1	Online Supplementary Information for:
2	
3	
4	Rapid resistance profiling of SARS-CoV-2 protease inhibitors
5	
6	
7	Seyed Arad Moghadasi ¹ , Rayhan G. Biswas ¹ , Daniel A. Harki ¹ & Reuben S. Harris ^{2,3}
8	
9	
10	¹ University of Minnesota, Minneapolis, Minnesota, USA
11	² Department of Biochemistry and Structural Biology, University of Texas Health San Antonio,
12	San Antonio, Texas, USA, 78229
13	³ Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio,
14	Texas, USA
15	Correspondence: rsh@uthscsa.edu
16	
17	
18	
19	
20	
21	
22	Contents: Supplementary Figures 1-4 and Supplementary Table 1

а

Supplementary Figure 1. Dose response curves showing inhibition of WT and mutant M^{pro} enzymes by nirmatrelvir, ensitrelvir, and FB2001.

- 26 (a) Schematic of Src-M^{pro}-Tat-fLuc assay in which transfection of a catalytically active WT M^{pro}
- 27 construct into 293T cells yields low luciferase expression due to cleavage of host substrates that
- 28 prevent reporter expression. Inhibition of M^{pro} catalytic activity by chemical (shown) or genetic
- 29 methods results in quantifiable increases in luminescent signal.
- 30 (b) Dose responses of M^{pro} variants using the gain-of-signal assay in cells treated with indicated
- 31 inhibitors in a 4-fold serial dilution beginning at 10μ M (data are mean +/- s.d. of biologically
- 32 independent triplicate experiments). IC₅₀ values for each inhibitor are listed in Table 1.

33

34

61 Supplementary Figure 3. Dose response curves showing inhibition of the

62 alphacoronaviruses 229E and NL63 M^{pro} by nirmatrelvir, ensitrelvir, and FB2001.

63 (a-b) Dose response of 229E and NL63 M^{pro} proteins using the gain-of-signal assay in cells

- 64 treated with indicated inhibitors in a 4-fold serial dilution beginning at 50µM (data are mean +/-
- 65 s.d. of biologically independent triplicate experiments).

66

59 60

67 68

vising infectious SARS-CoV-2 (published studies) and the gain-of-signal system (this study).

- 71 A dot-plot showing the positive association between the fold-change in antiviral EC_{50} as
- 72 determined with infectious SARS-CoV-2 (refs.^{2,3,5-7} and
- 73 https://www.pmda.go.jp/drugs/2022/P20220719001/340018000_30400AMX00205000_H102_2.
- pdf) and the fold-change in IC₅₀ as determined by the gain-of-signal assay (this study). Data were
- analyzed by a simple linear regression and calculation of Pearson Correlation coefficient (r) in
- 76 GraphPad Prism 9. Orange and blue shaded symbols represent data with nirmatrelvir and

ensitelvir, respectively. FB2001 resistance mutants have yet to be reported.

- 78
- 79
- 80
- 81
- 82
- 83
- 84

Primer name	Primer sequence	
T21I forward	GTATGGTCCAAGTAATATGTGGTACCACTACCCTTAATGG	
T21I reverse	GTAGTGGTACCACATATTACTTGGACCATACATCCTTCAAC	
M49I forward	GCACTAGTGAGGATATTCTTAATCCCAATTACGAAGACC	
M49I reverse	GTAATTGGGATTAAGAATATCCTCACTAGTGCAGATTACGTG	
M49L forward	ACTAGTGAGGATCTACTTAATCCCAATTACGAAGACCTTTTG	
M49L reverse	GTAATTGGGATTAAGTAGATCCTCACTAGTGCAGATTAC	
L50F ^{3,5,6}	CTAGTGAGGATATGTTCAATCCCAATTACGAAGACCTTTTGATTCG	
L50F reverse	CGTAATTGGGATTGAACATATCCTCACTAGTGCAGATTACG	
S144A forward	CTGAACGGCGCATGCGGTTCCGTTG	
S144A reverse	GAACCGCATGCGCCGTTCAGAAATGAACCC	
E166A ^{5,6}	CACCATATGGCACTCCCTACCGGTGTC	
E166A reverse	GTAGGGAGTGCCATATGGTGCATGTAGC	
E166V forward	CACCATATGGTACTCCCTACCGGTGTC	
E166V reverse	CGGTAGGGAGTACCATATGGTGCATG	
L167F forward	CCATATGGAATTCCCTACCGGTGTCC	
L167F reverse	CCGGTAGGGAATTCCATATGGTGCATG	
$\Delta P168$ forward	TATGGAACTCACCGGTGTCCACGCC	
ΔP168 reverse	GACACCGGTGAGTTCCATATGGTGCATG	
A173V forward	GTGTCCACGTAGGTACAGATCTGGAAGG	
A173V reverse	CAGATCTGTACCTACGTGGACACCGG	
P252L forward	GATATCCTGGGTCTACTCAGTGCCCAGACAG	
P252L reverse	CTGGGCACTGAGTAGACCCAGGATATCAACATG	
T304I forward	AGTGGGGTCATCTTCCAGAGTGCAGTGAAAAGAAC	
T304I reverse	CACTCTGGAAGATGACCCCACTGCATTGTCTGAC	
Forward	CGCAAATGGGCGGTAGGCGTG	
sequencing primer		
Reverse .	TAGAAGGCACAGTCGAGG	
sequencing primer		

85 Supplementary Table 1. Site directed mutagenesis primers for generating M^{pro} variants.