal component analyses (PCA) for the 108 participants with data on all chemicals
to capture their combined exposures. PCA is a data reduction technique, in which the
linear relationships between observed correlated variables are captured into a smaller
number of principal components. Each input variable, in this case 10 PCBs, 4 PBDEs, and
3 PCDDs, is given a “factor loading”, reflecting the correlation of each chemical with that
component [44]. All chemicals were log-transformed and scaled. We followed the Kaiser
criterion [45] and included all principal factors with eigenvalues ≥1.0 [46].

Medians (IQR) and percentages were used to describe sociodemographic and birth
outcome variables (birth weight and length) in the study population overall and by each of
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the geographic WTC proximity exposure variables (“Lived or worked <2 miles from the
WTC site” vs. “Did not live or work <2 miles from the WTC site”; and “Just lived <2 miles
from the WTC site” vs. “Did not live <2 miles from the WTC site”). Differences between
participants across geographic WTC proximity exposure categories were calculated using
Mann–Whitney U and chi-square tests for continuous and categorical variables, respec-
tively. Linear regression analyses were conducted to evaluate the association between
both geographic WTC exposure variables (“Lived or worked <2 miles from WTC site”
and “Just lived <2 miles from WTC site”) and each of the chemical principal component
(PC) variables as well as maternal demoralization. Linear regression analyses were also
conducted to evaluate the association between chemical PC variables and maternal demor-
alization with birth outcomes. Model adjustments for these analyses were selected a priori
and included maternal age, parity, race, education, pre-pregnancy BMI, family smoking
status, trimester on 9/11, and child sex. In addition, linear regression analyses were also
conducted to evaluate the association between both geographic WTC exposure variables
and birth weight and birth length, before and after adjustment for each chemical PC as
well as maternal demoralization. Model adjustments for these analyses were selected a
priori to be consistent with previous exposure-birth outcome analyses in this cohort [34]
and included: maternal race, age, parity, Medicaid status, pregnancy complications, and
child sex. Finally, we dichotomized maternal demoralization at the median (representing
high and low demoralization) and included an interaction term between this variable and
each chemical PC to evaluate their joint association with birth outcomes. We then reported
the p-value from a two-sided Wald t-test on the coefficient for the two-way multiplicative
term. A threshold of p < 0.05 was used to define associations as statistically significant.

Due to the large proportion of missing data, to evaluate whether our complete case
analysis was biased, in sensitivity analyses, we used inverse probability weighting in
which complete cases were weighted by the inverse of their probability of being a complete
case. All study variables except for our principal components were used in our model
to predict whether a participant was a complete case. We also conducted sensitivity
analyses with imputed missing data using multivariate imputation by chained equations
(MICE). All study variables were included in the prediction of our imputation model. All
study variables with missing data (chemical PCs, demoralization, birth length, parity, race,
Medicaid, BMI, and pregnancy complications) were given imputed values if missing. We
set our model iterations to 20 and imputations to 30, which achieved healthy convergence
of the imputation model evaluated visually through trace and density plots. Because all
missing data were imputed, the sample size for these analyses included the full dataset of
329 participants.

3. Results
3.1. Chemical and Participant Characteristics

For all non-supplemental tables and figures, PCB and PBDE concentrations reflect
cord + transformed maternal-to-cord measurements, and PCDD concentrations reflect just
maternal measurements. A correlation matrix of the 10 PCBs, 4 PBDEs, and 3 PCDDs
is displayed in Supplemental Figure S3. PCA showed that the first four PCs captured
85% of chemical exposure variance (data not shown). The first PC (PC1) explained 44% of
the variance and was mainly dominated by lower levels of PCBs (Figure 1). The second
PC (PC2) explained 19% of the variance and was mainly dominated by lower levels of
PBDEs. The third PC explained 13% of the variance and was mainly dominated by higher
levels of PCDDs. Finally, the fourth PC explained 9% of the variance and mostly reflected
higher PCB 180 and 153, although the loadings for this PC were more spread out across the
different chemical congeners.
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For the 108 subjects in the analyses, the median maternal age was 31.2 years and
median maternal pre-pregnancy BMI was 22 (Table 1). There were slightly more male
(52.8%) births than female. The majority of participants were White (53.7%) followed by
Asians (23.1%) and Blacks (14.8%). The majority of women had no previous pregnancies
(63%), were in their first trimester on 9/11 (61.1%), and were not on Medicaid (69.4%). Most
women reported no home smoking exposure (82.4%) and no pregnancy complications
(90.7%). Most women had greater than a high school degree (80.6%) with just 11.1% having
only a high school degree and 8.3% having no high school degree. The median birth weight
was 3441 g and the median birth length was 51 cm. Women who lived or worked farther
than 2 miles from the WTC site had higher pre-pregnancy BMI (p = 0.004) and were more
likely to be on Medicaid (p = 0.01).
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Birth length (cm), median (IQR): 51.0 (49.5, 52.6) 51.0 (49.5, 52.9) 51.0 (49, 52.4) 0.37 51.0 (49.5, 53) 50.0 (48.8, 51.8) 0.05
Child sex, n (%):

Female 51 (47.2) 26 (48.1) 25 (46.3) >0.99 38 (46.9) 13 (48.1) >0.99
Male 57 (52.8) 28 (51.9) 29 (53.7) 43 (53.1) 14 (51.9)

Maternal race, n (%):
Black 16 (14.8) 7 (13) 9 (16.7) 0.33 12 (14.8) 4 (14.8) 0.15
White 58 (53.7) 33 (61.1) 25 (46.3) 48 (59.3) 10 (37)
Asian 25 (23.1) 9 (16.7) 16 (29.6) 16 (19.8) 9 (33.3)
Other 9 (8.3) 5 (9.3) 4 (7.4) 5 (6.2) 4 (14.8)

Parity, n (%):
No previous pregnancies 68 (63) 30 (55.6) 38 (70.4) 0.16 51 (63) 17 (63) >0.99
1+ previous pregnancies 40 (37) 24 (44.4) 16 (29.6) 30 (37) 10 (37)

Maternal education, n (%):
<High school degree 9 (8.3) 6 (11.1) 3 (5.6) 0.09 6 (7.4) 3 (11.1) 0.33
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Table 1. Cont.

Live or Work WTC Exposure Variable Live Only WTC Exposure Variable

Variable Overall >2 Miles <2 Miles p-Value a >2 Miles <2 Miles p-Value a

High school degree 12 (11.1) 9 (16.7) 3 (5.6) 11 (13.6) 1 (3.7)
>High school degree 87 (80.6) 39 (72.2) 48 (88.9) 64 (79) 23 (85.2)

Maternal age, median (IQR): 31.2 (27, 34.4) 30.9 (27, 33.6) 31.3 (28.2, 34.5) 0.61 31.3 (27.2, 34.6) 30.9 (25.2, 33.6) 0.45
Maternal pre-pregnancy BMI,

median (IQR): 22 (20.1, 25.3) 23.2 (21, 26.5) 21.3 (19.5, 23.1) 0.004 22.5 (20.2, 25.8) 21.5 (20.1, 24.3) 0.49

Family smoking exposure, n (%):
No 89 (82.4) 47 (87) 42 (77.8) 0.31 70 (86.4) 19 (70.4) 0.11
Yes 19 (17.6) 7 (13) 12 (22.2) 11 (13.6) 8 (29.6)

Trimester, n (%):
First 66 (61.1) 30 (55.6) 36 (66.7) 0.32 49 (60.5) 17 (63) >0.99

Second/third 42 (38.9) 24 (44.4) 18 (33.3) 32 (39.5) 10 (37)
Medicaid, n (%):

No 75 (69.4) 31 (57.4) 44 (81.5) 0.01 55 (67.9) 20 (74.1) 0.72
Yes 33 (30.6) 23 (42.6) 10 (18.5) 26 (32.1) 7 (25.9)

Pregnancy complications, n (%):
No 98 (90.7) 50 (92.6) 48 (88.9) 0.74 73 (90.1) 25 (92.6) >0.99
Yes 10 (9.3) 4 (7.4) 6 (11.1) 8 (9.9) 2 (7.4)

a Differences between participants across geographic WTC proximity exposure categories were calculated using
Mann–Whitney U and chi-square tests for continuous and categorical variables, respectively. Abbreviations: body
mass index (BMI); interquartile range (IQR).

3.2. Associations between Chemical PCs, Demoralization, Geographic WTC Proximity Exposure
Group, and Birth Outcomes

Figure 2 plots the crude median concentrations of the individual chemical congeners
by both geographic WTC proximity exposure variables (“living or working within 2 miles
of the WTC site” and “just living within 2 miles of the WTC site”). Dioxins 123678D and
OCDD were higher in those who lived/worked within 2 miles of the WTC site (exposed
group). It was found that 123678D was also higher among those who just lived within
2 miles of the WTC site. In adjusted models, both geographic WTC proximity exposure
variables were associated with PC3, the PC reflective of higher maternal PCDD exposures
(Table 2). Live or working and just living within 2 miles of the WTC site were associated
with 0.60 (95% CI: 0.03, 1.18) and 0.73 (95% CI: 0.08, 1.38) higher PC3, respectively. No
other PCs or demoralization were associated with geographic WTC proximity exposure
variables. In adjusted models, PC3 was also the only PC associated with birth outcomes
(Table 3). Higher PC3 was associated with −96.49 (−163.09, −29.9) g lower birth weight
and −0.47 (−0.86, −0.09) cm lower birth length.

Table 2. Mean difference (95% CI) in chemical principal components (PC) by WTC proximity
exposure categories.

PC1 PC2 PC3 PC4 Demoralization

Live/work
<2 miles −0.05 (−1.12, 1.03) −0.14 (−0.86, 0.59) 0.60 (0.03, 1.18) 0.26 (−0.26, 0.78) 0.11 (−0.07, 0.3)

Live <2 miles 0.15 (−1.07, 1.37) 0.38 (−0.44, 1.2) 0.73 (0.08, 1.38) 0.16 (−0.43, 0.75) 0.00 (−0.21, 0.22)

Models adjusted for maternal age, parity, race, education, pre-pregnancy BMI, family smoking status, trimester
on 9/11, and child sex.

Table 3. Mean difference (95% CI) in birth outcomes by chemical principal components (PCs)
and demoralization.

Birth Weight (g) Birth Length (cm)

PC1 22.5 (−9.49, 54.48) −0.03 (−0.22, 0.15)
PC2 2.16 (−49.77, 54.1) 0.11 (−0.19, 0.4)
PC3 −96.49 (−163.09, −29.9) −0.47 (−0.86, −0.09)
PC4 −6.81 (−74.25, 60.62) −0.15 (−0.54, 0.23)

Demoralization −91.19 (−284.8, 102.42) −0.37 (−1.48, 0.74)
Models adjusted for maternal age, parity, race, education, pre-pregnancy BMI, family smoking status, trimester
on 9/11, and child sex.
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In adjusted models, exposed groups for both geographic WTC proximity exposure
categories were associated with lower birth weight and birth length (Table 4 and Figure 3).
However, these associations were only significant for those who lived within 2 miles of
the WTC site. Living within 2 miles of the WTC site was associated with −215.2 (95% CI:
−416.2,−14.3) g lower birth weight and−1.47 (95% CI:−2.60,−0.34) cm lower birth length.
All associations remained consistent after adjustment for PC1 (lower PCBs), PC2 (lower
PBDEs), PC4 (higher PCB 180 and 153), and demoralization. However, adjustment for PC3
attenuated all associations, and the relationship between exposure and lower birth weight
was no longer significant (β = −156.4, 95% CI: −358.2, 45.4). There were no significant
additive interactions between demoralization and PCs; although, there was a significant
negative association between PC3 and both birth weight (β = −134.7, 95% CI: −224.0,
−45.3) and birth length (β = −0.67 95% CI: −1.18, −0.15) in those with low demoralization
but not in those with high demoralization (Supplemental Table S4).

The results from our sensitivity analyses using inverse probability weighting were
consistent (Supplemental Tables S5–S7). The results from our sensitivity analyses imputing
missing values using MICE were mostly consistent (Supplemental Tables S8–S10). The
association between our geographic WTC exposure variables and birth outcomes remained
negative; however, the association became significant for living OR working within 2 miles
of the WTC and lower birth weight, in addition to the significant negative associations
between only living within 2 miles of the WTC and both lower birth weight and lower birth
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length as seen in the complete case analyses. These associations were all attenuated and
no longer significant after adjusting for PC3 (Supplemental Table S10). The associations
between geographic WTC exposure variables and PC3 remained significant (Supplemental
Table S8). The association between PC3 and birth weight and birth length remained
negative; however, the associations were not significant (−43.3, 95% CI: −93.8, 7.08 and
−0.27 95% CI:−0.55, 0.01, respectively). Of note, there was a significant positive association
observed between PC1 and birth weight (27.2, 95% CI: 1.92, 52.5) (Supplemental Table S9),
which was not observed in the complete case analysis.

Table 4. Mean difference (95% CI) in birth outcomes by geographic WTC proximity exposure categories
before and after adjustment for chemical principal components (PCs) and maternal demoralization.

Model 1 Model 1 + PC1 Model 1 + PC2 Model 1 + PC3 Model 1 + PC4 Model 1 +
Demoralization

Birth Weight
Live/work

<2 miles
−155.9

(−336.7, 25.0)
−163.0

(−338.2, 12.1)
−154.8

(−336.5, 26.8)
−107.7

(−287.5, 72.1)
−164.3

(−346.5, 17.9)
−143.6

(−326.0, 38.7)

Live <2 miles −215.2
(−416.2, −14.3)

−214.9
(−409.7, −20.2)

−221.9
(−424.3, −19.4)

−156.4
(−358.2, 45.4)

−221.9
(−423.8, −20.0)

−209.5
(−410.4, −8.63)

Birth Length
Live/work

<2 miles
−0.32

(−1.36, 0.72)
−0.32

(−1.37, 0.73)
−0.31

(−1.35, 0.73)
−0.07

(−1.11, 0.97)
−0.26

(−1.3, 0.79)
−0.26

(−1.31, 0.79)

Live <2 miles −1.47
(−2.6, −0.34)

−1.47
(−2.61, −0.34)

−1.53
(−2.67, −0.4)

−1.21
(−2.36, −0.06)

−1.43
(−2.56, −0.29)

−1.45
(−2.58, −0.32)

Model 1 adjusted for maternal race, age, parity, Medicaid status, pregnancy complications, and child sex.
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Figure 3. Mean difference (95% CI) in birth outcomes by geographic WTC proximity exposure
categories before and after adjustment for chemical principal components (PCs) and maternal demor-
alization. Model 1 adjusted for maternal race, age, parity, Medicaid status, pregnancy complications,
and child sex. The reference group on the left half of the figure represents those who did not live
within 2 miles of the WTC. The reference group on the right half of the figure represents those who
did not live or work within 2 miles of the WTC.

4. Discussion

In this cohort of mother–child dyads who delivered in New York City, NY, in the
months following the WTC disaster, we evaluated the mediating role of both chemical
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exposures and maternal stress in previously observed associations between proximity
to the WTC site and lower birth weight and birth length. We used PCA to summarize
prenatal exposure to PCBs, PBDEs, and PCDDs and the PERI-D scale (demoralization)
to summarize maternal prenatal stress. Four PCs captured most (85%) of the variance
in chemical exposures. We found that both of our geographic WTC proximity exposure
variables, mothers who lived or worked within 2 miles of the WTC site and mothers who
just lived within 2 miles of the WTC site, were associated with the PC reflective of higher
exposure to PCDDs. Demoralization was not associated with either geographic WTC
proximity exposure variable. We also found that both our geographic WTC proximity
exposure variables were associated with lower birth weight and birth length; however, this
relationship was only significant for those who lived within 2 miles of the WTC site. After
adjustment for each PC as well as demoralization, in separate models, the relationship
between proximity to the WTC and birth outcomes remained consistent except when
adjusting for the PC reflecting higher PCDD exposure. In this case, the associations were
attenuated and no longer significant between living within 2 miles of the WTC site and birth
weight, suggesting dioxins may act as partial mediators in these associations. There were
no significant additive interactions between demoralization and PCs with birth outcomes.

The attacks on the World Trade Center, and their subsequent collapse, resulted in
a toxic mixture of chemical exposures to local populations and psychological stress that
impacted populations across the world. The effects of these dual exposures on birth
outcomes among mothers who were pregnant during the WTC disaster are incompletely
understood. Several studies have tried to evaluate the association between proximity to
the WTC, and therefore, likely high exposure to both chemical and psychological stressors;
however, results have been inconsistent. Lipkind et al. [47] found no significant differences
in birth weight, gestational age, low birth weight, or preterm birth when comparing birth
outcomes among pregnant women who were enrolled in the World Trade Center Health
Registry versus those who resided in New York City but lived >5 miles from the WTC
site. Berkowitz et al. [32] and Lederman et al. [34], however, used closer WTC exposure
radius cutoffs, <0.5 miles and <2 miles from the WTC site, respectively, to determine their
exposed groups and again compared them to New York City–based populations living
farther from those cutoffs. Berkowitz et al. [32] found a twofold higher risk for intrauterine
growth restriction in their exposed group compared to their unexposed group, with no
differences observed for preterm birth, low birth weight, gestational age, or birth weight.
Lederman et al. [34], however, found significant reductions in birth weight and birth length,
with no effect on head circumference or gestational age, among their exposed population.

These studies suggest an association between proximity to the WTC site and birth out-
comes but do not provide information on the specific exposures driving these associations.
Our analysis evaluating the association between chemical PCs and demoralization with
proximity to the WTC provides evidence that PCDDs were a more significant exposure
source than PBDEs, PCBs, or demoralization in populations living or living/working
within 2 miles of the WTC. Further, the attenuation of the previously observed relationship
(reported by Lederman et al. [34]) between proximity to the WTC and birth weight and
birth length after adjustment for PCDDs suggests that this chemical group may have played
a partial mediating role in these associations. The importance of PCDDs as a WTC exposure
source is consistent with testing of environmental samples immediately following the
disaster, which found elevated PCDD/F concentrations on exterior window surfaces [19] as
well as dust, water, sediment, and sewage samples collected in and near the WTC site [18].
These findings were not surprising, given that PCDD/Fs are combustion by-products and
the attacks resulted in extensive burning of jet fuel and building materials that lasted for
up to three months following the buildings’ collapse [11]. Elevated PCDD/F levels have
also been reported among firefighters [20], New York State employees, and National Guard
personnel [21] who worked at the WTC site. Further, a recent study found significantly
higher levels of PCDD/Fs among WTC Health Registry adolescents over 12 years after the
WTC disaster occurred than among non-WTC Heath Registry adolescents, suggesting that
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exposure to these chemicals, considering their biological half-lives, was quite high at the
time of the collapse [48]. In contrast, a study conducted among 100 pregnant women living
near or within the WTC site at the time of the attacks found no association between the
study’s WTC exposure metric, based on a daily dust exposure index derived through a
reconstruction of the post-9/11 WTC plume and maternal plasma PCDDs. Nevertheless,
PCDD levels found in this study were higher than nationally reported data in the same
time frame [49] and similar to levels reported in the current study. Therefore, the lack of
association could be a result of the difficulty in creating accurate WTC exposure indices.

The potential partial mediating role of PCDD concentrations in the previously reported
relationship between proximity to the WTC and birth outcomes in this study cohort is
supported by experimental and epidemiological evidence. The majority of experimental
studies focused on 2,3,7,8-TCDD (TCDD) and reported consistent associations between
maternal exposure and reduced birth length and weight [50]. In our study, TCDD was not
evaluated because no samples were above the limit of detection. However, PCDDs exert
their toxic effects mainly through binding to the aryl-hydrocarbon receptors, which are
expressed in many human tissues and may offer a possible mechanism for their association
with birth outcomes [50]. Epidemiological studies have been less consistent: no significant
reductions in birth weight were found among women highly exposed to TCDD due to an
accidental trichlorophenol plant explosion in Seveso, Italy [51]; however, studies evaluat-
ing summed PCDD exposure and non-TCDD congeners reported significant reductions
in birth weight [7,52,53] and length [54]. Despite this, although adjustment for the PC
reflecting higher PCDD exposure attenuated the relationship between WTC exposure and
birth outcomes, the inverse relationship between proximity to the WTC and birth weight
remained, and in the case of birth length, it remained significant.

Thus, these results, and the minimal effect adjustment for other chemical PCs or
demoralization had on the relationship between proximity to the WTC and birth outcomes,
suggest that other non-measured chemicals may have played a role or that our study’s
demoralization variable did not accurately capture maternal stress in response to such
a large disaster. Numerous studies have reported post-traumatic stress (PTS) in WTC
recovery workers [12,14,26], and increased utilization of mental health services has been
reported in the general Manhattan population [15] following the attacks. In general,
women have been shown to be more likely than men to develop PTS after traumatic
events, including disasters [55]. Indeed, while PTS prevalence was reported to be higher in
New York City than anywhere else in the country months after 9/11, they were highest
among women [55,56]. General maternal stress during pregnancy [3,4], and even before
conception [27], as well as more acute disaster-related stress [57–60], has been associated
with adverse birth outcomes. In contrast to our findings, studies suggest a consistent
trend with WTC-related stress: among pregnant women residing in close proximity to
the WTC disaster, post-traumatic stress symptomatology [28] and probable WTC-related
post-traumatic stress disorder [29] have been associated with decrements in fetal growth.
Some studies even suggest that the magnitude of the disaster resulted in stress-related
adverse birth outcomes even outside of New York City [31,33]. Therefore, the lack of
association we observed between proximity to the WTC and maternal stress may be a result
of the PERI-D scale being designed as a measure of general psychological distress that may
not accurately capture disaster-related stress or trauma. Another limitation of this study
that should be considered when interpreting findings is that our unexposed comparison
group resided in New York City and may have been exposed to WTC-related chemicals
and stress. This could have attenuated differences in chemical concentrations and stress
between comparison groups and may have contributed to the null findings we observed
between proximity to the WTC and demoralization, PBDEs, and PCBs. Finally, the study
was limited by a relatively small sample size. However, our consistent sensitivity analysis
using MICE to impute missing data suggests our complete case analysis was not biased.
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5. Conclusions

In conclusion, the first three PCs of our PCA revealed the three main chemical groups
under study: PCBs, PBDEs, and PCDDs, respectively. The third PC, reflecting higher PCDD
exposure, was associated with both living as well as living or working within 2 miles of
the WTC on 9/11 among pregnant women in this study. Further, the previously reported
associations between geographic WTC proximity exposure variables and birth outcomes
were attenuated after adjustment for PC3, suggesting that PCDD exposure may have played
the role of a partial mediator in these relationships. The results of this study suggest PCDDs
were an important WTC-related prenatal exposure and can help focus future research on
the long-term health effects of these prenatally exposed populations, especially in light
of previous evidence suggesting that PCDD concentrations may still be elevated in these
groups throughout childhood and into adolescence.
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