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Abstract

Motivation: A key goal in plant biotechnology applications is the identification of genes associated

to particular phenotypic traits (for example: yield, fruit size, root length). Quantitative Trait Loci

(QTL) studies identify genomic regions associated with a trait of interest. However, to infer poten-

tial causal genes in these regions, each of which can contain hundreds of genes, these data are

usually intersected with prior functional knowledge of the genes. This process is however labori-

ous, particularly if the experiment is performed in a non-model species, and the statistical signifi-

cance of the inferred candidates is typically unknown.

Results: This paper introduces QTLSearch, a method and software tool to search for candidate

causal genes in QTL studies by combining Gene Ontology annotations across many species, lever-

aging hierarchical orthologous groups. The usefulness of this approach is demonstrated by re-

analysing two metabolic QTL studies: one in Arabidopsis thaliana, the other in Oryza sativa subsp.

indica. Even after controlling for statistical significance, QTLSearch inferred potential causal genes

for more QTL than BLAST-based functional propagation against UniProtKB/Swiss-Prot, and for

more QTL than in the original studies.

Availability and implementation: QTLSearch is distributed under the LGPLv3 license. It is available

to install from the Python Package Index (as qtlsearch), with the source available from https://bit

bucket.org/alex-warwickvesztrocy/qtlsearch.

Contact: c.dessimoz@ucl.ac.uk or henning.redestig@dupont.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Identification of variants of genes that are linked to differences in

phenotypic traits is a first step in many plant biotechnology applica-

tions. By creating mapping populations, characterizing and genotyp-

ing the individuals of these, it is often possible to find trait-

associated regions of chromosomes—so-called Quantitative Trait

Loci (QTL). However, a single QTL can typically contain hundreds,

if not thousands, of genes. Thus, from a single study, it is rarely

straight-forward to pinpoint the causal gene (if there is one at all)

and multiple evidence is typically required.

Wide QTL can be broken down by performing additional experi-

ments using higher-resolution genetic maps. A faster complementary

approach is to annotate the genes in the target species with known

associations to the trait of interest (for example, involvement in rele-

vant pathways or biological processes), and searching for overlap

with the genes inside a given QTL (Bargsten et al., 2014; Chen et al.,

2012; Gong et al., 2013; Lisec et al., 2009). This approach has aided

the identification of several verified causal genes—for example, the

AT5G50950 fumarase (Brotman et al., 2011; Lisec et al., 2008)—

demonstrating its merit.

Propagating gene-function annotations across and within species

whilst taking evolutionary distance into account, alongside ensuring

to control for chance co-occurrence, is difficult. This is particularly

the case for non-model species that may have little or no curated
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annotations available. Currently, there are no dedicated tools to

facilitate this analysis, potentially leading important insight to be

missed.

This paper presents QTLSearch—a method and tool which aims

to recommend genes that are plausible candidates for causing an

observed QTL, by identifying the intersection of those associated

with a given trait based on an evolutionary analysis and one or more

QTL analyses (Fig. 1) . That is, QTLSearch is a method for integrat-

ing data from public resources (for example, as Gene Ontology

[GO] annotations) with the genomic regions identified during a

QTL experiment. Gene families, in the form of hierarchical ortholo-

gous groups from the Orthologous MAtrix project (OMA)

(Altenhoff et al., 2018), enable reasoning over complex nested

homologies in a consistent framework. By integrating functional in-

ference with homology mapping, it is possible to differentiate the

confidence in orthologous and paralogous relationships when prop-

agating functional knowledge.

This method takes existing functional annotations (in an

ontology-aware manner). As such, traits measured in QTL experi-

ments need to be mapped to relevant terms. For instance, if the

trait of interest was an abundance of the metabolite Galactose, this

could be mapped to the GO term for ‘Galactose bio-synthetic pro-

cess’ (GO:0046369), as well as to the ChEBI term for Galactose

(CHEBI:28260). Existing gene annotations to this GO and ChEBI

term would then be mapped to the trait and propagated through

hierarchical orthologous groups, using the HOGPROP algorithm.

This propagated knowledge is then used to find genes, with an

evidence trail, that are located in QTL for a given trait and homolo-

gous with another gene, possibly in a different species, that via func-

tional annotations is known to be associated with that same trait.

While QTLSearch is applicable to any type of QTL studies,

this paper shall demonstrate the usefulness of this method using

two metabolic QTL studies in Oryza sativa subsp. indica from

Gong et al. (2013) and Arabidopsis thaliana from Lisec et al.

(2009), each reporting several QTL for a large number of metabolite

abundances (phenotypic traits). This shows that QTLSearch can

find similar results to those found in the more manual efforts,

reported in the original studies. Furthermore, it also provides add-

itional insight which was not reported in those studies.

2 Materials and methods

QTLSearch is underpinned by the HOGPROP algorithm, which

uses the hierarchical orthologous groups from the OMA project in

order to predict GO terms. The framework has been extended to

permit propagation of general gene-labels (traits), resulting in a

per-label score for each gene. This section starts with a high-level de-

scription of the HOGPROP algorithm, before describing the addi-

tions required to implement QTLSearch. The section then ends with

a description of the datasets and method of comparison.

2.1 HOGPROP—gene annotation propagation and

inference
Propagating functional annotations along gene phylogenies is a

classical notion [for example, Eisen (1998)]. However, reconstruct-

ing large gene trees remains computationally demanding and

error-prone. As a more scalable alternative, annotations can be

propagated across hierarchical orthologous groups (HOGs)

(Sonnhammer et al., 2014). For instance, in the case of GO annota-

tions, a subset {experimental and some electronic annotations [based

on �Skunca et al. (2012)]} are given a score dependent on their evi-

dence code. These terms, with scores, are then associated with the

leaves of the hierarchical structure (genes), before being pushed up

and pulled down the hierarchy as can be seen in Figure 2. The score

decays across each edge, currently set at a fixed rate of 20%, with a

penalty when propagating over paralogous relationships of a double

decay. Scores are combined at each node (using summation) during

the up-propagation, whilst the maximum score is taken in the

down-propagation. This is performed in an ontology-aware manner.

That is, when dealing with ontology-based knowledge, the score

associated to a particular term is also relevant to all terms less specif-

ic (parent terms) in the ontology.

After propagation, a score is available for every input annotation

on all genes that are members of a group. This algorithm, termed

‘HOGPROP’, has previously been submitted to the second CAFA

experiment (team name ‘CBRG’), where it performed well under

several criteria (Jiang et al., 2016). The algorithm shall be described

in further detail, alongside in-depth benchmarking in a forthcoming

publication.

2.2 Required adaptations to the original HOGPROP

algorithm
This section will look at each of the adaptations required, in turn, to

re-purpose the HOGPROP algorithm to search for trait-associated

genes.

2.2.1 Scoring

Let a single QTL be defined simply by its coordinates. That is, the

triple (C, s, e), where s and e denote the start and end positions on

the chromosome (C) of the QTL, respectively. If a chromosome is of

n genes in length, it shall be denoted as a set of n genes. That is,

C :¼ fgi : 1 � i � ng:

The genes that lie completely, or partially, within a QTL are

then defined as

Fig. 1. Conceptual overview of QTLSearch—to identify the most likely causal

genes, by identifying the intersection of genes associated with a given trait

based on an evolutionary analysis and QTL analyses
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QC
ðs;eÞ :¼ fgi : gi 2 C; s < gend

i ; e > gstart
i g;

where gstart
i and gend

i are the start and end positions of gene gi.

Then, let the score associated to a particular gene at time t be

denoted as St
gi

. Initially (i.e. at t¼0), each gene within a QTL is

associated with the trait of interest with a uniform scoring, of

S0
gi

:¼ 1

jQj :

Functional annotations can be given as input to the HOGPROP

algorithm with varying initial scores. For example, in the case of the

UniProt-GOA, experimentally derived annotations are currently set

at an initial score of 1, whilst ‘trusted’ electronic annotations [based

on �Skunca et al. (2012), see Supplementary Table S1] are given a

score of 0.95.

For each QTL, individually, these scores are associated with the

genes, at the leaves of the HOGs. The scores are then propagated up

and down the hierarchy, after-which (i.e. at t¼1) the observed score

increase for each gene in the QTL,

DSgi ¼ S1
gi
� S0

gi
¼ S1

gi
� 1

jQj ;

is stored. This reflects the uniform probability of causal trait-

association under the assumption that variation in a single gene is

resulting in the observed QTL. This then gives an ordering to the

genes in a particular QTL, to which extent they are associated with

the trait of interest.

2.2.2 Controlling for significance

A large QTL has a much greater chance to randomly overlap with

genes with direct annotations, or have a close homologue with a

relevant labelling. The narrower a QTL is, the smaller the chance of

a spurious coincidence between a QTL and genes annotated as rele-

vant for a given trait.

In order to illustrate this issue, genes in A. thaliana (Ensembl

Plants 20/TAIR10) were annotated with association of the abun-

dance of six metabolites (the traits) using annotations to the GO and

cross references between UniProtKB and ChEBI terms, listed in

Table 1. Looking at every possible sliding window, for window sizes

varying from just five genes up to 2500 genes, the number of times

at least one gene is associated with the trait was computed. It shows

that for typical QTL lengths, the probability of finding at least one

spurious candidate can be substantial (Fig. 3).

To account for this, QTLSearch can compute an empirical distri-

bution of score increases per QTL-trait pairing, through the ran-

domization of the coordinates of the QTL. The sampling of the

coordinates is based on gene-count—both the chromosome and lo-

cation on the locus are sampled. This feature gives the ability to re-

port empirical P-values, which enable the control of significance. If

the P-value estimation is enabled, by default the number of resam-

ples is set to 1000.

When the aim of the QTL study is to search for candidate

genes for a given trait among several QTL, it additionally becomes

important to correct for the increase of false positive gene-trait

associations. While the distribution of score-increases under the

Fig. 2. Overview of the HOGPROP algorithm, for propagating through hierarchical orthologous groups. This visualizes the propagation of a single gene-function

association

Table 1. The six metabolites and their mapped GO and ChEBI terms

used to find the distribution of finding at least one spurious candi-

date in A. thaliana

Metabolite GO term ChEBI term

Serine GO:0006564 CHEBI:17822

Glucose GO:0006094 CHEBI:17234

Inositol GO:0006021 CHEBI:24848

Fructose GO:0046370 CHEBI:24848

Galactose GO:0046369 CHEBI:28260

Glycine GO:0006545 CHEBI:15428
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null-hypothesis depends strongly on the distribution and number of

trait-associated genes, both of which are fixed, the tests become de-

pendent meaning correction for multiple testing is not straight-

forward. Leaving the investigation of a more suitable approach for a

future study, tests reported here are corrected for falsely reporting at

least one significant gene-trait association, i.e. the smallest P-value

from each QTL, using Benjamini-Hochberg false discovery rate

adjusted P-values (Benjamini and Hochberg, 1995). The unadjusted

shall be denoted as P, with those adjusted as PBH. The adjusted P-

values were computed using the p. adjust function in R.

2.2.3 Software package

QTLSearch is implemented as a Python package and is freely distrib-

uted under the LGPLv3 license, requiring Python 3.6 or later. It has

been published on the Python Package Index (PyPI). Thus, it is

installable using pip by issuing the command

pip install qtlsearch

The source code is available from https://bitbucket.org/alex-war

wickvesztrocy/qtlsearch. As the software has been published under

an open-source license, it is possible to add extra parsers for alterna-

tive data-sources with relative ease.

2.3 Datasets
To demonstrate the usefulness of QTLSearch, two datasets from meta-

bolic QTL studies (Gong et al., 2013; Lisec et al., 2009) have been used.

The dataset from Lisec et al. contains 141 QTL (with full coordinates)

linked to 50 different metabolites in A. thaliana, whilst the Gong et al.

dataset consists of 1260 QTL linked to the abundance of 302 metabo-

lites in O. sativa subsp. indica. However, co-ordinates (as well as the

authors’ predictions) were based on O. sativa subsp. japonica.

Hierarchical orthologous groups were taken from the September

2014 release of OMA, so that the MSU version 6 of O. sativa subsp.

japonica was included. The UniProt-GOA (Barrell et al., 2009) re-

lease from February 2018 was used, alongside the GO definition

from 25th March 2018 (Ashburner et al., 2000; Gene Ontology

Consortium, 2017). External references from the ChEBI to UniProt

entries were taken from ChEBI release 161 (Hastings et al., 2016).

QTLSearch requires a mapping of the GO and ChEBI terms to

map to the trait of interest, in this case the relevant metabolites. For

initial scores originating from functional annotations in the UniProt-

GOA database, initial scores are set at 1.0 for experimentally

derived annotations and 0.95 for certain electronic annotations.

[Electronic annotations (IEA evidence code) are filtered based on
�Skunca et al. (2012). See Supplementary Table S1 for filtering used.]

Those arising from a cross-reference to the ChEBI are included with

an initial score of 1. Genes with multiple sources are given the max-

imum of the initial scores.

Many of the metabolites measured in the studies could not

straight-forwardly be mapped to a GO term, so some were mapped

to more general (however, still relevant) terms. ChEBI associations

were only included when an exact match to the compound was pos-

sible. For the mapping between metabolic traits and GO and/or

ChEBI terms used, see Supplementary Tables S2 and S3. Table 2

shows the proportion of metabolites and QTL that have been

mapped from each of the studies.

2.4 Comparison method—naı̈ve BLAST
As well as comparing QTLSearch to the candidates that the respect-

ive authors reported, a comparison in performance was made to a

naı̈ve BLAST method. This takes the protein sequence for every gene

inside the QTL and performs a BLAST against the entire

UniProtKB/Swiss-Prot database [The UniProt Consortium (2017a);

February 2018 release], using the NCBI BLASTþ tool (Camacho

et al., 2009) and the GNU Parallel tool in order to exploit parallel-

ism in the search (Tange, 2011).

Fig. 3. Probability of finding at least one spurious candidate in A. thaliana for six metabolites, as a function of QTL length (left y-axis). In the background, histo-

gram of the distribution of QTL lengths reported by Lisec et al. (2009) (right y-axis)

Table 2. Statistics of the number of QTL that could be mapped

to GO and/or ChEBI terms from the two datasets in A. thaliana

(Lisec et al., 2009) and O. sativa subsp. indica (Gong et al., 2013)

Author reported Mapped to GO / ChEBI

Dataset Metabolites QTL Metabolites QTL

Lisec et al. (2009) 50 141 35 107

Gong et al. (2013) 302 1, 260 121 638
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Candidate genes are predicted, as potentially causal to the abun-

dance of a metabolite, if any of the top 10 hits, with an E-value of

below 10�6 has a GO annotation (in the UniProt-GOA database

[Barrell et al., 2009; February 2018 release]) or cross-reference to a

relevant ChEBI term, which is included in the mapping of metabolite

to GO/ChEBI terms. Other E-value cut-offs (10�3; 10�9; 10�12)

gave similar results in this study. Further, the GO annotations are

filtered to the same level as for QTLSearch.

3 Results

To illustrate the usefulness of QTLSearch, data from two previous

metabolic QTL studies was re-analysed—one in A. thaliana (Lisec

et al., 2009), the other in O. sativa subsp. indica (Gong et al.,

2013)—in which candidate causal genes were identified for a subset

of the QTL using ad hoc methods. First, aggregate results are pre-

sented, before looking at an example from each of these datasets.

3.1 Number of predictions
Lisec et al. identified 141 QTL. For 67 of these, they inferred at least one

candidate gene. In comparison, QTLSearch was able to identify at least

one candidate gene for 76 QTL with PBH < 0:01 (85 for P<0.01), and

a further 29 QTL when relaxing the significance to PBH < 0:05 (20 for

P<0.05)—see Figure 4. However, the BLAST against UniProtKB/Swiss-

Prot identified a candidate gene for 72 QTL. The limiting factor for

QTLSearch was the number of metabolites which could be associated to

GO or ChEBI terms (available for 107 of the 141 QTL).

In the study by Gong et al., 1260 QTL were identified with the

authors inferring at least one candidate gene for 142 QTL. This lower

proportion was likely due to the practical difficulties of analysing a

much larger set of QTL using a labour-intensive ad hoc approach. By

contrast, on this dataset, QTLSearch identified candidate genes for

substantially more QTL than the original study (259 with PBH < 0:01

[360 for P<0.01] and 518 with PBH < 0:05 [same for P<0.01];

Fig. 4). The naı̈ve BLAST search also performed much better for this

dataset (338 QTL), finding candidate genes for a comparable number

of QTL as QTLSearch, albeit without control for significance. Again,

the limiting factor lies in the number of metabolites that could be asso-

ciated with GO terms, which capped the number of QTL possible to

predict using these methods to 638 out of 1260.

3.2 Overlap in predictions with original studies
An assessment of the overlap between predictions from the original

studies and the two automated approaches was also performed

(Fig. 5). Authors of both studies gave multiple candidates for a sub-

set of the QTL they reported. Here, the overlap is determined based

on if a method predicted at least one of these. However, both

QTLSearch and the BLAST method may have predicted more candi-

date genes than this.

When looking at the Lisec et al. dataset, both QTLSearch and

BLAST find a candidate for the majority of the QTL, with QTLSearch

finding a candidate for all when relaxing to the 5% level. BLAST

agrees with the authors for half of the QTL. However, there is substan-

tial disagreement in the predicted candidate genes for both methods.

As for the Gong et al. dataset, the authors reported either one or

two candidates per QTL, with many having two candidates.

QTLSearch only finds a candidate for just over half of the QTL

which Gong et al. gave a prediction, at the 1% level (Fig. 5). The

proportion increases to roughly two thirds at the 5% level. There is

also substantial disagreement in the predicted candidate genes. A

similar picture emerges when comparing the BLAST results to the

original authors’ predictions.

3.3 Examples
In the dataset from Lisec et al., there is a QTL associated with the

abundance of Galactose which is approximately 2.3 Mbp in length,

containing 309 genes. This particular metabolite was associated with

both the ‘Galactose bio-synthetic process’ (GO:0046369) GO term,

as well as to the ChEBI term for Galactose (CHEBI:28260).

There were no predictions for this particular QTL from the

authors, however QTLSearch finds two results with P<0.01—see

Table 3. The first of these (ARATH16826) has a direct annotation in

the ChEBI and is also found by the naı̈ve BLAST method described in

Section 2.4. The second, ARATH16587, is not. This OMA identifier

maps to the UniProtKB entry Q9SBA7, which has a recommended

protein name of ‘Sugar transport protein 8’ (The UniProt

Consortium, 2017b). Figure 6 shows the propagation from

ARATH09154, which leads to the increase in score for ARATH16587.

Gong et al. associated a region approximately 1.03 Mbp in

length, containing 146 genes with the abundance of Chrysoeriol

c-hexoside (a flavanoid). As the GO is not particularly detailed in

Fig. 4. Proportion of QTL with at least one candidate from Lisec et al. (left) and Gong et al. (right) for each method
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this area, this was associated with the generic ‘Flavonoid biosynthet-

ic process’ (GO:0009813) GO term.

All candidate causal genes, reported by QTLSearch (with

P<0.01) are located in the same hierarchical orthologous group

(HOG:0164195) —see Table 4. These are all listed as ‘Chalcone and

stilbene synthases’ in their relevant UniProtKB entries (The UniProt

Consortium, 2017a), which catalyse the first committed step in the

flavonoid synthesis pathway (Tohge et al., 2007).

Only three of these five were found by the naı̈ve BLAST method,

with only one having a direct annotation in UniProt-GOA.

4 Discussion

QTLSearch provides a method for identifying the intersection of

genes associated with a given trait based on an evolutionary analysis

and QTL analyses. The hierarchical orthologous groups from OMA

are at the centre of this, providing a consistent framework to reason

over complex nested homologies. Instead of the potentially pains-

taking manual efforts usually required, QTLSearch provides a pri-

oritized list of candidate genes causing the QTL by integrating

annotation data, potentially from many sources.

It is clear that QTLSearch has the ability to predict potentially

causal genes for many of the QTL reported in the studies used, espe-

cially when accepting at the nominal 5% significance level. Despite

this, the naı̈ve BLAST method (described in Section 2.4) appears to

overlap further with the candidates predicted by Lisec et al.

However, BLAST is simply a search to the most similar gene, where-

as QTLSearch is able to take into account the fine-grained evolu-

tionary history encoded inside the hierarchical orthologous groups.

When more than one gene is predicted by QTLSearch, this enables

the ordering of these based on the evidence trail. Further, the

BLAST method does not take into account the probability of hom-

ology with genes with a direct annotation, shown in Section 2.2.2 to

be more of an issue than may be expected.

For both of the datasets, QTLSearch predicts at least one candi-

date gene for more QTL than the naı̈ve BLAST method.

Experimental validation of these would be costly. However, the

examples shown in Section 3.3 give plausibility to the results.

QTLSearch heavily relies on the existence of functional annota-

tions and a map between these and the metabolites in question.

Functional annotations can either be direct annotations to the spe-

cies in the QTL analysis, or to closely related species. However, if

there are no high-quality experimental annotations it is unlikely that

either method will give useful results.

When considering the Lisec et al. dataset, it rapidly became clear

that there were too few GO annotations at an acceptable level of

evidence. This motivated the inclusion of the ChEBI as an additional

source of information. The mapping performed between ChEBI and

the metabolites that was adopted is however keyword-based and

thus quite coarse. For instance, many of the cross-references from

ChEBI for Serine are likely to be to serine protein kinase, which

would be irrelevant to the question at hand. Refining the mapping

should improve further the performance of QTLSearch for the me-

tabolite QTL use-case. Similarly, it would be possible to extend the

framework to include biological pathway information from

Table 3. Table of significantly associated genes for a QTL in the

Lisec et al. dataset, associated with Galactose

QTLSearch

OMA ID Increase P-value Direct

Annotation

Found

by BLAST

Author

Candidate

ARATH16826 0.996764 0.003126 ChEBI � �

ARATH16587 0.375134 0.003916 � � �

Fig. 5. Overlap with the candidate genes reported by Lisec et al. (left) and Gong et al. (right), for QTLSearch (at 1% and 5% significance levels) and the naı̈ve

BLAST method

Table 4. Significantly associated genes for a QTL in the Gong et al.

dataset, associated with Chrysoeriol c-hexoside

QTLSearch

OMA ID Increase P-value Direct

Annotation

Found

by BLAST

Author

Candidate

ORYSJ56351 1.980263 0.000021 � � �

ORYSJ56362 1.494041 0.000048 UniProt-GOA � �

ORYSJ56358 0.638598 0.000260 � � �

ORYSJ56359 0.638598 0.000260 � � �

ORYSJ56355 0.541781 0.000418 � � �
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databases such as Reactome (Fabregat et al., 2018) or KEGG

(Kanehisa et al., 2017), possibly in an automated manner. However,

this inclusion of knowledge from the ChEBI has meant that rather

than simply loading GO annotations, the parser has been designed

to be modular. Due to the open-source license, this enables easier in-

clusion of annotations from further sources.

Looking beyond metabolite QTL studies, agronomical or physio-

logical traits for plants or animals alike, could also be analysed using

QTLSearch by generating databases of genes that are associated

with traits using, for example, the Trait Ontology (TO) (Shrestha

et al., 2012), before searching for co-incidence between QTL and

genes homologous to genes in those lists.

Here, just as in the metabolite QTL setting, the use of ontologies

is attractive. Instead of manually having to keep track of the rela-

tionship between terms, for example, ‘kernel size’ and ‘fruit size’ or

‘branched chain amino acid biosynthesis’ and ‘valine biosynthesis’,

the ontology provides the necessary ‘is a’ relationships in order to

directly use both annotations in an appropriate manner.

Likewise, this framework could also accommodate additional

types of data, such as gene expression data. In the context of human

genetics, several tools have been recently introduced to integrate ex-

pression alongside annotations (Arnold et al., 2015; Stacey et al.,

2017; Watanabe et al., 2017). These frameworks, however, do not

naturally extend to other species. For plants, the possibility to in-

clude gene expression data is particularly interesting as it provides a

straight-forward means to add prior knowledge to the nature of the

causal gene(s). For example, via a grafting experiment it may be

known that the sought gene is expressed in a given tissue, and are

therefore searching for genes in a QTL for given trait and annotated

to certain biological processes and expressed in that tissue.

One limitation of QTLSearch that hampers the use of continuous

data such as gene expression is that the current scoring mechanism

in the propagation algorithm is not probabilistic, and as such the

confidence values propagated along the hierarchical orthologous

groups are not directly interpretable. Adoption of a probabilistic

method similar to Engelhardt et al. (2011) is planned. Meanwhile,

results from the second CAFA (Jiang et al., 2016), as well as prelim-

inary results from the third CAFA, have shown that the current scor-

ing method is competitive in the field of GO prediction.

Another limitation lies in the relatively high computational cost

of estimating P-values, which is currently implemented as a permu-

tation test. The runtime scales approximately linearly with the num-

ber of resamples required (default of 1000). This means that most of

the time is spent on computing the empirical distribution. It may be

possible to parameterize this, which would greatly decrease runtime.

Meanwhile, it is possible to skip computation of the empirical distri-

bution, which will still result in an ordered list of candidates.

Nevertheless, already in its current form, QTLSearch is a com-

pelling alternative to the ad hoc approaches of typical QTL studies

in plants. A fully automated framework also has clear advantages in

terms of reproducibility.

Acknowledgements

Computation was performed on the University College London (UCL) Legion

high performance computing facility (Legion@UCL), the UCL Computer

Science high performance computer, as well as at the Vital-IT centre for high-

performance computing of the SIB Swiss Institute of Bioinformatics. AWV is

funded by BBSRC CASE studentship BB/M015009/1 in collaboration with

Bayer Crop Science NV (Ghent, Belgium). CD also acknowledges support by

Swiss National Science Foundation grant 150654.

Conflict of Interest: none declared.

References

Altenhoff,A.M. et al. (2018) The OMA orthology database in 2018: retrieving

evolutionary relationships among all domains of life through richer web and

programmatic interfaces. Nucleic Acids Res., 46, D477–D485.

Arnold,M. et al. (2015) SNiPA: an interactive, genetic variant-centered anno-

tation browser. Bioinformatics, 31, 1334–1336.

Ashburner,M. et al. (2000) Gene ontology: tool for the unification of biology.

Nat. Genet., 25, 25.

Bargsten,J.W. et al. (2014) Prioritization of candidate genes in QTL regions

based on associations between traits and biological processes. BMC Plant

Biol., 14, 330.

Barrell,D. et al. (2009) The GOA database in 2009—an integrated Gene

Ontology Annotation resource. Nucleic Acids Res., 37, D396–D403.

Benjamini,Y., and Hochberg,Y. (1995) Controlling the false discovery rate: a

practical and powerful approach to multiple testing. J. R. Stat. Soc. B, 57,

289–300.

Brotman,Y. et al. (2011) Identification of enzymatic and regulatory genes of

plant metabolism through QTL analysis in Arabidopsis. J Plant Physiol,

168, 1387–1394.

Camacho,C. et al. (2009) BLASTþ: architecture and applications. BMC

Bioinformatics, 10, 421.

Chen,C. et al. (2012) PICARA, an analytical pipeline providing probabilistic

inference about a priori candidates genes underlying genome-wide associ-

ation QTL in plants. PLoS ONE, 7, e46596.

Fig. 6. Visualization of the propagation of the annotation of ARATH09154 to CHEBI :28260 (Galactose), which leads to an increase in the score for ARATH16587.

(Left) before propagation; (Middle) after up-propagation; (Right) After both up-propagation and down-propagation. Note: this hierarchical orthologous group

extends above the level of the Rosids

i618 A.Warwick Vesztrocy et al.



Eisen,J.A. (1998) Phylogenomics: improving functional predictions for

uncharacterized genes by evolutionary analysis. Genome Res., 8, 163–167.

Engelhardt,B.E. et al. (2011) Genome-scale phylogenetic function annotation

of large and diverse protein families. Genome Res., 21, 1969–1980.

Fabregat,A. et al. (2018) The reactome pathway knowledgebase. Nucleic

Acids Res., 46, D649–D655.

Gene Ontology Consortium (2017) Expansion of the gene ontology knowl-

edgebase and resources. Nucleic Acids Res., 45, D331–D338.

Gong,L. et al. (2013) Genetic analysis of the metabolome exemplified using a

rice population. Proc. Natl. Acad. Sci., 110, 20320–20325.

Hastings,J. et al. (2016) ChEBI in 2016: improved services and an expanding

collection of metabolites. Nucleic Acids Res., 44, D1214–D1219.

Jiang,Y. et al. (2016) An expanded evaluation of protein function predic-

tion methods shows an improvement in accuracy. Genome Biol., 17,

184.

Kanehisa,M. et al. (2017) KEGG: new perspectives on genomes, pathways,

diseases and drugs. Nucleic Acids Res., 45, D353–D361.

Kreft,Ł. et al. (2017) PhyD3: a phylogenetic tree viewer with extended

phyloXML support for functional genomics data visualization.

Bioinformatics, 33, 2946–2947.

Lisec,J. et al. (2008) Identification of metabolic and biomass QTL in

Arabidopsis thaliana in a parallel analysis of RIL and IL populations. Plant

J., 53, 960–972.

Lisec,J. et al. (2009) Identification of heterotic metabolite QTL in Arabidopsis

thaliana RIL and IL populations. Plant J., 59, 777–788.

Shrestha,R. et al. (2012) Bridging the phenotypic and genetic data

useful for integrated breeding through a data annotation using the

crop ontology developed by the crop communities of practice. Front.

Physiol., 3, 326.
�Skunca,N. et al. (2012) Quality of computationally inferred gene ontology

annotations. PLoS Comput. Biol., 8, e1002533.

Sonnhammer,E.L. et al. The Quest for Orthologs Consortium. (2014) Big data

and other challenges in the quest for orthologs. Bioinformatics, 30, 2993–2998.

Stacey,D. et al. (2017). ProGeM: A framework for the prioritisation of candi-

date causal genes at molecular quantitative trait loci. bioRxiv, page 230094.

Tange,O. (2011) GNU parallel—the command-line power tool. Login

USENIX Mag., 36, 42–47.

The UniProt Consortium (2017a) UniProt: the universal protein knowledge-

base. Nucleic Acids Res., 45, D158–D169.

The UniProt Consortium (2017b). UniProtKB—Q9SBA7 (STP8_ARATH).

https://www.uniprot.org/uniprot/Q9SBA7. Accessed: 13-03-2018.

Tohge,T. et al. (2007) Phytochemical genomics in Arabidopsis thaliana: a case

study for functional identification of flavonoid biosynthesis genes. Pure

Appl. Chem., 79, 811–823.

Watanabe,K. et al. (2017) Functional mapping and annotation of genetic asso-

ciations with FUMA. Nat. Commun., 8, 1826.

Prioritising candidate genes causing QTL using hierarchical orthologous groups i619

https://www.uniprot.org/uniprot/Q9SBA7

